搜档网
当前位置:搜档网 › 影响絮凝剂投加量的因素

影响絮凝剂投加量的因素

影响絮凝剂投加量的因素
影响絮凝剂投加量的因素

影响絮凝剂投加量的因素

在水处理中影响混凝效果(药剂投加量)的因素比较复杂,其中包括水温、p H值和碱度、水中杂质性质和浓度、外部水利条件等。以下仅略述几项主要因素。

1、水温的影响

水温对药耗有明显影响,尤其是冬季低水温对药耗影响较大,通常絮凝体形成缓慢,颗粒细小、松散。原因主要有:

1、无机盐混凝剂水解是吸热反应,低温水混凝剂水解困难;

2、低温水的粘度大,使水中杂质颗粒的布朗运动强度减弱,碰撞机会减少,不利于胶体脱稳凝聚,同时还影响絮凝体的成长。

3、水温低时,胶体颗粒的水化作用增强,妨碍胶体凝聚,还影响胶体颗粒之间的粘附强度。

4、水温和水的p H值有关。水温低时,水的p H值提高,相应的混凝最佳p H值也将提高。所以在寒冷地区的冬季,尽管投加大量混凝剂也难获得良好的混凝效果。

2、p H值和碱度的影响

p H值是表示水是酸性还是碱性的指标,也就是说明水中H+浓度的指标。原水的p H值直接影响混凝剂的水解反应,即当原水的p H值处于一定范围时,才能保证混凝效果。当水中投加混凝剂后,因混凝剂发生水解使水中的H+浓度增加,从而导致水的p H值下降,阻碍了水解的进行。要使p H值保持在最佳范围以内,水中应有足够的碱性物质与H+中和。天然水中均含有一定碱度(通常是H C O3-),可以中和混凝剂水解过程产生的H+,对p H值有缓冲作用。当原水碱度不足或混凝剂投加过量时,水的p H值将大幅下降,破坏混凝效果。

3、水中杂质成份的性质和浓度的影响

水中S S颗粒大小、带电性都会影响混凝效果。一般来说,粒径细小而均一,其混凝效果较差,水中颗粒浓度低,颗粒碰撞机率小,对混凝不利;当浊度很大时,为使水中胶体脱稳,所需药耗将大大增加。当水中存在大量有机物时,能被粘土颗粒吸附,从而改变了原有胶体颗粒的表面特性,使胶体颗粒更加稳定,将严重影响混凝效果,此时必须向水中投加氧化剂,破坏有机物的作用,提高混凝效果。水中溶解性盐类也能影响混凝效果,如天然水中存在大量钙、镁离子时,有

利于混凝,而大量的C l-,则不利于混凝。在汛期,因雨水的冲刷而导致含大量腐殖质的高浊度水进厂,一般采用的提高前加氯和混凝剂投加量正是基于此。

4、外部水利条件的影响

胶体颗粒凝聚的基本条件,一是使胶体颗粒脱稳,二是使脱稳的胶体颗粒相互碰撞。混凝剂的作用主要是使胶体颗粒脱稳,而外部水利搅动是保证胶体颗粒能充分与混凝剂接触,使胶体颗粒互相碰撞而形成絮体。要使胶体颗粒与混凝剂充分接触,必须在混凝剂投入水中后使之迅速均匀地分散到水体各部分去,俗称快速混合,要求在10~30秒内,至多不超过2分钟。

5、水量冲击负荷的影响

水量冲击是指原水周期性或非周期性的、突然变化很大的水量冲击。对于自来水厂城市时用水量、及上游水量调整均影响进厂水量,尤其是夏季高峰供水阶段,时进厂水量变化较大,导致频繁调整药剂投加量,而且沉后水效果不是很理想。值得注意的是,这种变化并非线性上升,之后要注意观察反应池的矾花,以免药量过大而破坏混凝效果。

6、絮凝剂节药措施

除了以上几点影响因素外,还有一些节药措施,比如增加药液池搅拌次数,减少药剂固体颗粒沉淀,稳定药性,也能达到节约药耗的目的。

1、聚丙烯酰胺在使用中想要节约成本,首先需要选择聚丙烯酰胺的使用型号,原则是选择自己处理废水效果最好的聚丙烯酰胺,贵的不一定是最好的,也不要图便宜导致处理废水效果差,反而会增加成本,选取既降低了污泥含水率,同时单位药剂使用量也较低的药剂。首先对提供的药剂样品在实验室做絮凝实验,挑选出实验效果好的药剂两至三种,分别再做上机实验,以观察其最终的出泥效果,据此确定最终药剂品种。

2、聚丙烯酰胺一般为固体颗粒,使用需要配置成一定溶度的水溶液,浓度通常在0.1%到0.3%之间,过浓或过稀都会影响效果,浪费药剂,增加成本,溶解颗粒状聚合物的水应该是干净(如自来水),不能是污水。常温的水即可,一般不需要加温。水温低于5℃时溶解很慢。

水温提高溶解速度加快,但40℃以上会使聚合物加快降解,影响使用效果。一般自来水都适合于配制聚合物溶液。强酸、强碱、高含盐的水不适于用来配制。

3、药剂配制中一定要注意熟化时间,使药剂要充分溶解在水中,不要结块,否则既造成浪费,又影响出泥效果,同时对滤布和管路易造成堵塞,制造重复浪费。配成溶液后,其存放时间就很有限。一般说,溶液浓度为0.1%时,非、阴离子型高分子溶液不超过一周;阳离子

型高分子溶液不超过一天。

4、药剂配制好后,在投加过程中,要注意进泥泥质的变化和出泥的效果,适时地调整药剂的投加量,达到较好的投药比。

5、药剂应存放在干燥的库房中,药袋应封口,在使用中,尽可能领用多少使用多少,未用完的药剂密封,以免受潮。药剂配制中应注意尽量不要多配置,放置时间较长的药液,容易水解而再不能使用。

微生物絮凝剂产生及絮凝特性影响因素的研究.

《现代农业科技》2008年第18期 随着工农业生产的规模不断扩大,人们对水资源的需求量和使用率不断增加,水资源供需矛盾日益加大。为缓解矛盾、改善环境,水质净化和污水处理方面的技术开发已成为现今研究的热点。 在众多水处理的方法中,应用较广、成本较低的方法为絮凝沉淀法。分析絮凝剂的使用现状可以看出:无机絮凝剂价格便宜,但对人类健康和生态环境会有不利影响;有机高分子絮凝剂具有用量少、絮凝能力强、絮体容易分离等优点,但其残余单体有致畸、致癌、致突变效应,因而应用范围受限;微生物絮凝剂安全高效,不存在二次污染,可生物降解,使用方便,应用前景广阔。 1概述 微生物絮凝剂是一类由微生物或其分泌物产生的代谢 产物,它是利用微生物技术,通过细菌、真菌等微生物发酵、提取、精制而得的,是具有生物分解性和安全性的高效、无毒、无二次污染的水处理剂。微生物絮凝剂被广泛应用于畜产废水处理、染料废水的脱色、高浓度无机物悬浮液废水的处理、活性污泥沉降性能的改善、污泥脱水、浮化液的油水分离等方面。 2微生物絮凝剂产生的影响因素 微生物絮凝剂产生菌生长条件的好坏直接影响其是否 能制备絮凝剂,并牵连絮凝剂絮凝效果的优劣。 2.1培养基的组成 (1)碳源和氮源。碳源和氮源的种类对微生物絮凝剂的

产生、产生量的多少起着重要的作用。如:红平红球菌用乙醇作为碳源和葡萄糖加果糖作为碳源,絮凝活性的最大值一致;在各种受试氮源中以尿素和硫酸铵为最佳,采用氯化铵和硝酸铵也可刺激生长,但絮凝剂的产量较低[1] 。广泛产碱菌以果糖为碳源培养的絮凝剂的产量超过其他所有受试碳源。寄生曲霉产生絮凝剂的最佳氮源为硝酸钠[2]。碳氮比对菌体生长和絮凝剂的合成均有较大影响。若絮凝活性物质主要成分为多糖,微生物在生长及分泌絮凝剂过程中碳源的影响大于氮源;反之,絮凝活性物质主要成分为蛋白质类,氮源的种类和数量的改变对絮凝活性的影响。 (2)其他物质。在培养基中加入微量生长因子,如络蛋白氨基酸、蛋白陈、酵母膏、络蛋白、丙氨酸和谷氨酸等,可以促进絮凝剂的产生。无机盐Ca2+ 、Fe2+ 、Mn2+ 、Ba2+的添加对 絮凝剂的产生也有一定的影响,且因产生菌的不同而差异显著。EDTA、苹果酸、柠檬酸、多聚赖氨酸、小牛血清蛋白等对微生物絮凝剂的形成也有不同的影响。 2.2pH值 一般来说,初始pH值过高或过低都不利于絮凝剂的产生。细菌和放线菌在中性或偏碱性环境下,有利于产生絮凝剂,而酵母菌和霉菌在偏酸性条件下易于生长。在发酵过程中,培养液的酸碱会发生变化,pH值是一个动态变化的过程,其特点是先下降后上升,然后稳定。 2.3温度 温度是影响微生物生长代谢与存活的重要因素之一。

PFMS多核絮凝剂净化海水效果及影响因素_张秀芝

第33卷第6期2014年12月 海洋环境科学 MARINE ENVIRONMENTAL SCIENCE Vol.33No.6December 2014 PFMS 多核絮凝剂净化海水效果及影响因素 张秀芝,王 静,郝建安,成 玉,张雨山 (国家海洋局天津海水淡化与综合利用研究所,天津300192) 摘 要:制备镁铁复合絮凝剂(PMFS ),研究其对近岸海水的处理效果,考察了PMFS 在絮凝过程聚集状态 以及投加量、 pH 等因素对污染物去除效果的影响。结果表明:PMFS 絮凝过程是多种机制共同起作用的动态变化过程,形成絮体沉降性能良好;PMFS 絮凝性能略优于聚合硫酸铁(PFS );浊度、溶解性有机碳(DOC )去除率和总磷(TP )去除率分别达到96%、45%和92%;pH 对海水的浊度去除影响较小,但酸性条件下更利于DOC 和TP 的去除。 关键词:镁铁复合絮凝剂;絮凝处理;聚集状态;海水中图分类号:X703.5 文献标识码:A 文章编号:1007- 6336(2014)06-0962-04Effect and influence factors on seawater treatment by magnesium-ferro composite flocculant ZHANG Xiu-zhi ,WANG Jing ,HAO Jian-an ,CHENG Yu ,ZHANG Yu-shan (The Institute of Seawater Desalination and Multipurpose Utilization ,SOA ,Tianjin 300192,China ) Abstract :In this paper ,we discussed the treatment effect of magnesium-ferro composite flocculant (PMFS )toward coastal waters.Aggregation state in flocculation process ,flocculant dosage and pH were studied to estimate pollutant removal efficiency.Results showed that the flocculation process influenced by a variety of mechanisms was a dynamic change process.PMFS also showed good sedimentation performance.PMFS was slightly better than polymeric ferric sulfate (PFS ),removal rates of turbidity ,dissolved organic carbon (DOC )and total phosphorus (TP )could reach 96%,45%and 96%respectively.pH value had little effect on removal rate of seawater turbidity.But the acidic condition was more conducive to the remove of DOC and TP. Key words :magnesium-ferro composite flocculant ;flocculation ;aggregation state ;seawater 收稿日期:2013-10-08,修订日期:2013-11-19基金项目:海洋公益性行业科研专项经费项目(201105026);天津市科技兴海科研项目(KJXH2011-01) 作者简介:张秀芝(1964-),女,河北保定人,高工,主要从事海水利用技术研究,E-mail :dhs_zxz@126.com 通讯作者:张雨山(1962-),教授级高工,主要从事海水利用技术研究, E-mail :yushanzhang@hotmail.com 海水利用是沿海缺水地区解决水资源紧缺的重要措施,而絮凝工艺又是海水净化过程中常用工艺,是除去海水中胶体、悬浮物和有机物等污染物的关键技术。随着海水淡化和海水利用工程的推广实施,大量高盐度浓海水综合利用以及排放对环境的影响引起人们的重视,促使了高效经济、绿色环保药剂的开发。海水是一个既有胶体溶液特性,又有电解质溶液特性的复杂溶液体系,其胶 体的絮凝沉降有其特殊的规律。我国有广阔的海岸线,有着丰富的海水镁资源,将镁资源应用于海水净化处理工艺中,减少其它离子的加入,是一个重要的研究方向。在絮凝剂中增加镁盐,降低铁的用量,利用和镁离子的协同效应优化絮体的形态,在降低絮凝剂成本的同时,克服传统无机、有机絮凝剂的缺点,减少对后续浓海水排放和综合利用的不良影响。本文用MgCl 2和FeSO 4为主要 DOI:10.13634/https://www.sodocs.net/doc/7a6270166.html,ki.mes.2014.06.025

絮凝剂影响因素

絮凝剂使用时各种影响因素分析: 在絮凝剂的使用过程中有些常常达不到预期的最佳效果,也就说没有最大的发挥絮凝的作用,其原因主要包括以下几点: 1、温度的影响:水温升高絮凝效果则会提高,在低温条件下,必须增加絮凝剂用量。另一方面,水温过高,形成的絮凝体细小,污泥含水率增大,难以处理。所以,水温过高或过低对絮凝均不利。一般水温条件宜控制在20-30℃。 2、水体PH值的影响:每种絮凝剂都有它适合的PH值范围,超出它的范围就会影响絮凝效果。比如聚丙烯酰胺,阳离子型适用于酸性和中性的环境中使用,阴离子型适用于在中性和碱性的环境中使用,非离子型适用于从强酸性到碱性的环境中使用。 3、絮凝剂的性质和结构影响:对于高分子絮凝剂来说,其结构和性质对絮凝作用影响很大。无机高分子絮凝剂的聚合度越大,其电中和能力和吸附架桥功能越强。而对于有机絮凝剂来说,除了聚合度的影响外,线性结构的絮凝剂絮凝作用大,而环状或支链结构的有机高分子絮凝剂絮凝效果就差。 4、絮凝剂投加量的影响:各种絮凝剂都有在相应条件下的最佳投加量,低于或者超过这个最佳量都会使絮凝效果变差。用量不足时,絮凝不彻底,用量过量则会造成胶体的再稳定,降低絮凝效果。所以,不同的絮凝剂要在使用之前做小试确定其最佳加入量。 5、搅拌速度和时间的影响:为了使絮凝剂与水体充分接触,增加颗粒碰撞速率,往往要进行机械搅拌,而搅拌的速度和时间必须适当。速度过快、时间过长会将大颗粒的固体搅碎成小颗粒,将能够沉淀的颗粒搅碎成不能沉淀的颗粒;速度过慢、时间过短时,絮凝剂不能与固体颗粒充分接触,不利于絮凝剂捕集胶体颗粒;且絮凝剂的浓度分布也不均匀,更不利于发挥絮凝剂的作用。 可见,絮凝剂的絮凝过程是复杂的物理化学作用的结果,把握好使用事项,以便发挥最优絮凝效果,创造更大的使用效益。

污水处理絮凝剂原理、种类及影响因素

污水处理絮凝剂原理、种类及影响因素 絮凝剂在污水处理领域有着广泛的应用,作为强化固液分离的手段,可用于污水的初次沉淀、活性污泥法之后的二次沉淀,还可用于污水三级处理或深度处理。当用于剩余污泥脱水前的调理时,絮凝剂和助凝剂就变成了污泥调理剂或脱水剂。 一、絮凝剂的作用机理 水中胶体颗粒微小、表面水化和带电使其具有稳定性,絮凝剂投加到水中后水解成带电胶体与其周围的离子组成双电层结构的胶团。 采用投药后快速搅拌的方式,促进水中胶体杂质颗粒与絮凝剂水解成的胶团的碰撞机会和次数。水中的杂质颗粒在絮凝剂的作用下首先失去稳定性,然后相互凝聚成尺寸较大的颗粒,再在分离设施中沉淀下去或漂浮上来。 搅拌产生的速度梯度G和搅拌时间T的乘积GT可以间接表示在整个反应时间内颗粒碰撞的总次数,通过改变GT值可以控制混凝反应效果。一般控制GT值在104~105之间,考虑到杂质颗粒浓度对碰撞的影响,可以用GTC值作为表征混凝效果的控制参数,其中C表示污水中杂质颗粒的质量浓度,而且建议GTC值在100左右。

促使絮凝剂迅速向水中扩散,并与全部废水混合均匀的过程就是混合。水中的杂质颗粒与絮凝剂作用,通过压缩双电层和电中和等机理,失去或降低稳定性,生成微絮粒的过程称为凝聚。凝聚生成微絮粒在架桥物质和水流的搅动下,通过吸附架桥和沉淀物网捕等机理成长为大絮体的过程称为絮凝。混合、凝聚和絮凝合起来称为混凝,混合过程一般在混合池中完成,凝聚和絮凝在反应池中进行。 二、絮凝剂的种类 按照化学成分,絮凝剂可分为无机絮凝剂、有机絮凝剂以及微生物絮凝剂三大类。无机絮凝剂包括铝盐、铁盐及其聚合物。有机絮凝剂按照聚合单体带电集团的电荷性质,可分为阴离子型、阳离子型、非离子型、两性型等几种,按其来源又可分为人工合成和天然高分子絮凝剂两大类。 (一)无机絮凝剂 传统应用的无机絮凝剂为低分子的铝盐和铁盐,铝盐主要有硫酸铝(Al2(SO4)3?18H2O)、明矾(Al2(SO4)3?K2SO4?24H2O)、铝酸钠(NaAlO3),铁盐主要有三氯化铁(FeCl3?6H20)、硫酸亚铁(FeSO4?6H20)和硫酸铁(Fe2(SO4)3?2H20)。 一般来讲,无机絮凝剂具有原料易得,制备简便、价格便宜、处理效果适中等特点,因而在水处理中应用较多。 1.无机絮凝剂硫酸铝的特点

影响絮凝剂使用的因素

影响絮凝剂使用的因素 (1)水的pH值 水的pH值对无机絮凝剂的使用效果影响很大,pH值的大小关系到选用絮凝剂的种类、投加量和混凝沉淀效果。水中的H+和OH-参与絮凝剂的水解反应,因此,pH值强烈影响絮凝剂的水解速度、水解产物的存在形态和性能。以通过生成Al(OH)3带电胶体实现混凝作用的铝盐为例,当pH值﹤4时,Al3+不能大量水解成Al(OH)3,主要以Al3+离子的形式存在,混凝效果极差。pH值在6.5~7.5之间时,Al3+水解聚合成聚合度很大的Al(OH)3中性胶体,混凝效果较好。pH 值﹥8后,Al3+水解成AlO2-,混凝效果又变得很差。 水的碱度对pH值有缓冲作用,当碱度不够时,应添加石灰等药剂予以补充。当水的pH值偏高时,则需要加酸调整pH值到中性。相比之下,高分子絮凝剂受pH值的影响较小。 (2)水温 水温影响絮凝剂的水解速度和矾花形成的速度及结构。混凝的水解多是吸热反应,水温较低时,水解速度慢且不完全。低温情况下,水的粘度大,布朗运动减弱,絮凝剂胶体颗粒与水中杂质颗粒的碰撞次数减少,同时水的剪切力增大,阻碍混凝絮体的相互粘合;因此,尽管增加了絮凝剂的投加量,絮体的形成还是很缓慢,而且结构松散、颗粒细小,难以去除。低温对高分子絮凝剂的影响较小。但要注意的是,使用有机高分子絮凝剂时,水温不能过高,高温容易使有机高分子絮凝剂老化甚至分解生成不溶性物质,从而降低混凝效果。 (3)水中杂质成分 水中杂质颗粒大小参差不齐对混凝有利,细小而均匀会导致混凝效果很差。杂质颗粒浓度过低往往对混凝不利,此时回流沉淀物或投加助凝剂可提高混凝效果。水中杂质颗粒含有大量有机物时,混凝效果会变差,需要增加投药量或投加氧化剂等起助凝作用的药剂。水中的钙镁离子、硫化物、磷化物一般对混凝有利,而某些阴离子、表面活性物质对混凝有不利影响。

影响絮凝剂投加量的因素

影响絮凝剂投加量的因素 在水处理中影响混凝效果(药剂投加量)的因素比较复杂,其中包括水温、p H值和碱度、水中杂质性质和浓度、外部水利条件等。以下仅略述几项主要因素。 1、水温的影响 水温对药耗有明显影响,尤其是冬季低水温对药耗影响较大,通常絮凝体形成缓慢,颗粒细小、松散。原因主要有: 1、无机盐混凝剂水解是吸热反应,低温水混凝剂水解困难; 2、低温水的粘度大,使水中杂质颗粒的布朗运动强度减弱,碰撞机会减少,不利于胶体脱稳凝聚,同时还影响絮凝体的成长。 3、水温低时,胶体颗粒的水化作用增强,妨碍胶体凝聚,还影响胶体颗粒之间的粘附强度。 4、水温和水的p H值有关。水温低时,水的p H值提高,相应的混凝最佳p H值也将提高。所以在寒冷地区的冬季,尽管投加大量混凝剂也难获得良好的混凝效果。 2、p H值和碱度的影响 p H值是表示水是酸性还是碱性的指标,也就是说明水中H+浓度的指标。原水的p H值直接影响混凝剂的水解反应,即当原水的p H值处于一定范围时,才能保证混凝效果。当水中投加混凝剂后,因混凝剂发生水解使水中的H+浓度增加,从而导致水的p H值下降,阻碍了水解的进行。要使p H值保持在最佳范围以内,水中应有足够的碱性物质与H+中和。天然水中均含有一定碱度(通常是H C O3-),可以中和混凝剂水解过程产生的H+,对p H值有缓冲作用。当原水碱度不足或混凝剂投加过量时,水的p H值将大幅下降,破坏混凝效果。 3、水中杂质成份的性质和浓度的影响 水中S S颗粒大小、带电性都会影响混凝效果。一般来说,粒径细小而均一,其混凝效果较差,水中颗粒浓度低,颗粒碰撞机率小,对混凝不利;当浊度很大时,为使水中胶体脱稳,所需药耗将大大增加。当水中存在大量有机物时,能被粘土颗粒吸附,从而改变了原有胶体颗粒的表面特性,使胶体颗粒更加稳定,将严重影响混凝效果,此时必须向水中投加氧化剂,破坏有机物的作用,提高混凝效果。水中溶解性盐类也能影响混凝效果,如天然水中存在大量钙、镁离子时,有

絮凝剂的种类及作用

絮凝剂的种类及作用 1 无机絮凝剂无机絮凝剂也称凝聚剂, 主要应用于饮用水、工业水的净化处理以及地下水、 废水淤泥的脱水处理等。无机絮凝剂主要有铁盐系和铝盐系两大类, 按阴离子成分又可分为盐酸 系和硫酸系, 按相对分子量又可分为低分子体系和高分子体系两大类。 1.1 无机低分子絮凝剂传统的无机絮凝剂为低分子的铝盐和铁盐, 其作用机理主要是双电层 吸附[4]。铝盐中主要有硫酸铝(Al(SO4)3·18H2O)、明矾(Al2(SO4)3·K2SO4·24H2O)、铝酸钠(NaAlO3)。铁盐主要有三氯化铁(Fe-Cl3·6H2O)、硫酸亚铁(FeSO4·6H2O)和硫酸铁(Fe2(SO4)3·2H2O )。硫酸铝絮凝效果较好, 使用方便,但当水温低时, 硫酸铝水解困难, 形成的絮凝体较松散, 效果不及铁盐。三氯化铁是另一种常用的无机低分子絮凝剂, 具有易溶于水, 形成大耳中的絮体、沉降性能好、对温度、水质和pH 的适应范围广等优点, 但其腐蚀性较强, 且有刺激性气味, 操作条件差[5~9]。无机低分子絮凝剂的优点是经济、用法简单, 但用量大、残渣多。絮凝效果比高分子 絮凝剂的絮凝效果低 1.2 无机高分子絮凝剂 无机高分子絮凝剂是20 世纪60 年代以来在传统的铁盐和铝盐基础上发展起来的一类新型 水处理药剂。其絮凝效果好, 价格相对较低, 已逐步成为主流絮凝药剂。在日本、西欧和中国, 目前都已有相当规模的无机高分子絮凝剂的生产和应用, 其产量约占絮凝剂总产量的30%~ 60%[10]。近年来, 我国高分子絮凝剂的发展趋势主要是向聚合铝、铁、硅及各种复合型絮凝剂方向发展, 并已逐步形成系列: 阳离子型的有聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合磷酸铝(PAP)、聚合硫酸铁(PFS)、聚合氯化铁(PFC)、聚合磷酸铁(PFP)等; 阴离子型的有活化硅酸(AS)、聚合硅酸(PS);无机复合型的有聚合氯化铝铁(PAFC)、聚硅酸硫酸铁(PFSS)、聚硅酸硫酸铝(PFSC)、聚合氯硫酸铁(PFCS)、聚合硅酸铝(PASI)、聚合硅酸铁(PFSI)、聚合磷酸铝铁(PAFP)、硅钙复合型聚合氯化铁(SCPAFC)等。生物聚合铁(BPFS) 2 有机高分子絮凝剂 有机高分子絮凝剂是20 世纪60 年代开始使用的第二代絮凝剂。与无机高分子絮凝剂相比,有 机高分子絮凝剂用量少, 絮凝速度快, 受共存盐类、污水pH 值及温度影响小, 生成污泥量少, 节约用水。强化废(污)水处理, 并能回收利用。但有机和无机高分子絮凝剂的作用机理不相同, 无机高分子絮凝剂主要通过絮凝剂与水体中胶体粒子间的电荷作用使N 电位降低, 实现胶体粒 子的团聚, 而有机高分子絮凝剂则主要是通过吸附作用将水体中的胶粒吸附到絮凝剂分子链上, 形成絮凝体。有机高分子絮凝剂的絮凝效果受其分子量大小、电荷密度、投加量、混合时间和絮 凝体稳定性等因素的影响。目前有机高分子絮凝剂主要分两大类, 即合成有机高分子絮凝剂和天然改性高分子絮凝剂。2.1 合成有机高分子絮凝剂 合成有机高分子絮凝剂以聚乙烯、聚丙烯类聚合物及其共聚物为主, 其中聚丙烯酞胺类用量 最大, 占有机高分子絮凝剂的80%左右。目前, 国内外有关阳离子型合成高分子絮凝剂的报导比 较多主要是季胺盐类、聚胺盐类以及阳离子型聚丙烯酞胺等, 其中研究与应用最多的是季胺盐类。它们均己研制成功并在工业水处理中得到了广泛的应用。龙柱等人利用协同增效原理将聚和 氯化铝与有机合成高分子复合, 制得一种新型有机—无机复合高分子絮凝剂, 处理造纸废水, 效果优于单独使用聚和氯化铝。由于有机合成高分子絮凝剂的生产成本高, 产品或残留单体有毒, 使其广泛应用受到限制。 2.2 天然改性高分子絮凝剂 天然高分子絮凝剂的使用远小于合成的有机高分子絮凝剂, 原因是其电荷量密度较小, 分子 量较低, 且易发生生物降解而失去其絮凝活性。而经改性后的天然有机高分子絮凝剂与合成的有 机高分子絮凝剂相比, 具有选择性大、无毒、价廉等显著特点。这类絮凝剂按其原料来源的不同, 大体可分为淀粉衍生物、纤维素衍生物、植物胶改性产物、多糖类及蛋白质改性产物等[11] 。由于天然高分子物质具有分子量分布广、活性基团点多、结构多样化等特点, 易于制成性能优良的

影响絮凝剂投加量的因素

影响絮凝剂投加量的因素! 在水处理中影响混凝效果(药剂投加量)的因素比较复杂,其中包括水温、pH值和碱度、水中杂质性质和浓度、外部水利条件等。以下仅略述几项主要因素。 1、水温的影响 水温对药耗有明显影响,尤其是冬季低水温对药耗影响较大,通常絮凝体形成缓慢,颗粒细小、松散。原因主要有: 1、无机盐混凝剂水解是吸热反应,低温水混凝剂水解困难; 2、低温水的粘度大,使水中杂质颗粒的布朗运动强度减弱,碰撞机会减少,不利于胶体脱稳凝聚,同时还影响絮凝体的成长。 3、水温低时,胶体颗粒的水化作用增强,妨碍胶体凝聚,还影响胶体颗粒之间的粘附强度。 4、水温和水的pH值有关。水温低时,水的pH值提高,相应的混凝最佳pH值也将提高。所以在寒冷地区

的冬季,尽管投加大量混凝剂也难获得良好的混凝效果。 2、pH值和碱度的影响 pH值是表示水是酸性还是碱性的指标,也就是说明水中H+浓度的指标。原水的pH值直接影响混凝剂的水解反应,即当原水的pH值处于一定范围时,才能保证混凝效果。当水中投加混凝剂后,因混凝剂发生水解使水中的H+浓度增加,从而导致水的pH值下降,阻碍了水解的进行。要使pH值保持在最佳范围以内,水中应有足够的碱性物质与H+中和。天然水中均含有一定碱度(通常是HCO3-),可以中和混凝剂水解过程产生的H+,对pH值有缓冲作用。当原水碱度不足或混凝剂投加过量时,水的pH值将大幅下降,破坏混凝效果。 3、水中杂质成份的性质和浓度的影响 水中SS颗粒大小、带电性都会影响混凝效果。一般来说,粒径细小而均一,其混凝效果较差,水中颗粒浓度低,颗粒碰撞机率小,对混凝不利;当浊度很大时,为使水中胶体脱稳,所需药耗将大大增加。当水中存在大量有机物时,能被粘土颗粒吸附,从而改变了原有胶体颗粒的表面特性,使胶体颗粒更加稳定,将严重影响混凝效果,此时必须向水中投加氧化剂,破坏有机物的作

聚丙烯酰胺溶解性能影响因素研究

聚丙烯酰胺溶解性能影响因素研究 摘要:煤泥水处理是选煤厂生产过程中非常重要的环节,而通过添加高分子絮凝剂处理煤泥水是目前应用最广泛的方法。本文通过对聚丙烯酰胺溶解性能影响因素进行研究,根据其作用机理以实现对选煤厂煤泥水处理的理论指导。 关键词:选煤厂;絮凝剂;聚丙烯酰胺 随着选煤厂洗水闭路循环和环境保护要求的日益提高,煤泥水处理成为选煤厂生产过程中非常重要的环节,而通过添加高分子絮凝剂处理煤泥水是目前应用最广泛的方法。高分子絮凝剂中应用最多的是粉剂型聚丙烯酰胺,聚丙烯酰胺是一种无定形的水溶性高分子聚合物,它在工业和农业中应用广泛,并且人们在共聚化合物、催化化学、生物医学等基础研究领域对它的性质和应用进行了探索和研究。由于聚丙烯酰胺在水悬浮液中有较好的絮凝作用,因此广泛应用于水处理、造纸和采矿等领域,部分水解的聚丙烯酰胺还应用于油田三次采油的聚合物驱油中,是目前应用最广泛的高分子絮凝剂之一。 一、聚丙烯酰胺的物理化学性质 聚丙烯酰胺因使用及合成方法的不同分为胶状、固体、粉末等形态。聚丙烯酰胺不溶于大多数有机溶剂,能以任意比例溶于水,无毒性,热稳定性强于其他聚电解质。由于PAM 分子链上含酰胺基及其它离子基团,故具有显著的亲水性。聚丙烯酰胺溶液的物理性质包括絮凝性、稳定性和流动性。其中AM具有絮凝作用是因为其较长的分子链结构,含有的酰胺基可与其他物质吸附、亲和形成氢键,使PAM 与被吸附离子架桥,形成絮团,加快颗粒的沉降速度。在聚丙烯酰胺溶液中加入阳离子电解质溶液时,粘度会迅速增加。聚丙烯酰胺由于分子链上的酰胺基较为活泼,它能发生多种化学反应,例如:交联反应、水解反应、羟甲基化反应、霍夫曼降解反应、胺甲基化反应等。如果需要具有特定功能的衍生物可以通过这些反应得到,但是由于邻近基团效应,反应不能进行完全。 二、聚丙烯酰胺溶解特性及絮凝作用机理 2.2.1 溶解特性 聚丙烯酰胺与聚乙烯主链结构相似,侧链含有很多-CONH2,因此排列不规则。由于-CONH2的生成氢键能力和极性,使PAM 分子链柔顺性低,玻璃化温度高。通常PAM 的溶解温度低于玻璃化温度,即玻璃态溶解。聚丙烯酰胺放入水中,水分子先进入聚合物的缝隙和酰胺基水合,随着水分子的逐渐扩散,聚合物被塑化形成凝胶层。聚合物与水接触的表面,大量水分子的作用削弱了聚丙烯酰胺分子链之间的作用力,分子链被水分子分开后,就进入溶液。由于聚丙烯酰胺有较长的分子链结构,水分子会水合部分链段使其处于自由状态,其余部分链段未被完全水合。处于自由状态的链段漂浮在聚合物的表面形成液体层;透过液体层就进入由于吸附水分子而被塑化的聚丙烯酰胺凝胶层。凝胶层下面的聚丙烯酰胺仍吸附着一定量的水分子。水的渗入使大分子链活动能力增加,聚丙烯酰胺玻璃化温度降低,聚丙烯酰胺吸附水后使玻璃化温度降低到和溶解温度相等的位置,聚丙烯酰胺吸附水的量刚好就是凝胶层的下限。玻璃态聚丙烯酰胺内存在许多细小的缝隙和孔穴,渗透前沿的水分子不用开孔穴就能进入聚丙烯酰胺,此扩散层为渗透层;聚丙烯酰胺因扩散而被吸附的水分子逐渐减少,使其玻璃化温度逐渐升高,一直达到聚丙烯酰胺的固有玻璃化温度,此层称作固体溶胀层。聚丙烯酰胺中-CONH2 的成氢键能力未达到饱和时,和水接触仍有形成氢键倾向,

七种影响絮凝剂使用效果的因素分析

七种影响絮凝剂使用效果的因素分析! 1、水的pH值 水的pH值对无机絮凝剂的使用效果影响很大,pH值的大小关系到选用絮凝剂的种类、投加量和混凝沉淀效果。水中的H+和OH-参与絮凝剂的水解反应,因此,pH值强烈影响絮凝剂的水解速度、水解产物的存在形态和性能。以通过生成Al(OH)3带电胶体实现混凝作用的铝盐为例,当pH值﹤4时,Al3+不能大量水解成Al(OH)3,主要以Al3+离子的形式存在,混凝效果极差。pH值在6.5~7.5之间时,Al3+水解聚合成聚合度很大的Al(OH)3中性胶体,混凝效果较好。pH值﹥8后,Al3+水解成AlO2-,混凝效果又变得很差。 水的碱度对pH值有缓冲作用,当碱度不够时,应添加石灰等药剂予以补充。当水的pH值偏高时,则需要加酸调整pH值到中性。相比之下,高分子絮凝剂受pH值的影响较小。 2、水温

水温影响絮凝剂的水解速度和矾花形成的速度及结构。混凝的水解多是吸热反应,水温较低时,水解速度慢且不完全。低温情况下,水的粘度大,布朗运动减弱,絮凝剂胶体颗粒与水中杂质颗粒的碰撞次数减少,同时水的剪切力增大,阻碍混凝絮体的相互粘合。 因此,尽管增加了絮凝剂的投加量,絮体的形成还是很缓慢,而且结构松散、颗粒细小,难以去除。低温对高分子絮凝剂的影响较小。但要注意的是,使用有机高分子絮凝剂时,水温不能过高,高温容易使有机高分子絮凝剂老化甚至分解生成不溶性物质,从而降低混凝效果。 3、水中杂质成分 水中杂质颗粒大小参差不齐对混凝有利,细小而均匀会导致混凝效果很差。杂质颗粒浓度过低往往对混凝不利,此时回流沉淀物或投加助凝剂可提高混凝效果。水中杂质颗粒含有大量有机物时,混凝效果会变差,需要增加投药量或投加氧化剂等起助凝作用的药剂。水中的钙镁离子、硫化物、磷化物一般对混凝有利,而某些阴离子、表面活性物质对混凝有不利影响。 4、絮凝剂种类 絮凝剂的选择主要取决于水中胶体和悬浮物的性质及浓度。如果水中污染物主要呈胶体状态,则应首选无机絮凝

18.EN_CN 浅析影响我矿卤水净化絮凝剂效果的因素

浅析影响卤水净化絮凝沉降效果的因素 荀春 (云南盐化股份有限公司650011) 摘要:通过对昆明盐矿卤水净化澄清效果进行实验研究,从理论和实际分析总结影响卤水净化澄清效果的内外部因素,为今后解决类似问题提供一定的理论和实际依据。 关键词:卤水净化絮凝沉降因素 卤水净化是真空制盐工艺过程中的关键工序之一。其目的和意义在于除去或降低卤水中的杂质,提高制盐设备的生产能力,保证产品的质量,为化工生产和综合利用提供优质合格的原料。 昆明盐矿20万吨制盐装置系引进瑞士苏尔寿.埃塞维舍公司的先进生产工艺及关键设备,是现代化制盐企业之一。原料卤水属于芒硝型岩盐卤水。在真空蒸发制盐工艺中,对卤水质量要求极高,生产的精卤中Ca2++Mg2+控制在10PPm以下。如果卤水净化效果不佳,将直接影响生产的正常进行,会导致加热室管壁形成硬质垢层,甚至堵管,传热效率降低,洗刷罐频率增加,制盐设备寿命缩短等危害,从而影响产品的质量和产量,将导致整个企业的经济效益受到严重影响。 昆明盐矿自93年6月试车投产以来,曾经几度出现卤水澄清效果不佳的问题,尤其在98年下半年出现的情况最为严重,持续周期长达半年左右,净化后的卤水在罐内透光率极低,以反应罐内楼梯台数观察,总楼梯台数20台,效果最差时几乎一台都看不到,最好时也只能看到10台左右,与净化效果正常时的清可见底形成极大的反差。当时好在卤水净化过滤装置已建好使用,才勉强得以维持生产的顺利进行。公司对此情况非常重视,成立了卤水净化澄清效果项目攻关小组。通过努力,基本找到了可能影响卤水澄清效果的因素。现将之归纳总结如下,与同行们进行探讨,并为今后出现类似的情况提供一定的理论依据。 1、昆明盐矿卤水净化的基本情况: 1.1卤水中的杂质存在形式: 昆明盐矿卤水属于芒硝型卤水,卤水中主要含Ca2+ 、Mg2+ 、AL、P、有机物、少量粘土等杂质。 1.2卤水净化的方法: 采用石灰—纯碱一步法。 1.3卤水净化反应的基本原理: Mg2++CaO+H2O→Mg(OH)2↓+Ca2+ Ca2++Na2Co3→CaC03↓+2Na+ 1.4絮凝剂的选择使用:

几种中药絮凝剂及其影响絮凝过程主要因素的探讨

239 CPCI 中国石油和化工 石油工程技术几种中药絮凝剂及其影响絮凝过程主要因素的探讨 孙双凤1 余 林2 (1.重庆资源与环境保护职业学院 重庆 404100;2.重庆市工业技师学院 重庆 404100) 摘 要:本文将对ZTC1+1、101果汁澄清剂、YC-I型、壳聚糖的概况进行介绍,并对影响絮凝澄清过程的因素进行分析。关键词:ZTC1+1澄清剂 101澄清剂 YC-I型 壳聚糖 澄清技术 1 概述中药絮凝澄清技术 该技术是一种新技术,其目的是除去杂质精制和澄清药液,具体是将一种或多种高分子澄清剂添加于中药提取液,进而使中药水提液中的溶胶与悬浮物聚集,将较大的颗粒形成,采用的是电荷中和和吸附架桥原理,促进沉降的同时去除杂质。植物、矿物和动物是中药来源,所涉及的种类繁杂,如单糖、二糖、多肽、氨基酸、有机酸等,同时可分为无效和有效成分,将有效成分尽可能保留,将无效成分去除是使用中药澄清剂的目的。 中药絮凝澄清技术是对中药醇沉工艺与中药提取液无醇澄清工艺的补充,对中药制剂质量的提高、中药固体制剂与液体制剂的生产意义重大,并且该技术优势较多,具体如下: (1)周期短、生产安全、成本低; (2)可溶性有效成分损失少、产率高、药味浓、很好的保留了多糖类和无机成分; (3)除重金属效果好、澄清与脱色较好。然而也存在不足,主要表现如下: (1)基于毒性问题,絮凝剂品种不多,主要为糊精、YC 牌澄清剂系列、壳聚糖、淀粉衍生物、淀粉、明胶、鞣酸、101果汁澄清剂等; (2)需精确控制絮凝剂用量;(3) 部分中药水提取液采用该技术澄清效果较差。 2 常用于中药提纯的澄清剂 2.1 壳聚糖 他提取于节肢动物的甲壳质,经脱酰基后所得,半透明状固体,淡黄色或白色,可生物降解,无毒无味,可直接购买,是天然阳离子澄清剂,与纤维素的分子结构相似,具体如下: 通常壳聚糖也被称为脱乙酰甲壳素和壳多糖,基于游离氨基存在于壳聚糖中,能与酸分子结合,因此是唯一碱性多糖,在生理功能和物理化学性质尚特殊,最常用的是0%的柠檬酸、盐酸、乙酸等。基于壳聚糖的结构为线状,因此含有的-NH 3+较多,并且多个杂质微粒可吸附于同一分子上,进而架桥起杂质微粒,连接许多微粒形成絮团,且不断增长变大,起到沉降、澄清的效果。 2.2 YC-I 型澄清剂 提取于海洋生物和天然食品,符合食品添加剂与医药辅料的标准,安全无毒,且还具有以下特点:成品稳定性好、选择性强、不污染环境、能依据使用需求和不同原料进行不同的澄清剂型号的选择,在“去杂保效”方面效果较好,简化工艺,降低成本,使用方 便,高效快捷。 图1-1 壳聚糖分子结构图 2.3 101澄清剂 是食用果汁澄清剂的一种,主要成分是变性淀粉,可直接购买,安全、无毒、无味,是水溶性胶状物质,能将中药提取液中的混悬杂质除去,如树胶、果胶、鞣质、色素、蛋白质、淀粉、粘液质等。平均去除重金属离子(砷、铜、铁、铅、汞、铬)的概率在98%以上。基于在沉淀的同时,本身也能被去除,故而无新的物质引入药液中。相关研究显示,对药液进行过滤和沉淀的时候与醇沉法相比之下101澄清法更优,并且101果汁澄清剂添加后,将0.5%的滑石粉加入,能够促进絮状物凝聚成大颗粒,进而将沉降加速,助滤效果较好。 2.4 ZTC1+1天然澄清剂 它将“1+1”澄清技术采用,具有成本低、澄清效率高、不影响有效成分、不引入异味、不残留、安全无毒、不需调整pH 值、热稳定性好、使用方便、适用范围广、环保等优势,中草药制备水提醇沉中ZTC1+1天然澄清剂能将酒精替代,且工艺简单,故而制药行业广泛关注。在以上作用优势下,简化了传统的水提酒沉工艺,促进了中草药制药工艺的变革,并将新的方法和思路提供。 3 影响絮凝澄清过程的因素 3.1 澄清剂用量 澄清剂的用量与澄清效果呈正相关性,然而在达到一定量的情况下,就会出现峰值,将用量继续增加,反而会降低澄清效果,因此必须对用量准确把握,保证疗效。避免用量过量使絮凝体向稳定胶体转变。溶液中悬浮物含量与澄清剂用量相关,因此对于最佳用量的掌握必须以实验来确定。 3.2 澄清温度 澄清作用受溶液过高和过低温度的影响,温度过高会加快反应,将细小絮凝体形成,增强水合作用,且产生难处理、大体积、含水量高的絮体,加热升温处理的水,还会将能源消耗增大,并提升成本,反之温度过低则会减慢反应,增长水解时间,增加溶液粘度和水对絮凝体的撕裂作用,不易分离絮凝体。 3.3 pH 值 絮凝体的性质和作用、胶体颗粒所带电荷的多少与性质均受pH 值的影响,同时对澄清作用产生影响,通过实验和实践得出,在酸性和中性的PH 环境中适合阳离子型澄清剂,在碱性的介质中适合阳离子有机高分子澄清剂,而在中性和碱性的环境中适合阳离子型澄清剂,从强酸性到碱性的环境适合非离子型澄清剂。 3.4 搅拌速度和时间 澄清时选择得当的搅拌时间与速度能促进澄清,搅拌速度和时间不能过快过长,否则会搅碎大颗粒固体,影响沉淀和降低澄清效果。反之搅拌速度和时间过慢、过短对澄清也不利,导致澄清剂分布不均匀,作用无法充分发挥,同样影响澄清效果。 4 结语 目前中药絮凝剂在种类上具有多样性,但是各有优势和不足,且相关性影响因素也较多,因此必须结合实际情况合理选择中药絮凝剂,保证澄清效果。 (下转第234页)

污水处理絮凝剂

污水处理絮凝剂 一、概述 造纸生产中用水多、消耗化学药品多、污染非常严重,在造纸工业中的污水处理剂也是一种非常重要的化学助剂。污水处理最常用的是絮凝沉淀剂。 絮凝剂是能使溶胶变成絮状沉淀的凝结剂。絮凝剂能使分散相从分散介质中分离出絮状沉淀,其凝结作用称为絮凝作用。用于促进废液中废物沉降、过滤、澄清等过程的普通絮凝剂,包括无机物和有机高分子。两者可单独使用,也可配合使用,但配合使用比单独使用效果更佳。 1.絮凝原理 制浆造纸的废液中所含杂质范围很大,从呈稳定的胶体状态的杂质,到只有流动状态下的悬浮,以至在静止时沉淀的较大颗粒等杂质。它们在水中不容易沉淀,必须添加药剂改变物质的界面特性,使分散的胶体聚合,然后形成大颗粒,使这些胶体粒子易于沉降或浮上分离,此过程称为絮凝。在废水处理中,水中胶体粒子多数带负电荷,这些带负电荷的粒子吸引水中的阳离子,而排斥阴离子,这也是胶体粒子得以稳定的原因。因此,在胶体粒子表面附近,阳离子浓度高,阴离子浓度低。这样胶体粒子表面形成Zeta电位。絮凝剂多为电解质,加人水中电离出带相反电荷的部分与腔体粒子的电荷中和,粒子间斥力作用也随之消失,便可形成大颗粒而沉降,水即可澄清。一般认为,如果将粒子表面Zeta电位降到±5V,可以得到良好的絮凝效果。由此看出,微小粒子聚集形成大颗粒的絮凝作用是由于静电力、化学力或机械力的作用或三者共同作用的结果,这就是一般絮凝的原理。 2.絮凝过程及其影响因素 絮凝过程主要包括4个阶段 ①向废水中添加絮凝剂;②絮凝剂在液体中扩散;③为了使絮凝剂和悬浮物粒子接触而进行搅拌;④为了使接触后的粒子成为大而重的颗粒而进行的搅拌。实际上这些阶段有的也很难分开。 从以上过程看,絮凝是一种物理化学过程,所以,影响因素较多,除了废液中胶体粒子的种类、胶体粒子的大小、表面特性、胶体粒子的浓度和絮凝剂的种类与特性等因素外,还包括溶液的pH值,共存物质(特别是盐类)的种类和浓度,反应温度和温度变化,搅拌的方法及絮凝剂用量等等。 总之,胶体粒子的絮凝是较复杂的过程,影响因素是多方面的。所以,最好的方法是对实际废水进行絮凝试验,选出最佳絮凝剂及其絮凝条件。 从诸多因素影响来看,只要废液和絮凝剂一定,最为重要的影响因素就是胶体粒子浓度和搅拌条件。胶体粒子越浓,粒径犬小越不均匀,粒子间接触的几率越大,絮凝效果越好。同时搅拌仅对絮凝效果有很大影响。为了便于胶体粒子与絮凝剂有良好的接触,搅拌越剧烈效果越好。而在絮凝颗粒生长过程中,搅拌太剧烈则使颗粒破坏或长不大,此时则应缓慢搅拌。所以絮凝过程中,加入絮凝剂后搅拌应先快后慢。加入絮凝剂在溶液中电离出离子的电荷和絮凝剂的用量也影响很大。一般电离出离子电荷越高,浓度越大,絮凝效果越好。 除化学法外,造纸厂废水处理还可采用机械法、沉降法、过滤法、离心分离法、生物化学法等,且各种方法均有一定的效果。废水应用何种方法处理,需要根据其中所含物质的成分及浓度、要求净化的程度、排放标准、回收废物的综合

相关主题