搜档网
当前位置:搜档网 › 动力电池管理系统BMS

动力电池管理系统BMS

动力电池管理系统BMS
动力电池管理系统BMS

动力电池管理系统BMS

BMS是以某种方式对动力电池进行管理和控制的产品或技术。典型的电动汽车动力电池组管理系统的工作原理如图1-3所示。BMS由各类传感器、执行器、固化有各种算法的控制器以及信号线等组成。其主要任务是确保动力电池系统的安全可靠,提供汽车控制和能量管理所需的状态信息,而且在出现异常情况下对动力电池系统采取适当的干预措施;通过采样电路实时采集电池组以及各个组成单体的端电压、工作电流、温度等信息;运用既定的算法和策略估算电池组S OC、SOH、SOP以及剩余寿命(Rem aining Usef ul Life,RUL)等,并将参数输出到电动汽车整车控制器,为电动汽车的能量管理和动力分配控制提供依据。

图1-3 典型的电动汽车动力电池组管理系统的工作原理

1.4.1 BMS的基本功能

BMS的主要功能有数据采集、状态检测、安全保护、充电控制、能量控制管理、均衡管理、热管理以及信息管理等。

1.数据采集

动力电池在电动汽车中的工作环境及状况十分复杂。电动汽车需要适应复杂多变的气候环境,这意味着动力电池的运行需要常年面对复杂多变的温湿度环境。此外,随着路况和驾驶人操纵方式的改变,动力电池需要时刻适应急剧变化的负载。为了准确获取动力电池的工作状况,更好地实施管理对策,BMS需要通过采样电路实时采集电池组以及各个组成单体的端电压、工作电流、温度等信息。

2.状态监测

动力电池是一个复杂的非线性时变系统,具有多个实时变化的状态量。准确而高效地监测动力电池的状态量是电池及成组管理的关键,也是电动汽车能量管理和控制的基础。因此,BMS需要基于实时采集的动力电池数据,运用既定的算法和策略进行电池组的状态估计,从而获得每一时刻的动力电池状态信息,具体包括动力电池的SOC、SOH、S OP以及能量状态(State of Energy,SOE)等,为动力电池的实时状态分析提供支撑。

3.安全保护

动力电池安全保护功能主要指动力电池及其成组的在线故障

诊断及安全控制。动力电池的在线故障诊断是指通过采集到的传感器信号,采用诊断算法诊断故障类型。动力电池管理需要诊断的故障通常包括过电压(过充电)、欠电压(过放电)、烟雾、过电流、超高温、短路故障、接头松动、绝缘能力降低以及电解液泄漏,还涉及传感器、执行器以及控制器等电子元器件的故障。在诊断出故障类型后,B MS需要进行早期预警,并尽可能采取相应的措施进行及时干预,以保证电动汽车的行驶安全。

4.充电控制

动力电池的充电过程将直接影响到电池的寿命和安全。因此,BMS通常需要集成一个充电管理模块,根据动力电池的实时特性、温度高低以及充电机的功率等级,控制充电机给电池进行安全充电。

5.能量控制管理

由于电动汽车的行驶工况十分复杂,急加速、急制动、上下坡等驾驶操作的随机触发将造成复杂多变的动态负载。为了保证车辆安全、经济地运行,BMS需要根据采集到的动力电池数据和实时状态信息,合理控制动力电池的能量输出以及再生制动的能量

回收。若电动汽车装有复合电源,B MS还需根据复合电源各自的状态信息优化分配动力电池的能量,以保证复合电源的最佳性能。

6.均衡管理

由于生产工艺、运输储存以及电子元器件的误差积累,动力电池单体之间难免存在不一致性。为了充分发挥电池单体的性能,保证电池组的使用安全,BMS需要根据动力电池单体的信息,采取主动或被动的均衡方式,尽可能降低动力电池单体在使用过程中的不一致性。

7.热管理

动力电池在正常工作中不仅受环境温度的影响,还受自身充放电产热的影响。因此,BMS需要集成电池热管理模块。它可以根据电池组内温度分布信息及充放电需求,决定主动加热/散热的强度,使得动力电池尽可能工作在最适合的温度,充分发挥动力电池的性能,延长动力电池的使用寿命。

8.信息管理

BMS需要集成多个功能模块,并合理协调各模块之间的通信运行。由于运行的数据量庞大,BMS需要对动力电池的运行数据进行处理和筛选,储存关键数据,并保持与整车控制器等网络节点

进行通信。随着大数据时代的发展,BMS还需要与云端平台进行实时交互,以更好地处理动力电池的管理问题,提高管理品质。

1.4.2 BMS的拓扑结构

设计电动汽车时,通常需要满足一定的加速能力、爬坡能力和最高车速等动力性指标,若只配备单个动力电池单体作为能量源是远远无法达到要求的。因此,工程上通常将动力电池单体进行串并联成组,以满足车辆设计的技术要求。例如,特斯拉Model S 电动汽车采用松下公司制造的NCA系列18650镍钴铝三元锂离子动力电池,单体的标称容量为3100mA·h,全车共采用了7000多个电池单体进行串并联成组,最终组成一个动力电池包,并安置于车身底板。面对大规模的动力电池管理问题,BMS的拓扑结构非常重要。

BMS的拓扑结构直接影响系统成本、可靠性、安装维护便捷性以及测量准确性。一般情况下,电池监测回路(Batte r y Monitoring Circu it,BMC)与电池组控制单元(Batte r y Control Unit,BCU)共同构成硬件电路部分。根据BMC、BCU与动力电池单体三者之间的结构关系,BMS可分为集中式拓扑结构和分布式拓扑结构。

集中式BMS拓扑结构中的BM C和B CU集成在单个电路板上,实现采集、计算、安全监控、开关管理、充放电控制以及与整车控制器通信等功能,一般应用于动力电池容量低、总压低、电池系统体积小的场合。集中式BMS拓扑结构如图1-4所示,所有动力电池单体的测量信号被集中传输到单个电路板。

图1-4 集中式BMS拓扑结构

集中式BMS拓扑结构一般具有如下优点:

①高速的板内通信有利于保证数据的同步采集。

②结构紧凑,抗干扰能力强。

③成本较低,仅使用一个封装即可完成BMS的全部工作。

同时,集中式BM S拓扑结构也存在以下缺点:

①容易造成大量复杂的布线。

②当系统的不同部分发生短路和过电流时难以保护电池系统。

③考虑到高压安全问题,不同通道之间必须保留足够的安全间隙,最终导致电路板的尺寸过大。

④由于所有的组件都集中在单一电路板上,可扩展性和可维护性差。

与集中式拓扑结构不同,分布式BM S中的BCU与BMC是分开布置的,如图1-5所示。BCU主要负责故障检测、电池状态估计、开关管理、充放电控制以及与整车控制器通信;B MC则用于实现电池单体电压、电流和温度的采集以及安全性和一致性的管理。BCU和BMC之间通过CAN总线连接,任何BM C都可以与BCU通信。此外,每一块BMC电路板都属于CAN总线的一个节点,且单独与对应的动力电池单体建立连接。因此,BM C与BMC 之间同样可以建立通信。

分布式BMS拓扑结构一般具有如下优点:

①采集与计算功能分离,故障排查容易,计算效率高。

②极大简化了系统的结构,布置位置灵活,适用性好。

③可扩展性更强,若想要增加或减少管理的电池数量,只需要在相应电池附近布置或移除BMC电路板,再将它与预留的CAN 总线接口相连或解开即可。

同时,分布式BM S拓扑结构也存在以下缺点:

①部件增多,增加了电路板数量和安装、调试与拆解的步骤。

②通信网络设计要求高,易形成网络延时,影响采集数据的同步性。

目前,分布式BM S拓扑结构在电动汽车领域中的应用最为广泛。例如,特斯拉Model S、宝马i3、荣威e RX5以及比亚迪秦等商业化电动汽车均采用了这类结构。

图1-5 分布式BMS拓扑结构

1.4.3 BMS的开发流程

BMS的基本开发流程如图1-6所示。从图中可见,无论是动力电池的开发还是动力电池管理系统的开发,都是从整车的功率要求、能量要求以及其他设计要求出发,再进一步确定整车对动力电池及管理系统的具体要求。在动力电池的开发方面,首先需要对动力电池进行选型,并开展一系列的动力电池单体特性测试以及循环寿命测试,获取所选动力电池的性能特性,进而确定动力电池的成组方式,包括动力电池单体串并联的数量以及具体的

布置形式。在BM S开发方面,首先需要进行选型,再确定系统拓扑结构以及需要满足的基本功能和指标(包括防水、防尘、抗振等)。在确定动力电池成组方式、BMS拓扑结构以及基本功能和指标后,可以有针对性地开展系统的安装固定等机械结构设计、电子元器件/电路板设计以及底层驱动和应用层算法设计。在完成系统开发之前,还需要对B MS进行不同类型的测试,以确保系统设计的完整性和安全性。

图1-6 BMS的基本开发流程

储能系统方案设计精编版

商用300KW储能方案 技术要求及参数 电倍率0.5C; 储能系统配置容量:300kWh。 电池系统方案 术语定义 池采集均衡单元:管理一定数量串联电池模块单元,进行电压和温度的采集,对本单元电池模块进行均衡管理。在本方案中管理计60支的电池。电池簇管理单元:管理一个串联回路中的全部电池采集均衡单元,同时检测本组电池的电流,在必要时采取保案中管理17台电池采集均衡单元。电池阵列管理单元:管理PCS下辖全部电池簇管理单元,同时与PCS和后台监控系统通信状态请求PCS调整充放电功率。在本方案中管理2个并联的电池簇。 池模块:由10支5并2串的单体电池组成。 1 电池成组示意图 电池系统集成设计方案 .1电池系统构成 照系统配置300kWh储存能量的技术需求,本储能系统项目方案共使用1台150kW的PCS。储能单元由一台PCS和2个电池簇组台电池阵列管理单元设备。每个电池簇由一台电池簇管理设备和17 个电池组组成。

.2 电池系统计算书项目单体电池模块电池组电池簇电池阵列 体电池数目 1 10 60 1020 2040 称电压(V) 3.2 6.4 38.4 652.8 652.8 量(Ah) 55 275 275 275 -- 定能量(kWh) 0.176 1.76 10.56 179.52 359.04 低工作电压(V) 2.5 5 30 510 510 高充电电压(V) 3.6 7.2 43.2 734.4 734.4 统配置裕量 (359.04kWh -300 kWh)/300 kWh =19.68% 于以上各项分析设计,300kWh 电池系统计算如下。 .3电池柜设计方案 池机柜内部主要安装电池箱和BMS主控管理系统、配套电线电缆、高低压电气保护部件等。机柜采用分组分层设计,机柜外观柜采用免维护技术、模数化组合的装配式结构,保证柜体结构具有良好的机械强度,整体结构能最大程度地满足整个系统的可。其中,三个电池架组成的示意图如图3所示,尺寸为3600mm×700mm×2300mm。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电池管理系统 (BMS)

如何重新定义电动汽车电池管理系统 (BMS )? 来源:英飞凌公司 作者:Klaus & Bj?rn2013年12月13日 12:01 0 分享 订阅 [导读] 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。 关键词:电池管理处理器英飞凌电动汽车 随着电气化动力系统变得日益复杂,BMS 需要执行的功能增多,承受的负担之重前所未有。 无论是简单的充电控制器还是复杂的控制单元,对于电池管理系统 (BMS ) 的需求都在迅速增长,尤其是电动汽车领域。除了传统的充电状态监控外,BMS 系统还必须遵守日益严格的安全法规,注重控制和待机功能、热管理和用于保护 OEM 车厂电池的加密算法。未 来,甚至车辆控制单元 (VCU ) 的部件和功能也会与 BMS 相关联。 图1 配备所有相关部件的电动汽车电池管理系统 (BMS )

未来,BMS 将在电动汽车领域发挥重要作用。然而 BMS 的各个子功能往往由 OEM车厂定制,会因系统配置不同而存在很大差异。因此,不可能制定出适用于每一个电动汽车制造商的完整的 BMS 要求列表。然而,电池管理系统处理的任务范围不断扩大,这一事实毋庸置疑。BMS 最常见的要求包括安全要求、控制和监控功能、待机功能、热管理、加密算法和预留可扩展接口增加新功能。 安全要求 在 ISO 26262 安全标准范围内,如 BMS 等特定的电气和电子系统将被归类为从 ASIL C 至 ASIL D 的高安全类别。与之对应的故障检测率至少为 97% 至 99%。电池系统中最危险的故障来源有:因电缆磨损或事故而导致车辆底盘出现高电压漏电而未被发现;各种引起高电压电池起火或爆炸的原因:例如对电池过度充电(例如在公用电网上或因停电恢复引起)、电池过早老化(例如爆炸性气体泄漏)、液体进入和短路(例如因雨水引起)、滥用(例如维修不当)和热管理错误(例如冷却失效)等。 在安全方面,主开关(主继电器)在避免与高电压相关的事故中起到了重要的作用,它可确保 BMS 电子系统能够作出充分的故障反应。发生故障时,BMS 模块会在适当的故障反应时间内断开开关(例如 10ms 以内)。非关键故障安全条件的特征通常是:如果 BMS 微控制器(MCU)失效,甚至在控制器逻辑完全失效的情况下,独立的外部安全元件(例如窗口看门狗)仍可确保主开关继电器可靠地打开逆变器(正/负)的两个高电压触点。BMS 系统中还集成了其他安全功能,包括漏电电流监控和主开关继电器监控。 控制和监控功能: 其他 BMS 功能包括对电动汽车中昂贵的高电压电池的监控、保养和维护。BMS 控制和监控功能来源于安装于电池包中的电子平衡单元。管理各个电池组内(battery slave pack)的平衡,同时精确地感测各个单电池的电压。平衡芯片通常可管理多达 12 个单电池组成的群组。相关数量的电池群组串联后可产生高达数百伏的高中间电路电压以供逆变器控制之用,这是电动汽车的逆变器电驱动所必需的。 位于主开关对所有高电压电池的总电流的测量,以及从芯片对各个单电池电压的单电池精确同步监控,BMS 可使用特定算法(例如,基于电池化学 Matlab Simulink 模型)评估充电状态及健康状态等电池参数。BMS 通常不会安装在非常靠近高电压电池的位置,但是通常会通过冗余的流电去耦总线系统(比如 CAN 或其他适合的差分总线)与电子平衡从动元件相连接。它由汽车电压(12 伏电池)供电,因此可通过现有的网络架构与现有的控制单元群组结合使用,无需进一步的流电去耦措施。最后,它还改善了安全性,因为它让 BMS 能够在高电压电池发生机构或化学缺陷时确保功能正常并且安全地断开主开关。 随着电池专用的化学/电气算法日益复杂,预计 BMS 将需要使用拥有 2.5MB 至 4MB 闪存和强大的多核处理器架构的 AURIX 等微控制器(MCU)。这种组合可以保证有足够的内存用于全面校准参数并提供足够的计算能力(图 2)。

国内外汽车动力电池管理系统(BMS)发展概况

引言 电池的性能和使用寿命直接决定了电动汽车的性能和成本,因此,如何提高电池的性能和寿命得到了各方面的重视。电动汽车上使用的动力电池是由多个电池单体通过串并联方式组成电池组,电池单体都紧密地布置在一起,在进行充放电时,各个电池单体所产生的热量互相影响,如果散热不均匀,将造成电池组局部温度快速上升,使电池的一致性恶化,使用寿命大大缩短,严重时会造成某些电池单体热失控,产生比较严重的事故。当动力电池处于低温环境中,电池的充放电性能会大大降低,导致电池无常工作。为了使动力电池组保持在合理的温度围工作,电池组必须拥有科学和高效的热管理系统。目前,国外的许多研究人员对电池组的热管理系统做了大量的研究,进行了一些新的探索,以期提高热管理系统的控制效果,从而提高电动汽车电池组的性能和使用寿命。 国外汽车动力电池管理系统(BMS)发展概况 目前,影响电动汽车推广应用的主要因素包括动力电池的安全性和使用成本问题,延长电池的使用寿命是降低使用成本的有效途径之一为确保电池性能良好,延长电池使用寿命,必须对电池进行合理有效的管理和控制,为此,国外均投入大量的人力物力开展广泛深入的研究。 日本青森工业研究中心从1997年开始至今,持续进行(BMS)实际应用的研究,丰田、本田以及通用汽车公司等都把BMS纳入技术开发的重点;美国Villanova大学和USNanocorp公司已经合作多年对各种类型的电池SOC进行基于模糊逻辑的预测;国Ajou大学和先进工程研究院开发的BMS系统的组成结构及其相互逻辑关系。该系统在上述结构中进行功能扩展,即增设热管理系统、安全装置、充电系统以及与PC机的通信联系。另外还增加与电动机控制器的通信联系,实现能量制动反馈和最大功率控制。 我国在十二五期间设立电动汽车重大专门研究项目,经过几年的发展之后,在BMS方面取得很大的突破,与国外水平也较为接近。在国家863计划2005年第一批立项研究课题中,就分别有理工大学承担的EQ7200HEV混合动力轿车用镍氢

储能系统功能介绍及基本拓扑

储能系统功能介绍及基本拓扑 储能系统是一个可完成存储电能和供电的系统。本系统主要由两大单元组成:储能单元 和监控与调度管理单元。储能单元包含储能电池组、电池管理系统、PCS等;监控与调度管 理单元包括计算机、控制软件及显示终端。 储能系统PCS功能描述: 储能变流器又叫储能系统双向变流器,又可以称为功率变换系统(PCS。储能变流器 是储能单元中功率调节的执行设备,由若干个交直流变换模块及直流变换模块构成。储能系统中的能量转换系统(PCS处于交流380V三相电网和储能电池组之间,用于满足储能电池 组充放电控制的需要。在监控与调度系统的调配下,可满足额定的功率需求,并结合电池管理系统的信息,实施有效和安全的储电和放电管理。 储能系统电池管理系统功能描述:电池管理系统安装于储能电池组内,负责对储能电池组进行电压、温度、电流、容量等信息的采集,实时状态监测和故障分析,同时通过CAN总线与PCS监控与调度系统联机 通信,实现对电池进行优化的充放电管理控制。本系统每簇电池组各自配套一套电池管理系统,能达到有效和高效地使用每簇储能电池及整体合理调配的目的。 监控与调度管理系统: 监控与调度管理系统(以下简称监控调度系统,SDS,Supervision and Dispatch System )是储能单元的能量调度、管理中心,负责收集全部电池管理系统数据、储能变流器 数据及配电柜数据,向各个部分发出控制指令,控制整个储能系统的运行,合理安排储能变流器工作; 系统既可以按照预设的充放电时间、功率和运行模式自动运行,也可以接受操作员的即时指令运行。 电池管理系统主要功能-nego 使用的电池管理系统功能。 (1)单体电池电压的检测利用专用电压测量芯片,内含高精度A/D 转换模块。电池巡 检周期达到150ms,电压检测范围0~5V,精度%FSR从而精确及时监控电池在使用过程中的状态及变化。有效时防止电池的不正当使用。

电动汽车动力电池及管理系统试卷A

广东文理职业学院刘鹏2018-2019学年度第一学期 期末考试试题(A卷) (考试时间: 90 分钟) 考试科目动力电池及管理适用班级:新能源汽车一班 一、单项选择题(每小题2分,共计30分) (题目正文:宋体,五号,行距20磅) 1. 燃料电池采用的燃料是()。 A.汽油; B.柴油; C.乙醇; D.氢气 2.燃料电池汽车的效率能达到以上()。 A.30%; B.40%; C.50%; D. 60% 3.在最适合汽车使用的燃料电池()。 A.质子交换膜燃料电池; B.磷酸燃料电池; C.熔融碳酸盐燃料电池对; D.固态氧化物燃料电池。 4.世界上第一家实现商品化销售的燃料电池汽车生产厂家是()。 A.丰田; B.通用; C.奔驰; D.本田。 5.蓄电池组中,标称电压为12V的单体电池端电压压差应小于()mV。 A.100; B.120; C.150; D.200 6.在25°C下,蓄电池组由32节单体蓄电池组成(单体标称电压为12V),则其浮充电电压应约为() A. 384V; B. 432V; C. 450V; D. 472V 7.在蓄电池管理系统中,由()把整流电压变成交流电压。 A.整流器; B.逆变器; C.充电器 8.在蓄电池管理系统中,,由()把直流电压变成交流电压。 A.整流器; B.逆变器; C.充电器; D.交流调压器 9. 15.2020年中国电池制造的能量密度要达到()。 A. 300wh/kg;A. 400wh/kg;A. 500wh/kg 10.用电流表测量电流,应将电流表和被测电流的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 11.用电压表测量电压,应将电压表和被测电压的电路或负载()。 A.串联; B.并联; C.怎么连接都可以。 12.万用表使用完毕后,应将选择开关放在()。 A.电阻档; B.交流电压最高档; C.直流电流档。 13.三相桥式整流电路,在交流电的一个周期内,每个整流元件的导通角为()。 A. 180度; B. 120度; C. 60度 14.单相整流电路中,二极承受的反向电压的最大值出现在二极管()。 A.截止时; B.由截止转导通时; C.导通时; D.由导通转截止时 15.燃料电池汽车的效率能达到以上()。 A. 30%; B. 40%; C. 50%; D. 60%。 系 别 : 专 业 班 别 : 姓 名 : 学 号 : … … … … … … ○ … … … 密 … … … ○ … … … … 封 … … ○ … … … … 线 … … ○ … … … … … … ○ … …

电池管理系统BMS硬件技术要求书

BMS硬件技术要求 MA/SIR X.X.X 编制 审核 会签 批准

1. 产品技术要求 硬件选型要求 BMS 的主控单元微处理器必须满足如下的性能要求: 序号项目主板MCU性能要求 1 处理器类型16位汽车级芯片 2处理器总线时钟频率≥80MHz 3Internal RAM(随机读写存储器)≥64Kbyte 4Flash(存储器)≥1Mbyte 5EEPROM (电可擦除读写存储器)≥4Kbyte 电池管理系统关键元器件要求采用汽车级产品并满足汽车电子相应的测试标准。 环境要求 相对湿度15% ~90%RH; 海拔高度-100~5000m; 气压范围56.9~106.3kPa; 工作环境温度范围为-40℃~+85℃。 序号项目主板MCU性能要求 1 相对湿度15% ~90%RH 2海拔高度-100~5000m 3气压范围56.9~106.3kPa 4工作环境温度-40℃~+85℃ 电源管理要求 1.3.1 基本功能要求 N o. 序 Cont ents 目录 Description 描述 R&D Requirements 设计要求 Remar ks 说明

1.3.2 供电要求 1).BMS应支持6V-32V常火供电,工作模式下功耗(不含外部继电器)不超过 0.5A@12V,系统应用仅支持12V系统; 2).BMS应支持12V/24V(±15%)A+供电; 3).BMS应支持钥匙信号唤醒、VCU信号唤醒、A+信号唤醒、CC唤醒、预留定时唤醒、CAN唤醒,并预留1路硬线唤醒,内部应具备唤醒源识别功能;在无唤醒信号的情况下进入休眠模式,功耗要求不高于1mA。CC在线不充电状态系统进行低功耗模式,功耗要求不高于5mA。 4).在汽车启动电池出现馈电异常情况时,BMS内部供电电路应避免出现充电系统相关接口(A+或CP)向汽车启动电池补电而导致硬件损坏的风险; 5).在供电系统9V-16V范围内,BMS的所有功能模块应能正常工作; 6).在供电系统6V-9V范围内,BMS的对外通讯功能正常工作,能判断电源欠压状态; 7).在供电系统16V-32V范围内,BMS的对外通讯功能正常工作,且能正常检测充电连接信号和电源过压状态,12V系统应用时为保护外部高压继电器,在24V A+供电时BMS 应进入保护状态,严禁常火24V系统应用环境;

电池热管理系统

电池热管理 电池热管理概述 电池热管理系统 (Battery Thermal Management System, BTMS)是电池管理系统(Battery Management System, BMS)的主要功能(电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等)之一,通过导热介质、测控单元以及温控设备构成闭环调节系统,使动力电池工作在合适的温度范围之内,以维持其最佳的使用状态,用以保证电池系统的性能和寿命。 电池热管理重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。 1)电池能量与功率性能:温度较低时,电池的可用容量将迅速发生衰减,在过低温度 下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部短路。 2)电池的安全性:生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部 过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件。 3)电池使用寿命:电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起 电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命。 电池热管理系统是应对电池的热相关问题,主要功能包括: 1)散热:在电池温度较高时进行有效散热,防止产生热失控事故; 2)预热:在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性 能和安全性;

3)温度均衡:减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电 池过快衰减,以提高电池组整体寿命。 电池热管理方案 电池热管理方案主要分为风冷与液冷两大类,主要侧重于防止电池过热方面: 1.风冷 该技术利用自然风或风机,在电池包一端加装散热风扇,另一端留出通风孔,使空气在电芯的缝隙间加速流动,带走电芯工作时产生的高热量。风冷方案设计主要考虑电池系统结构的设计,风道,风扇的位置及功率的选择,风扇的控制策略等。风冷是以低温空气为介质,利用热的对流,降低电池温度的一种散热方式,分为自然冷却和强制冷却(利用风机等)。 整车中的电池风冷流道

动力电池能量管理系统

动力电池能量管理系统 检测时间:2016-05-23 09:39:53 摘要 近年来,由于日益严重的环境污染问题和日益增长的石油和能源消耗,新能源汽车的发展,越来越多的政府和世界主要汽车制造商的关注。三个电动汽车的发展。 本文介绍了电动汽车电池管理系统的主要功能和开发国内外介绍问题的根源,介绍了铅酸蓄电池工作原理和关键的操作特性,描述铅酸电池剩余量预测几个模型的设计和项目的特点,基于大量的电池充电和放电的实验数据,提出了这种设计方法来估计剩下的电池供电。 上述功能需求,设计提出使用主芯片单片机,分散的集合和集中控制的解决方案结合硬件、单片机的选择,电池参数收集,平衡和保护电路、功率转换电路和外部通信和其他主要模块硬件设计详细描述和基于C51单片机凯尔软件开发和设计环境软件解决方案设计的电池管理系统3主要流程:充电、放电和静态软件设计。最后,整个硬件和软件系统充电和放电的疲劳试验通过收集大量的实验数据,验证了硬件和软件设计的可行性和稳定性 关键词电动汽车; 电池管理系统;电池SOC估算;单片机;充电均衡控制

ABSTRACT In recent years, due to the increasingly serious problem of environmental pollution and the increasing consumption of oil and energy, new energy vehicles

Development, more and more governments and the world's major carmakers attention. Develop three electric vehicles The key technology is the motor drive system consists of three parts, the vehicle control system and power management systems, steam current Automotive battery life is short-range, low battery life, high maintenance costs and popular, therefore, Power management technology for energy management and vehicle power battery protection control is becoming increasingly important. This article describes the electric vehicle battery management system The main function of the system and the development of domestic and foreign presentation Root of the problem, and introduces the principle of lead-acid batteries and key operating characteristics described Lead-acid battery remaining amount prediction model design and features of several projects, based on a lot of battery Charging and discharging of the experimental data, this design method is proposed to estimate the remaining battery power. The above functional requirements, the design proposed to use the main chip microcontroller, decentralized collection And centralized control solutions combine hardware, MCU selection,

动力电池热管理系统性能试验方法

动力电池热管理系统性能试验方法 1 范围 本标准规定了动力电池热管理系统性能的试验方法。 本标准适用于乘用车用动力电池热管理系统,商用车用动力电池热管理系统可以参考。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2900.41-2008 电工术语原电池和蓄电池 GB/T 19596-2017 电动汽车术语(ISO 8713:2002,NEQ) GB/T 31467.2电动汽车用锂离子动力蓄电池包和系统第2部分:高能量应用测试规程QC/T 468-2010 汽车散热器 GB/T 18386-2017 电动汽车能量消耗率和续驶里程试验方法 GB 18352.6-2016 轻型汽车污染物排放限制及测量方法(中国第六阶段) 3 术语和定义 GB/T 2900.41-2008、GB/T 19596-2017中界定的以及下列术语和定义适用于本文件。 3.1 动力电池热管理系统 battery thermal management system 综合运用各种技术手段,具备动力电池冷却、加热、保温和均温等功能,保证动力电池在不同环境下正常工作的系统。同时,该系统可以在动力电池发生热失控时提供报警信号,具备安全防护功能。通常,动力电池热管理系统包括主动式热管理系统和被动式热管理系统两种。 3.2 被动式热管理系统 passive thermal management systems 基于热传导、热辐射、热对流等热量传输原理,只依靠冷却或加热流体因为温度因素缓慢流动自然完成热量输入输出交换的热管理系统。该类系统通常适用于单体产热量小于 5W的电池。 3.3 主动式热管理系统 active thermal management systems 基于热传导、热辐射、热对流等热量传输原理,使用耗能部件消耗能量完成热量输入输出交换的系统。主动式热管理系统包括主动空气冷却加热系统和主动液体冷却加热系统两种,根据需要采用流体串行流动和并行流动两种方式实现热交换。 3.4 主动式空气冷却加热系统 Active Air Cooling and Heating Systems 又称风冷系统,利用空气作为热量交换载体控制分配动力电池系统内部温度的系统。该系统通常使用风扇和管道完成空气在电池系统内的流动,分为直接接触式和间接接触式两种。空气可以从电池系统外部进入并排出电池系统外,也可以在电池系统内部循环实现电池冷却或加热功能;若空气仅在电池内部循环,则电池系统内部通常需要有空气冷却装置(通常为空调蒸发器)、空气加热装置和空气循环风扇。该类系统通常适用于单体产热量

BMS储能系统用户手册(V1.0)-磷酸铁锂要点

储能电站电池管理系统 (BMS) 用户手册V1.0 (磷酸铁锂电池) 深圳市光辉电器实业有限公司

目录 1、概述?错误!未定义书签。 2、系统特点.............................................................................................................. 错误!未定义书签。 3、储能电站系统组成?错误!未定义书签。 4、电池管理系统主要组成 (4) 4.1 储能电池管理模块ESBMM ......................................................................... 错误!未定义书签。 4.1.1 ESBMM-12版本?错误!未定义书签。 4.1.2 ESBMM-24版本........................................................................... 错误!未定义书签。 4.2 电池组控制模块ESGU................................................................................ 错误!未定义书签。 4.3 储能系统管理单元ESMU ............................................................................... 错误!未定义书签。 5、安装及操作注意事项?错误!未定义书签。 19 附录A:产品操作使用界面?

动力蓄电池及管理系统

第二章 02 动力蓄电池及管理系统

一、动力电池主要性能指标 1.电压 (1)端电压。 (2)标称电压。 (3)开路电压。 (4)工作电压。 (5)充电终止电压。 (6)放电终止电压。

一、动力电池主要性能指标 2.容量 (1)额定容量。 (2)n小时率容量。 (3)理论容量。 (4)实际容量。 (5)荷电状态。 3.内阻 电池的内阻是指电流流过电池内部时所受到的阻力,一般是蓄电池中电解质、正负极群、隔板等电阻的总和。电池内阻越大,电池自身消耗掉的能量越多,电池的使用效率越低。

一、动力电池主要性能指标 4.能量 (1)总能量。 (2)理论能量。 (3)实际能量。 (4)比能量。 (5)能量密度。 (6)充电能量。 5.功率 (1)比功率 (2)功率密度

一、动力电池主要性能指标 6.输出效率 (1)容量效率。 (2)能量效率。 7.自放电率 自放电率是指电池在存放期间容量的下降率,即电池无负荷时自身放电使容量损失的速度,它表示蓄电池搁置后容量变化的特性。 8.放电倍率 电池放电电流的大小常用“放电倍率”表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电时间越短,即放电倍率越高,则放电电流越大。

9.使用寿命 一、动力电池主要性能指标 电池类型质量能量密度 (W·h/kg)质量功率密度 (W/kg) 能量效率 (%) 循环寿命 (次) 铅酸电池35~50150~40080500~1000镍镉电池30~50100~150751000~2000镍氢电池60~80200~400701000~1500锂离子电池100~200200~350>901500~3000

电池管理系统BMS控制策略方案书

项目编号: 项目名称:电池管理系统(BMS)文档版本:V0.01 技术部 2015年月日

版本履历

目录 1.前言 (4) 2.名词术语 (5) 3.概要 (6) 4.总体要求 (7) 5.系统原理图 (9) 6.模块的构成 (10) 6.1BMS程序模块图 (10) 6.2整体方案图 (10) 7.电池串管理单元BCU (11) 7.1模块的概述 (11) 7.2模块的输入 (11) 7.3模块的功能 (11) 7.4模块的输出 (11) 8.电池检测模块BMU (11) 8.1模块的概述 (11) 8.2模块的输入 (11) 8.3模块的功能 (11) 8.4模块的输出 (12) 9.绝缘检测模块LDM (12) 9.1模块的概述 (12) 9.2模块的输入 (12) 9.3模块的功能 (12) 9.4模块的输出 (12) 10.强电控制系统HCS (12) 10.1模块的概述 (12) 10.2模块的输入 (12) 10.3模块的功能 (12) 10.4模块的输出 (13) 11.电流传感器CS (13) 11.1模块的概述 (13) 12.显示屏LCD (13) 12.1模块的概述 (13) 13.后记 (14) 14.参考资料 (15)

1.前言 开发电动汽车电池管理系统,此系统的全面实时监控,具有良好的电池均衡性能,检测精度高。

2.名词术语 BMS:电池管理系统 BCU:电池串管理单元 BMU:电池检测单元 LDM:绝缘检测模块 HCS:强电控制系统 SOC: 电池荷电状态

3.概要 电动汽车电池管理系统(BMS),管理系统状态用于监测电动汽车的动力电池的工作状态,从而采集动力电池的状态参数,实现动力电池的SOC状态、温度、充放电电流和电压的监控。电池管理系统主要是BMS通过CAN总线与整车控制器、智能充电器、仪表进行通讯,对电池系统进行安全可靠、高效管理。电池管理系统包括BCU和BMU,BCU主要作用是:根据动力电池的工作状态,对电池组SOC进行动态估计,通过霍尔电流传感器,实现对充放电回路电流的实时监测,保护电池系统,可以实现与BMU、整车控制器、充电机等进行通信,交互电压、温度、故障代码、控制指令等信息;BMU的功能是通过对各个单体电压的实时监测、对箱体温度的实时监测,通过CAN总线将电池组内各单体的电压、箱体温度以及其他信息传送到BCU,通过与智能充电桩交互数据信息,充电期间实时估算电池模块SOC,对电芯进行充电均衡,提高单节电芯的一致性,提高整组电池使用性能,对电池进行主动式冷热管理,保护电池使用寿命,延长电池寿命。

动力电池管理系统(BMS)的核心技术【深度解析】

动力电池管理系统(BMS)的核心技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 什么是BMS的核心技术? BMS系统通常包括检测模块与运算控制模块。 检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。

状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。 电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电SOC=5%。成为当时续航里程最长的电动车。下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。 SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。 SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使

KH-HD02比亚迪秦动力电池和管理系统实训台

KH-HD02比亚迪秦动力电池和管理系统实训台 一、产品简介 选用原装比亚迪秦动力电池和管理系统真实材料制作,原装高压配电箱和车载充电机;真实展示磷酸铁锂动力电池系统核心零部件之间的连接控制关系、安装位置和运行参数,以及高压系统安全注意事项,并培养学员对磷酸铁锂动力电池包故障分析和处理能力,适用于各院校新能源纯电动课程教学和维修实训。 二、功能特点 1.各主要部件安装在平台上,电气连接方式与实车相同,真实展示原车动力电池系统结构。 2.增加动力电池包显示器(7寸),安装在面板上,可观察充放电过程各项参数,动力电池包充放电过程控制逻辑和主要部件参数变化规律。 3.设备给驱动传动系统等设备提供动力源,配套原车连接电缆线,与原车连接方式相同。 4.配备12V电源接地机械开关。 5.高压配电箱上盖半透明改装,展示控制原理和内部控制器件结构。 6.配原理教学面板,完整显示动力电池,高压配电箱,电池管理器,车载充电机,交流充电口等工作原理图,低压控制电路安装用检测端子,借助万用表和示波仪,实时检测各种状态数据变化。 7.设备由可移动台架(带原理面教板)、台架水平放置,安装各主要零部件;底部安装4个带自锁装置万向脚轮。 8.配备智能化故障设置和考核系统,由教师设置故障,学员分析并查找故障点。 9.配套实训指导书等教学资料,完整讲述工作原理,实训项目,故障设置及分析等要点。 三、技术规格 1. 外形尺寸(mm):1600*1000*1700(长*宽*高) 2. 高压动力母线电源:DC486.4V 3. 低压控制工作电源:DC12V 4. 动力电池类型:环保型磷酸铁锂动力电池 单体电池:3.2V20AH 动力电池包总电压:3.2*152=486.4V 动力电池包容量:486.4V20AH(10度电) 完全充放电次数:2000次 工作温度:-20°~60°

动力电池热管理系统组成及设计流程

动力电池热管理系统组成及设计流程 动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。 电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊: 动力电池热管理必要性 1、电池热量的产生 由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。 2、温度升高对电池寿命的影响 温度的升高对电池的日历寿命和循环寿命都有影响。 从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。 因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。 02 热管理系统的分类及介绍 不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

储能系统方案.doc

序 术语 定义 号 1 单体蓄电池, Cell 由电极和电解质组成,构成蓄电池组的最小单元,能将所获得的电 能以化学能的形式贮存并将化学能转为电能的一种电化学装置。 2 电池模块 ,Battery Module 用电气方式连接起来的用作能源的两个或者多个单体蓄电池。 3 电池簇 ,Battery Cluster 由若干个电池模块串联,并与电路系统相联组成的电池系统,电路 系统一般由监测、保护电路、电气、通讯接口及热管理装置等组成。 4 电池堆 ,Battery Array 由连接在同一台能量转换系统( PCS )上的若干个电池簇并联而成的 可整体实现功率输入、输出的电池系统,并受后台监控系统控制。 电池管理系统 ,Battery 用于对蓄电池充、放电过程进行管理,提高蓄电池使用寿命,并为 5 用户提供相关信息的电路系统的总称,由 BMU 、MBMS 和 BAMS 等管理 Management System,BMS 单元组成,可根据储能系统配置选用两层或三层架构。 具有监测电池模块内单体电池电压、温度的功能,并能够对电池模 6 电池管理单元 ,Battery 块充、放电过程进行安全管理,为蓄电池提供通信接口的系统。 BMU Management Unit, BMU 是电池管理系统( BMS )的最小组成管理单元,通过通信接口向电池 簇管理系统( MBMS )提供电池模块内部信息。 是由电子电路设备构成的实时监测与管理系统, 有效地对电池簇充、 电池簇管理系统 ,Main 放电过程进行安全管理,对可能出现的故障进行报警和应急保护处 7 Battery Management 理,保证电池安全、可靠、稳定的运行。 MBMS 是电池管理系统的中 System,MBMS 间层级,向下收集电池管理单元( BMU )信息,并向上层电池堆管理 系统( BAMS )提供信息。 电池堆管理系统 ,Battery 是由电子电路设备构成的实时监测与管理系统,对整个储能电池堆 8 Array Management System, 的电池进行集中管理,保证电池安全、可靠、稳定的运行。 BAMS 是 BAMS 电池管理系统的最高层级,向下连接接电池簇管理系统( MBMS )。 9 电池荷电状态 ,State of 电池当前实际可用电量与额定电量的比值。 Charge,SOC 10 电池健康状态 ,State of 电池当前可充放电总电量与额定电量的比值。 Health,SOH 11 能量转换系统 Power 实现电池与交流电网之间双向能量转换的装置,其核心部分是由电 Conversion System,PCS 力电子器件组成的换流器。 后台监控系统 , Supervisory 对储能系统、外部电网、负载进行监测和协调控制的系统平台,由 12 Control And Data BAMS 或 MBMS (二层构架时)与其进行通信,完成储能电池堆的信息 Acquisition, SCADA 传输和后台控制。

相关主题