搜档网
当前位置:搜档网 › 分子标记技术原理、方法及应用

分子标记技术原理、方法及应用

分子标记技术原理、方法及应用
分子标记技术原理、方法及应用

分子标记技术原理、方法及应用

一、遗传标记的类型及发展

遗传标记(genetic marker):指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。它具有两个基本特征,即可遗传性和可识别性;因此生物的任何有差异表型的基因突变型均可作为遗传标记。包括形态学标记、细胞学标记、生化标记和分子标记四种类型。

形态学标记:主要包括肉眼可见的外部形态特征,如:矮秆、紫鞘、卷叶等;也包括色素、生理特性、生殖特性、抗病虫性等有关的一些特性。优点: 形态学标记简单直观、经济方便。缺点: (1)数量在多数植物中是很有限的; (2) 多态性较差,表现易受环境影响; (3)有一些标记与不良性状连锁; (4)形态标记的获得需要通过诱变、分离纯合的过程,周期较长

细胞学标记:植物细胞染色体的变异:包括染色体核型(染色体数目、结构、随体有无、着丝粒位置等)和带型(C带、N带、G带等)的变化。优点: 能进行一些重要基因的染色体或染色体区域定位。缺点: (1)材料需要花费较大的人力和较长时间来培育,难度很大; (2) 有些变异难以用细胞学方法进行检测

生化标记:主要包括同工酶和等位酶标记。分析方法是从组织蛋白粗提物中通过电泳和组织化学染色法将酶的多种形式转变成肉眼可辩的酶谱带型。优点: 直接反映了基因产物差异,受环境影响较小。缺点: (1)目前可使用的生化标记数量还相当有限; (2)有些酶的染色方

法和电泳技术有一定难度

分子标记:主要指能反映生物个体或种群间基因组中某种差异特征的DNA片段,它直接反映基因组DNA间的差异,也叫DNA标记。

(1)数量多,高多态性,信息量大(2)与生长发育无关,取材不受限制(3)能明确辨别等位基因(4)均匀分布于整个基因组(5)选择中性,不影响目标性状的表达(6)检测手段简单、快速(7)成本低廉(8)稳定,重复性好(9)共显性遗传

在遗传学研究中广泛应用的DNA分子标记已经发展了很多种,一般依其所用的分子生物学技术大致可以分为三大类:

第一类是以分子杂交为核心的分子标记,包括RFLP、DNA指纹技术等,这类分子标记被称为第一代分子标记;

第二类是以PCR为核心的分子标记,包括随机扩增多态性RAPD、简单序列重复SSR、扩增片段长度多态性AFLP、序列标签位点STS等,为第二代分子标记;

第三类是一些新型的分子标记,如:SNP标记、表达序列标签EST 标记等,也以PCR技术为基础,为第三代分子标记。

几种主要的DNA分子标记

二、几种常见分子标记的原理及方法

1.RFLP

2.RAPD

3.AFLP

4.SSR

5.ISSR

6.SNP

1.RFLP:Restriction Fragment Length Polymorphismby Botstein(1980) 基本原理:物种的基因组DNA在限制性内切酶作用下,产生相当多的大小不等的片段,用放射性同位素标记的DNA作探针,把与被标记DNA相关的片段检测出来,从而构建出多态性图谱。

用某一种限制性内切酶来切割来自不同个体的DNA分子上,内切酶的识别序列有差异,即是由限制性酶切位点上碱基的插入、缺失、重排或点突变所引起的。这种差异反映在酶切片段的长度和数目上。优点: 无表型效应,不受环境条件和发育阶段的影响;共显性,非常稳定;起源于基因组DNA自身变异,数量上几乎不受限制

缺点:检测步骤多,周期长,需DNA量大,费时;用作探针的DNA 克隆制备、保存不方便;放射性同位素,易造成环境污染

2.RAPD:Random Amplified Polymorphic DNA by Williams et al.(1990)

基本原理:此技术建立于PCR基础之上,使用一系列具有10个左右碱基的单链随机引物,对基因组的DNA全部进行PCR扩增,以检测多态性。由于整个基因组存在众多反向重复序列,因此须对每一随机引物单独进行PCR。单一引物与反向重复序列结合,使重复序列之间的区域得以扩增。引物结合位点DNA序列的改变以及两扩增位点之间DNA碱基的缺失、插入或置换均可导致扩增片段数目和长度的差异,经聚丙烯酰胺或琼脂糖凝胶电泳分离后通过EB染色以检测DNA 片段的多态性

基本步骤:

基本步骤:

与常规PCR的两点不同:

1.引物长度短————常规PCR中需要两个引物,长度20-30个核苷酸。RAPD只需一个引物,长度9-10个核苷酸,而且是随机引物。2.退火温度低————在RAPD引物短,因此退火温度要低,一般为35-37℃。

优点: 不需DNA探针,设计引物也无须知道序列信息;技术简便,不涉及杂交和放射性自显影等技术;DNA样品需要量少,引物价格便宜,成本较低

缺点:显性,不能鉴别杂合子和纯合子;实验重复性较差,结果可靠性较低

与核酸序列分析相比,RFLP可省去序列分析中许多非常繁琐工序,但相对RAPD 而言,RFLP方法更费时、费力,需要进行DNA多种酶切、转膜以及探针的制备等多个步骤,仅对基因组单拷贝序列进行鉴定。

但RFLP又有比RAPD优越之处,它可以用来测定多态性是由父本还是母本产生的,也可用来测定由多态性产生的突变类型究竟是由碱基突变或倒位、还是由缺失、插入造成的。

3.AFLP:Amplified Fragments Length Polymorphism by Zabeau & Vos(1993)

基本原理:基因组DNA经限制性内切酶双酶切,其中包括一个酶切位点稀有的内切酶(识别位点一般为6个碱基或8个碱基)和一个酶切位点丰富的内切酶(识别位点一般为4个碱基)的酶切组合,形成分子量大小不等的随机限制性片段。酶切片段先与有共同粘性末端的人工接头连接,连接后的粘性末端顺序和接头顺序作为PCR反应的引物结合位点,通过PCR反应把酶切片段扩增,然后将扩增的酶切片段在高分辨率的顺序分析胶上进行电泳,其多态性即以扩增片段的长度不同而被检测出来。

三种检测方法:1.放射性自显影检测————同位素标记引物。2.银染检测3.荧光检测————荧光染料标记引物。

优点: 由于AFLP标记的限制性内切酶与选择性碱基组合的数目和种

类很多,AFLP标记产生的标记数目是无限的;每次反应产物的谱带在50-100条之间,所以一次分析可以同时检测到多个座位,且多态性极高;分辩率高,结果可靠;模板用量少,并且对模板浓度变化不明显;特定引物扩增,退火温度高,假阳性低AFLP标记

缺点:专利技术,试剂盒价格贵;技术复杂、成本高;基因组的不完全酶切会影响实验结果,所以实验对DNA纯度和内切酶的质量要求较高

技术比较:

1/它将RAPD随机性和专一性扩增巧妙结合,再选用内切酶以达选择的目的。

2/AFLP结合了RFLP的稳定性和PCR技术高效性的特点。AFLP的多态性极高,一次可以检测到100-150个扩增产物,因而非常适合绘制品种指纹图谱及进行分类研究。

4.SSR:Simple Sequence Repeat

基本原理:微卫星DNA是一种广泛分布于真核生物基因组中的串状简单重复序列,每个重复单元的长度在1—10bp之间,常见的微卫星如TGTG……TG= (TG)n或AATAAT……AAT= (AAT)n等,不同数目的核心序列呈串联重复排列,而呈现出长度多态性。在基因组中,因每个SSR序列的基本单元重复次数在不同基因型间差异很大,从而形成其座位的多态性。而且每个SSR座位两侧一般是相对保守的单拷贝序列,据此可设计引物,其关键是首先要了解SSR座位的侧翼序列(Flanking Region),寻找其中的特异保守区。

优点: 数量丰富,广泛分布于整个基因;共显性标记,可鉴别出杂合子和纯合子;实验重复性好,结果可靠;所需DNA量少,对DNA质量要求不高

缺点:由于创建新的标记时需知道重复序列两端的序列信息,对于许多物种需构建文库,因此其开发有一定困难,费用也较高

5.ISSR:Inter Simple Sequence Repeat by Zietkiewicz et al. (1994)

基本原理:在SSR的5’或3’端加锚l~4个嘌呤或嘧啶碱基,然后以此为引物,对两侧具有反向排列SSR的一段基因组DNA序列进行扩增。在SSR的3’端或5’端锚定1-4个简并碱基的优点是在基因组上只有那些与锚定的核苷酸匹配的位点才能被靶定,因而避免了SSR在基因组上的滑动大大提高了PCR扩增的专一性。

ISSR的重复序列和锚定碱基是随机选择的,扩增产物经聚丙烯酰胺或琼脂糖凝胶电泳分离后,每个引物可以产生比RAPD方法更多的扩增片段,它在引物设计上比SSR技术简单得多,不需知道DNA序列即可用引物进行扩增,又可以揭示比RFLP、RAPD、SSR更多的多态性。因此,ISSR标记是一种快速、可靠、可以提供有关基因组丰富信息的DNA指纹技术。ISSR标记呈孟德尔式遗传,在多数物种中是显性的,目前己广泛用于植物品种鉴定、遗传作图、基因定位、遗传多样性、进化及分子生态学研究中。

6.SNP:Single Nucleotide Polymorphism

也是以PCR技术为基础的分子标记技术。它是指不同生物个体基因组DNA序列之间单个核苷酸的差异,这种差异可以通过设计特异PCR

引物扩增和电泳检测显示出来。

SNP标记是根据基因组测序结果发展起来的,因而它的数量非常丰富。检测SNP的最佳方法是新近发展起来的DNA芯片技术。

优点: 共显性;基因有功能意义.。缺点:引物设计困难

三、分子标记技术的应用

司法鉴定

分子遗传图谱构建

基因定位(QTL)与克隆

遗传多样性研究

种质资源研究(品种、品质鉴定)

比较基因组研究

天然药物化学试题与答案

第一章 一、指出下列各物质得成分类别 1、纤维素多聚糖类 2、酶蛋白质类 3、淀粉多聚糖类 4、维生素C 酸类(抗坏血酸) 5、乳香萜类 6、五倍子酸类(没食子酸) 7、没药挥发油 8、肉桂油挥发油 9、苏藿香挥发油 10、蓖麻油油脂 11、阿拉伯胶植物多糖,树胶 12、明胶植物多糖,树胶 13、西黄芪胶植物多糖,树胶 14、棕榈蜡油脂 15、芦荟醌类 16、弹性橡胶植物多糖,树胶 17、松脂油脂 18、花生油油脂 19、安息香植物多糖,树脂 20、柠檬酸酸类 21、阿魏酸苯丙酸类 22、虫白蜡油脂 23、叶绿素植物色素(脂溶性色素) 24、天花粉蛋白蛋白质 二、解释下列概念 1、天然药物化学:就是运用现代科学理论与技术研究天然产物中生物活性物质得一门学科,主要研究其生物活性物质得化学结构、理化性质、提取分离、结构鉴定、生理活性、药物开发等方面得基本理论与实验技术。 2、反相层析:根据流动相与固定相相对极性不同,液相色谱分为正相色谱与反相色谱。流动相极性大于固定相极性得情况,称为反相色谱。 3、有效成分与无效成分:有效成分即具有生物活性且能起到防治疾病作用得化学成分,无效成分即没有生物活性与不能起到防治疾病作用得化学成分。 4、双向展开:将试样点在方形得纸或薄层板得一角,熔剂沿纸或薄层板得一个方向展开,然后再沿垂直方向作第二次展开。两次展开可采用不同得溶剂系统,使复杂混合物得到较好得分离。 5、单体、有效部位:单体,即化合物,指具有一定分子量,分子式,理化常数与确定得化学结构式得物质。在中药化学中,常将含有一种主要有效成分得提取分离部分,称为有效部位。 6、 R f值:R f value 写做R f值(比移值)。主要就是纸上层析法得用词。溶剂从原点渗透到距离a(一般在20—30厘米时测定)得时候,如果位于原点得物质从原点向前移动到b,那么b/a得值(0、0—1、0)就就是这种物质得Rf值。 7、硅胶G、硅胶H、硅胶GF254:硅胶可分为硅胶H(不含黏合剂)、硅胶G(含黏合剂)与硅胶HF(含荧光物质)。6eaZ0wK 8、相似相溶原理:相似相溶原理中“相似”就是指溶质与溶剂在结构上相似,“相溶”

分子标记技术综述

分子标记技术及其在植物药材亲缘关系鉴定中的应用 分子标记技术 分子标记(Molecular Markers)是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接反映[1]。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有极大的优越性:大多数分子标记为共显性,对隐性性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速[2]。 技术种类及原理 分子标记技术自诞生起已研究出数十种,尽管方法差异显著,但都具有一个共同点,即用到了分子杂交、聚合酶链式反应(PCR)、电泳等检测手段。应用较为广泛的技术有以下几种: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphisms,RFLP) RFLP是最早开发的分子标记技术,指基因型间限制性内切酶位点上的碱基插入、缺失、重排或突变引起的,是由Grodzicker等于1974年创立的以DNA-DNA杂交为基础的遗传标记。基本原理是利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况[3]。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern 杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点,可靠性高,不受环境、发育阶段或植物器官的影响。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个,标记结果稳定,重复性好。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,RFLP分析工作量大,成本高,使用DNA量大,使用放射性同位素和核酸杂交技术,不易自动化,尽管结合PCR技术,RFLP仍在应用,但已不再是主流分子标记。 2.随机扩增多态性DNA(Random Amplification Polymorphism,RAPD) RAPD技术是1990年由William和Welsh等人利用PCR技术发展的检测DNA多态性的方法,其基本原理是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。扩增片段多态性便反映了基因组相应区域的DNA多态性。RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性[4]。就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。 与RFLP技术相比,RAPD技术操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物,扩增产物具有丰富的多态性。但RAPD也存在一些缺点:(1)RAPD标记是一个显

DNA分子标记技术及其应用

DNA分子标记技术及其应用 摘要:分子遗传标记是近年来现代遗传学发展较快的领域之一。本文系统阐述了DNA分子标记的概念,以及RFLP、RAPD、ALFP、STS、SSR和SNP为代表的分子标记技术的原理和主要方法,并简单介绍了DNA分子标记技术的应用。最后探讨了其进展以及存在的一些问题。 关键词:分子标记;应用 分子遗传标记技术作为一种新的分子标记技术,在分子生物学特别是在分子遗传学的研究中得到了广泛的应用和发展,其所构建的遗传图谱具有高度的特异性。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面,成为分子遗传学和分子生物学研究与应用的主流之一。 1DNA分子标记的概念 遗传标记是基因型特殊的易于识别的表现形式,在遗传学的建立和发展过程中起着重要作用。从遗传学的建立到现在,遗传标记的发展主要经历了4个阶段,表现出了4种类型:1形态标记(Morphological Markers),指生物的外部特征特性,包括质量性状作遗传标记和数量性状作遗传标记;2细胞标记(Cytological Markers),主要指染色体组型和带型;3生化标记(Biochemical Markers),指生物的生化特征特性,主要包括同工酶和贮藏蛋白两种标记;4DNA分子标记(Molecular Markers)是以生物大分子(主要是遗传物质DNA)的多态性为基础的一种遗传标记。前3种标记是对基因的间接反映,而DNA分子标记是DNA水平遗传变异的直接反映。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面。目前,被广泛应用的DNA分子标记主要有RFLP(限制性片段长度多态性)、RAPD(随机扩增多态性DNA)、ALFP(扩增片段长度多态性)、STS(序列标记位点)、SSR(简单重复序列)和SNP(单核苷酸多态性)等。 2分子遗传标记技术的种类 2.1RFL P标记 RFLP(Restriction Fragment Length Polymorphism,限制性片段长度多态性)标记,是人类遗传学家Botstein等于1980年提出的,是以Southern杂交为核心的第一代分子标记技术。它是用限制性内切酶切割不同个体基因组DNA后,用印迹转移杂交的方法检测同源序列酶切片段在长度上的差异。这种差异是由于变异的产生或是由于单个碱基的突变所导致的限制性位点增加或消失,或是由于DNA序列发生 插入、缺失、倒位、易位等变化所引起的结构重排所致。其差异的检测是利用标记的同源序列DNA片段作探针进行分子杂交,再通过放射自显影(或非同位素技术)实现的。 与传统的遗传标记相比,RFL P标记具有下列优点: (1)RF LP标记无表型效应,其检测不受外界条件、性别及发育阶段的影响;

分子印迹技术原理及其在分离提纯上的应用

. . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

软件工程-原理、方法与应用【第三版】复习总结

第一章绪论 1.每18个月芯片的性能和速度均提高一倍,每隔12年软件生产大约提高一倍。 2.软件:是能够完成预定功能和性能的可执行的计算机诚信度。包括使程序正常执行所需的数据,以及有关描述程 序操作和使用的文档。即:软件= 程序+ 文档 3.软件的特征: 软件的开发不同于硬件设计、不同于硬件制造、不同于硬件维修。 4.软件危机出现的原因: 软件维护费用的急剧上升,直接威胁计算机应用的扩大; 软件生产技术进步缓慢,是家居软件危机的重要原因。 -------------------------------------------------------------------------------------------------------------------------------------------------------------------- 5.软件工程学的范畴: 软件开发技术(软件开发方法学、软件工具、软件工程环境)、软件工程管理(软件管理学、软件经济学、度量学)。 6.软件工程:是指导计算机软件开发和维护的工程学科。它采用工程的概念、原理、技术和方法来开发与维护软件, 目的是为了实现按照预期的进度和经费完成软件生产计划,同时提高软件的生产率和可靠性。 7.软件的发展:大体经历了程序、软件、软件产品3个阶段。 8.工具和方法是软件开发技术的2大支柱。 9.3种编程泛型: 过程式编程泛型、面向对象编程泛型、基于构件技术的编程泛型 10.面向对象程序设计中,数据和操作被封装在一个对象中,对象之间则是通过消息相互联系。 11.构件:标准化/规格化的对象类。 12.常用变成力度的大小来比较3种编程泛型的差异。 粒度由小到大依次是:过程式编程范式、面向对象编程范式、基于构件的编程泛型。 13.软件工程的分化: 传统软件工程:结构化分析-》结构化设计-》面向过程编码-》软件测试 面向对象软件工程:OO分析与对象抽取-》对象详细设计-》面向对象的编码与测试 基于构件的软件工程(以可复用构件和测试工具为后盾): 领域分析和测试计划定制-》领域设计-》建立可复用构件库-》按‘构件集成模型’查找与集成构件 14.分析先于设计,设计先于编码,使程序(的结构)适合于问题(的结构)。 第二章软件生存周期与软件过程 1.软件生存周期:计划、开发、运行3个时期。 需求分析-》软件分析-》软件设计-》编码测试-》软件测试-》运行维护 2.需求分析(用户视角):功能需求、性能需求、环境约束、外部接口描述。 3.软件分析(开发人员视角):建立与需求模型一致的,与实现无关的软件分析模型。 4.软件设计:总体设计/概要设计、详细设计(确定软件的数据结构和操作)。 5.单元测试通常与编码同时进行。 6.软件测试:单元测试、集成测试、系统测试。 7.Boehm软件生存周期的划分:系统需求、软件需求、概要设计、详细设计、编码纠错、测试和预运行、系统维护。-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 8.瀑布模型特点:阶段间的顺序性和依赖性、推迟实现的观点、保证质量的观点。 9.瀑布模型存在的问题:只有在需求分析准确的前提下,才能得到预期的结果。 快速原型模型:原型系统只包括对未来系统的主要功能以及系统的重要接口。特点:快速开发工具、循环、低成本。种类:渐进型、抛弃型。

分子标记技术的类型原理及应用

分子标记 1.分子标记技术及其定义 1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。通常所说的分子标记是指以DNA多态性为基础的遗传标记。分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。 2.分子标记技术的类型 分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。 2.1 建立在Southern杂交基础上的分子标记技术 (1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记; (2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。 2.2 以重复序列为基础的分子标记技术 (1) ( Satellite DNA ) 卫星DNA; (2) ( Minisatellite DNA ) 小卫星DNA; (3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。 2.3 以PCR为基础的分子标记技术 (1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA; (2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性; (3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性; (4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性; (5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性; (6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域; (7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。 2.4以mRNA为基础的分子标记技术

分子标记技术

分子标记技术 摘要:分子标记技术就是利用现代分子生物学基础分析DNA分子特性,并借助 一些统计工具,将不同物种或同一物种的不同类群区分开来,或者将生物体的某些性状与DNA分子特性建立起来的关联关系,已广泛应用于植物遗传与育种研究的众多领域,包括遗传图谱的构建、遗传多样性分析、物种起源与进化、品种资源与纯度鉴定、分子辅助育种等多个方面,具有重大作用。 关键词:分子标记技术原理RFLP RAPD SSR AFLP EST SNP TRAP 分子标记技术应用 引言 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 一.常用分子标记原理 分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR 技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA 或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。其特点比较见表一。 1.限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP) 1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA 分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝

分子印迹技术原理及其在分离提纯上的应用

. . . . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

软件工程-原理、方法及应用(史济民第二版)答案

软——应 课习题 件工程原理、方法与用后答案最完整版 绪论 1.什么是软件危机?为什么会产生软件危机? 答:软件危机是指在计算机软件的开发和维护过程中遇到的一系列严重问题。 (1).软件维护费用急剧上升,直接威胁计算机应用的夸大。 (2).软件生产技术进步缓慢 2. 什么是软件生产工程化?工程化生产方法与早期的程序设计方法主要差别在哪里? 答:结构化程序设计地出现,使许多产业界认识认识到必须把软件生产从个人化方式改变为工程化。采用工程的概念、原理、技术和方法开发与维护软件,把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来,以经济地开发出高质量的软件并有效地维护它,这就是软件工程,同时这也是工程化生产方法。 3. 分别说明(1)软件开发方法与开发工具;(2)软件技术与软件管理的相互关系。 答:(1)工具和方法,是软件开发技术的两大支柱,它们密切相关。当一种方法提出来并证明有效后,往往随之研制出相应的工具,来帮助实现和推行这种方法。新方法在推行初期,总有人不愿接受和采用。若将新方法融合于工具之中,使人们通过使用工具来了解新方法,就能更快促进新方法的推广。 (2)在工业生产中,即使有先进的技术和设备,管理不善的企业也不能获得良好的效益。 软件在生产中不能按质按时完成计划,管理混乱往往是其中的重要原因。所以对于一个理想的软件工程环境,应该同时具备技术和管理两个方面。 4.试从你的亲身实践,谈谈软件工具在软件开发中的作用。 答:用C++开发一个软件,是校园一卡通的模块。首先,要在编辑程序支持下在计算机中输入源程序。然后编译程序,把源程序翻译成目标程序。如果发现错误,就重新调入编辑程序对源程序进行修改。编译通过后,再调用连接程序吧所有通过了编译目标程序连同与之有关的程序连接起来,构成一个能在计算机上运行的可执行软件。编译程序,编辑程序,连接程序以及支持他们的计算机操作系统,都属于软件工具。离开这些工具,软件开发就是去了支持,变得十分困难和低效,甚至不能运行。5.什么是软件工程环境?谈谈你对环境重要性的认识。 答:方法与工具相结合,再加上配套的软、硬件支持就形成环境。例如在批处理时代,用户开发的程序是分批送入计算机中心的计算机的,有了错误,就得下机修改。程序员对自己写的程序只能继续地跟踪,思路经常被迫中断,效率难于提高。分时系统的使用,使开发人员从此能在自己的终端上跟踪程序的开发,仅此一点,就明显提高了开发的效率。 6. 何谓面向对象软件工程?简述它与传统软件工程在各型软件开发中的作用。 答:以面向对象程序设计为基础。 7. 软件按规模大小可分成哪几类?简述软件工程中各型软件开发中的作用。 答:按规模分为极小、小、中、大、甚大、极大。 (1)中小型软件:软件工程对改进软件质量,提高程序员生产率和满足用户的需求,有很大的作用。(2)大型软件:这类软件必须从头至尾坚持软件工程的方法,严格遵守标准文档格式和正规的复审制度,才能避免或减少混乱,真正开发出大型的软件。 8. 什么是形式化软件开发方法?实现这类开发的困难和出路在哪里?

化学与传统文化(解析版)

化学与传统文化、STSE 真题再现 ▲(2019·新课标Ⅱ)“春蚕到死丝方尽,蜡炬成灰泪始干”是唐代诗人李商隐的著名诗句,下列关于该诗句中所涉及物质的说法错误的是 A.蚕丝的主要成分是蛋白质 B.蚕丝属于天然高分子材料 C.“蜡炬成灰”过程中发生了氧化反应 D.古代的蜡是高级脂肪酸酯,属于高分子聚合物 【答案】D 【解析】A. 蚕丝的主要成分是蛋白质,A项正确;B. 蚕丝的主要成分是蛋白质,蛋白质是天然高分子化合物,B项正确;C. “蜡炬成灰”指的是蜡烛在空气中与氧气反应,属于氧化反应,C项正确;D. 高级脂肪酸酯不属于高分子聚合物,D项错误;答案选D。 ▲(2018·新课标Ⅱ)化学与生活密切相关。下列说法错误的是 A.泡沫灭火器可用于一般的起火,也适用于电器起火 B.疫苗一般应冷藏存放,以避免蛋白质变性 C.家庭装修时用水性漆替代传统的油性漆,有利于健康及环境 D.电热水器用镁棒防止内胆腐蚀,原理是牺牲阳极的阴极保护法 【答案】A 【解析】A.泡沫灭火器中加入的主要是碳酸氢钠和硫酸铝溶液,两者混合的时候发生双水解反应,生成大量的二氧化碳气体泡沫,该泡沫喷出进行灭火。但是,喷出的二氧化碳气体泡沫中一定含水,形成电解质溶液,具有一定的导电能力,可能导致触电或电器短路,A错误。B.疫苗是指用各类病原微生物制作的用于预防接种的生物制品。由于疫苗对温度比较敏感,温度较高时,会因为蛋白质变性,而失去活性,所以疫苗一般应该冷藏保存,B正确。C.油性漆是指用有机物作为溶剂或分散剂的油漆;水性漆是指用水作为溶剂或分散剂的油漆,使用水性漆可以减少有机物的挥发对人体健康和室内环境造成的影响,C正确。D.电热水器内胆连接一个镁棒,就形成了原电池,因为镁棒比较活泼所以应该是原电池的负极,从而对正极的热水器内胆(多为不锈钢或铜制)起到了保护作用,这种保护方法为:牺牲阳极的阴极保护法,D正确。【点睛】本题是一道比较传统的化学与生产生活相关的问题,需要学生能够熟悉常见化学物质的性质和用途,同时能用化学原理解释生产生活中的某些过程。需要指出的是,选项D中的牺牲阳极的阴极保护法,实际指的是形成原电池的保护方法。

分子对接的原理,方法及应用

分子对接的原理,方法及应用 (PPT里弄一些分子对接的照片,照片素材文件里有) 分子对接 是将已知三维结构数据库中的分子逐一放在靶标分子的活性位点处。通过不断优化受体化合物的位置、构象、分子内部可旋转键的二面角和受体的氨基酸残基侧链和骨架,寻找受体小分子化合物与靶标大分子作用的最佳构象,并预测其结合模式、亲和力和通过打分函数挑选出接近天然构象的与受体亲和力最佳的配体的一种理论模拟分子间作用的方法。 通过研究配体小分子和受体生物大分子的相互作用,预测其亲和力,实现基于结构的药物设计的一种重要方法。 原理: 按照受体与配体的形状互补,性质互补原则,对于相关的受体按其三维结构在小分子数据库直接搜索可能的配体,并将它放置在受体的活性位点处,寻找其合理的放置取向和构象,使得配体与受体形状互补,性质互补为最佳匹配 (配体与受体结合时,彼此存在静电相互作用,氢键相互作用,范德华相互作用和疏水相互作用,配体与受体结合必须满足互相匹配原则,即配体与受体几何形状互补匹配,静电相互作用互补匹配,氢键相互作用互补匹配,疏水相互作用互补匹配) 目的: 找到底物分子和受体分子的最佳结合位置 问题: 如何找到最佳的结合位置以及如何评价对接分子之间的结合强度 方法: 1、首先建立大量化合物的三维结构数据库 2、将库中的分子逐一与靶分子进行“对接” 3、通过不断优化小分子化合物的位置以及分子内部柔性键的二面角,寻找小分子化合物与靶标大分子作用的最佳构象,计算其相互作用及结合能 4、在库中所有分子均完成了对接计算之后,即可从中找出与靶标分子结合的最佳分子 应用: 1)直接揭示药物分子和靶点之间的相互作用方式 2)预测小分子与靶点蛋白结合时的构象 3)基于分子对接方法对化合物数据库进行虚拟筛选,用于先导化合物的发现

相似相溶原理

相似相溶原理 一、定义及解释 like dissolves like 相似相溶原理就是指由于极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂,难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂,难溶于极性分子组成的溶剂。 如abc三种物质,ab就是极性物质,c就是非极性物质,则ab之间溶解度大,ac或bc之间溶解度小。 (1)相似相溶原理就是一个关于物质溶解性的经验规律。例如水与乙醇可以无限制地互相溶解,乙醇与煤油只能有限地互溶。因为水分子与乙醇分子都有一个—OH基,分别跟一个小的原子或原子团相连,而煤油则就是由分子中含8个~16个碳原子组成的混合物,其烃基部分与乙醇的乙基相似,但与水毫无相似之处。 (2)结构的相似性并不就是决定溶解度的唯一原因。分子间作用力的类型与大小相近的物质,往往可以互溶;溶质与溶剂分子的偶极距相似性也就是影响溶解度的因素之一。 具体可以这样理解: 1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等); 2.非极性溶剂(如苯、汽油、四氯化碳等)能溶解非极性物质(大多数有机物、Br2、I2等) 3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。 另外,极性分子易溶于极性溶剂中,非极性分子易溶于非极性溶剂中。 二、更高更妙的相似相溶原理 溶液中溶质微粒与溶剂微粒的相互作用导致溶解。若溶质、溶剂都就是非极性分子,如I2与CCl4,白磷与CS2,相互作用以色散力为主;若一种为极性分子,另一种为非极性分子,如I2与C2H5OH,相互作用就是分子间作用力;在强极性分子间以取向力为主;若一种溶剂微粒就是离子,在水中形成水合离子,在液氨中则形成氨合离子,其她溶剂中就就是溶剂合离子。 简单地讲,若溶质微粒与溶剂微粒间相互作用与原先溶质微粒间、溶剂微粒间作用相近,则溶解的就会较多。这应当就是相似相溶规律的基础,但就是上述规律并不方便判断。于就是人们总结出一个简易判断的规律:

分子印迹技术及应用

分子印迹技术及应用 林凯城1李永莲2 (1.揭阳职业技术学院化学工程系广东揭阳 522000;2.广东轻工职业技术学院科研处广东广州510300) 摘 要:分子印迹技术是构建高分子聚合物的有效方法,这种方法简便、成熟。所构建的纳米孔穴与印迹分子在空间形 状、大小以及作用点上相匹配,所以能被印迹分子高效地选择性识别出来。目前已广泛应用于各种离子、小分子、大分子等 的印迹。文中阐明了分子印迹技术的基本原理,简述了分子印迹技术的主要制备方法,并展望了光子晶体的应用前景。 关键词:分子印迹;聚合方法;应用 中图分类号:Q503文献标识码:B 文章编号:1674-4896(2012)12-0026-05 分子印迹技术最先应用于20世纪40年代Paulin首次提出抗体形成学说[1],为后来分子印迹理论的产生和发展奠定了理论基础。1972年,Wulff在分子印迹技术方面的研究取得了突破性进 展,首次成功制备出分子印记聚合物(MIPs )[2]。 1993年Mosbach开展的有关茶碱分子的分子印迹聚合物的研究也取得巨大成就,并在《Nature》上发表了相关的论文。从此,分子印迹聚合物引起了人们的广泛关注,因为其具有高度专一性和普适性,并且广泛地应用于化学和生物学交叉的新兴领域,如模拟酶、药物分析、催化剂、色谱分析与色谱分离、仿生传感器等方面,受到世界关注并迅速发展。 高分子聚合物的合成,在合成之前将印迹分子加入到功能单体之中,两者之间发生化学作用,与此同时,加入交联剂及引发剂,通过一系列的聚合反应形成一个固态高分子化合物,这个化合物是高度交联的,接着将印迹分子从高分子中移除,这个可以利用化学或物理的方法移除,经过这个步骤之后,大量的空腔结构就在高分子化合物的内部形成并存在了,通过这些空腔结构内各官能团的位置以及它们各自的形状,空腔结构可以与印迹高分子进行互补,并且还能发生具有特殊性能的作用。分子印迹技术各方面的研究也正是利 用这一原理开展工作的。功能单体和印迹分子之间存在的化学作用方式主要有两种,一是共价键,另外一个是非共价键,其中又以非共价键作用方式的应用较多,它包括离子键作用、疏水作用、氢键作用等。 图1典型的分子印迹步骤[3] 当前,利用分子印迹技术合成的聚合物,由于其具有广泛的通用性和惊人的立体专一识别性,全世界进行MIPs的研究与开发的国家至少有10多个国家,包括日本、美国、德国、中国等,另外还有企事业单位和学术机构,其总数也不少于100个。但是, 由于目前所利用的制备聚合物的分子印 收稿日期:2012-09-04作者简介:林凯城(1983-),男,广东揭阳人,助教,研究方向:化学传感材料。 第5卷第6期2012年12月清远职业技术学院学报JournalofQingyuanPolytechnicVol.5,No.6Dec.2012 26

有机物的溶解性规律相似相溶原理1

有机物的溶解性规律一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等); 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等) 3.含有相同官能团的物质互溶,如水中含羟基(OH)能溶解含有羟基的醇、酚、羧酸。 二、有机物的溶解性与官能团的溶解性 1.官能团的溶解性:(1)易溶于水的官能团(即亲水基团)有OH、CHO、COOH、NH2。(2)难溶于水的官能团(即憎水基团)有:所有的烃基( 有机物的溶解性规律 一、相似相溶原理 1.极性溶剂(如水)易溶解极性物质(离子晶体强碱(NaOH、KOH、)、活泼金属氧化物(Na2O、MgO、Na2O2)、大多数盐类(BaCl2、Pb(Ac)2等除外)以上仅作了解、。、分子晶体中的极性物质如强酸等); 自己做的分析:(H2O是折线型,不对称,所以是极性分子,作为溶剂称为极性溶剂。)百度上的.可是分子晶体中的极性物质居然有苯。这令我很迷茫。 如果苯属于极性 物质,那么水必然与之互溶.但下面也提到了苯是非极性溶剂 我自己做了简要的分析。——百度 苯分子是平面分子,12个原子处于同一平面上,6个碳和6个氢是均等的,C-H 键长为1.08Α,C-C键长为1.40Α,此数值介于单双键长之间。分子中所有键角均为120°…由上可知,苯中貌似无共用电子对偏移,所以苯是非极性溶剂。 问题1。但是如上所述,苯属于分子晶体中的极性物质。那这又是为什么呢?难道是百度错了? 问题3高中所要了解的极性溶剂都有哪些?水,还有什么。 2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等) 问题4我都是从结构出发:探讨是否有共用电子对是否偏离来确定是否为极性溶剂或者非极性溶剂。这种想法是否正确。 ①苯若是非极性溶剂.如上

分子生物学技术原理

生物分子类实验室常用实验技术原理汇总 一、GST pull-down实验 基本原理:将靶蛋白-GST融合蛋白亲和固化在谷胱甘肽亲和树脂上,作为与目的蛋白亲和的支撑物,充当一种“诱饵蛋白”,目的蛋白溶液过柱,可从中捕获与之相互作用的“捕获蛋白”(目的蛋白),洗脱结合物后通过SDS-PAGE电泳分析,从而证实两种蛋白间的相互作用或筛选相应的目的蛋白,“诱饵蛋白”和“捕获蛋白”均可通过细胞裂解物、纯化的蛋白、表达系统以及体外转录翻译系统等方法获得。此方法简单易行,操作方便。注:GST即谷胱甘肽巯基转移酶(glutathione S-transferase) 二、足印法(Footprinting) 足印法(Footprinting)是一种用来测定DNA-蛋白质专一性结合的方法,用于检测目的DNA 序列与特定蛋白质的结合,也可展示蛋白质因子同特定DNA片段之间的结合。其原理为:DNA 和蛋白质结合后,DNA与蛋白的结合区域不能被DNase(脱氧核糖核酸酶)分解,在对目的DNA序列进行检测时便出现了一段无DNA序列的空白区(即蛋白质结合区),从而了解与蛋白质结合部位的核苷酸数目及其核苷酸序列。 三、染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP) 染色质免疫共沉淀技术(Chromatin Immunoprecipitation,ChIP)是研究体内蛋白质与DNA 相互作用的有力工具,利用该技术不仅可以检测体内反式因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰以及转录因子与基因表达的关系。 染色质免疫沉淀技术的原理是:在生理状态下把细胞内的DNA与蛋白质交联在一起,通过超声或酶处理将染色质切为小片段后,利用抗原抗体的特异性识别 反应,将与目的蛋白相结合的DNA片段沉淀下来。染色质免疫沉淀技术一般包括细胞固定,染色质断裂,染色质免疫沉淀,交联反应的逆转,DNA的纯化及鉴定。 四、基因芯片(又称 DNA 芯片、生物芯片)技术 基因芯片指将大量探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,就是通过微加工技术 ,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2 的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,被称为基因芯片。基因芯片主要用于基因检测工作 。 基因芯片的测序原理是杂交测序方法,即通过与一组已知序列的核酸探针杂交进行核酸序列测定的方法,在一块基片表面固定了序列已知的八核苷酸的探针。当溶液中带有荧光标记的核酸序列TATGCAATCTAG,与基因芯片上对应位置的核酸探针产生互补匹配时,通过确定荧光强度最强的探针位置,获得一组序列完全互补的探针序列。据此可重组出靶核酸的序列。

相似相溶原理及其应用

相似相溶原理及其应用 姓名:贾欢欢 学号:SA14234*** 在生活中,我们会遇见这样的例子,当把油和水混在一起的时候,并不会像水和酒倒在一起一样形成均匀的相,而是有一个泾渭分明的界面,油在界面上方,水在界面下方。这就不得不提到相似相溶原理。这是由于酒中的主要成分是乙醇和水,它们都是极性物质,乙醇中含有羟基,和水的结构相似,且非极性的部分也比较小,故可以和水很好地混溶。而油是非极性,不能在水中溶解。 相似相溶原理是我们在化学学习的最初阶段就接触到的一种原理。在分子间的相互作用力这门课中,更是分专门的章节进行了系统详尽的介绍。 从广义上来讲,“相似”即溶质与溶剂的结构或极性相似;“相溶”即溶质与溶剂彼此互溶。结构或极性相似的物质能够互相溶解,构成了广义上的相似相溶原理。从狭义上来讲,相似相溶指的是极性分子组成的溶质易溶于极性分子组成的溶剂,难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂,难溶于极性分子组成的溶剂。 相似相溶原理的表述和原理看似简单,在生活和科学研究中却有着广泛的应用。下面,我就来简单地举几个例子。 在基础科学研究中,若已知某些物质的极性大小,可以根据相似相溶原理推断它们在某些溶剂中的溶解性大小。

例如:已知Br2、I2是非极性分子,而水是极性分子,根据相似相溶原理,我们有理由推断,Br2、I2都不易溶于水,而易溶于甲苯、四氯化碳等有机溶剂。在实际工作中甲苯、四氯化碳等有机溶剂常常用作萃取剂将溴、碘从其水溶液中萃取出来。 要将固体物质配成溶液,在选择溶剂时,也要用到相似相溶原理,例如NaCl、CuSO4等固体物质都是极性的,因此在选择溶剂时,就要选择极性的水,而不能用正己烷、油胺等非极性物质作为溶剂。 根据相似相溶原理,在实验中还可以指导溶剂的选择,通过选择极性相似但危害性相去甚远的溶剂,降低实验操作过程中所用试剂的毒性等危害性。例如在纳米粒子合成的过程中,常常用到有机溶剂甲苯。而甲苯对人体的毒性是比较大的,所以在洗涤纳米粒子的过程中,我们就换用极性相似、毒性相对较小的正己烷来洗样,可以降低一些危害。 高效液相色谱是在经典的液相色谱的基础上发展起来的一种分析方法。近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定方面有着广泛的应用。高效液相色谱分很多种类型,正相分配色谱和反相分配色谱是重要的一类,这种分配色谱就是根据样品极性的差别对组分进行有效的分离分析的。 在日常生活中,巧妙地利用相似相溶原理,往往可以起到事半功倍的效果。当衣服上不小心弄到油漆时,若在水中用洗涤剂洗,即使费了九牛二虎之力,也不一定能见到一丁点成效。若用汽油来洗,油漆轻轻松松就被洗掉了。这主要是因为有其中绝大多数是有机成分,

分子标记的实验原理及操作流程

AFLP分子标记实验 扩增片段长度多态性 Amplified fragment length polymorphism(AFLP 是在随机扩增多态性(RAPD和限制性片段长度多态性(RFLP技术上发展起来的DNA多态性检测技术,具有RFLP技术高重复性和RAPD技术简便快捷的特点,不需象RFLP 分析一样必须制备探针,且与RAPD标记一样对基因组多态性的检测不需要知道其基因组的序列特征,同时弥补了 RAPD技术重复性差的缺陷。同其他以PCR为基础的标记技术相比,AFLP技术能同时检测到大量的位点和多态性标记。此技术已经成功地用于遗传多样性研究,种质资源鉴定方面的研究,构建遗传图谱等。 其基本原理是:以PCR(聚合酶链式反应为基础,结合了 RFLP、RAPD的分子标记技术。把DNA进行限制性内切酶酶切,然后选择特定的片段进行PCR扩增(在所有的限制性片段两端加上带有特定序列的’接头”用与接头互补的但3-端有几个随机选择的核苷酸的引物进行特异PCR扩增,只有那些与3-端严格配对的片段才能得到扩增,再在有高分辨力的测序胶上分开这些扩增产物,用放射性法、荧光法或银染染色法均可检测之。 一、实验材料 采用青稞叶片提取总DNA 实验设备 1. 美国贝克曼库尔特CEQ8000毛细管电泳系统, 2. 美国贝克曼库尔特台式冷冻离心机, 3. 美国MJ公司PCR仪,

4. 安玛西亚电泳仪等。 三、实验试剂 1. 试剂:请使用高质量产品,推荐日本东洋坊TOYOBO公司的相关产品 DNA提取试剂盒; EcoRI酶,Msel酶,T4连接酶试剂盒; Taq 酶,dNTP, PCR reactio n buffer; 琼脂糖电泳试剂:琼脂糖,无毒GeneFinder核酸染料替代传统EB染料;超纯水(18.2M ? ? cm 2. 其他实验需要物品 微量移液枪(一套及相应尺寸Tip头,PCR管,冰浴等。 四、实验流程 1、总DNA提取 使用DNA提取试剂盒提取植物基因组DNA,通过紫外分光光度计检测或用标准品跑胶检测。一般来说,100ng的基因组DNA作为反应模板是足够的。 2、EcoR1酶消化(20ul体系/样品 EcoR1 1ul

相关主题