搜档网
当前位置:搜档网 › 混煤燃烧特性研究

混煤燃烧特性研究

混煤燃烧特性研究
混煤燃烧特性研究

第25卷第18期中国电机工程学报V ol.25 No.18 Sep. 2005 2005年9月Proceedings of the CSEE ?2005 Chin.Soc.for Elec.Eng.

文章编号:0258-8013(2005)18-0097-07 中图分类号:TK227 文献标识码:A 学科分类号:470·40

混煤燃烧特性研究

王春波1,李永华2,陈鸿伟1

(1.华北电力大学能源与动力工程学院,河北省保定市071003;

2.LTNT能源技术研究中心,瑞士苏黎世)

STUDY ON COMBUSTION CHARACTERISTICS OF BLENDED COALS

WANG Chun-bo 1, LI Yong-hua 2, CHEN Hong-wei 1

(1. Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China; 2. Inst. f. Energietechnik/LTNT, ETH Zentrum/ML J14, CH-8092, Zurich/Switzerland)

ABSTRACT: Power Plants in China have to burn blended coal instead of design coal,so it is necessary to investigate the combustion of blended coals. Using the test rig with a capacity of 640MJ/h with an absolute milling system and flue gas online analysis system, the characteristics of some blended coals, such as burning out, slagging and pollution were investigated. The ratio of coke and slag as a method to distinguish coal slagging characteristic was introduced. Some kinds of blending of coal have some effect on NO x but there is no obvious rule. The emission of SO x can be reduced to blend coal, especially for the low sulfur coal in this investigation.

KEY WORDS:Blended coals; Combustion characteristic; Slag; NO x; SO x

摘要:由于国内电厂大量燃用混煤,因此,从技术经济角度出发,对混煤燃烧特性进行研究具有很大的必要性。文中利用一个具有在线烟气成分分析的640MJ/h热试验台,进行了几种混煤的燃尽、结渣和污染特性试验。焦炭和渣的比例被引入以区分煤的结渣特性。NO x的释放没有特别明显的规律,但研究中发现几种低硫煤混合后,SO x释放有所减少。关键词:混煤;燃烧特性;结渣;NO x;SO x

1 INTRODUCTION

Because of decrease of washing coal, shortage of transport capability and the policy of bad coal combustion in power plant in China, power plant can

基金项目:国家“九·五”重点科技攻关项目(96-A19-01-05)。

Key Project of the National Ninth-Five Year Research Programme of China(96-A19-01-05). not burn one coal and have to burn blended coals. According to the reports of power plant of Water and Electricity Ministry, blending ratio of power plant is 44% in 1982. In 1987, Harbin Whole Set Equipment Research Institute found that most of power plants are very difficult to burn design coal when they investigate the basic instance of 428 main power plants. At present, blended combustion is very common, even the design coal of some power plants are blended coals.

However, the blended coal is not a simple mechanical process—only some kinds of coal were blended. Because the difference of fractional coal constitution and combustion characteristic, the combustion condition can not be satisfied at one time. This may be lead to combustion instability and low efficiency etc[1-8].

In this paper, the burnout, slag and NO x, SO x emission of blended coals have been researched in a semi-industrial combustion facility. The blended coals are composed of four brown coals, namely Huolinhe coal, Yangcaogou coal, Fengguang coal and Meihe coal, which are often used by Shuangliao Power Plant.

The characteristics of the four brown coals are shown in table 1. The blending ratio of blended coals is shown in table 2. The size of coal particles is limited to about R90=35%.

98 中国电机工程学报第25卷

表1煤的元素分析

Tab.1 The characteristics of coals

Coal

Properties

Huolinhe Yangcaogou Fengguang Meihe V daf/% 48.53 46.31 60.83 49.25

FC daf/% 51.47 53.69 39.17 50.75

A d/% 27.82 25.28 56.23 24.1

C d/% 52.30 54.01 29.26 55.51

H d/% 3.07 4.84 2.65 4.30

O d/% 15.42 14.53 10.88 12.88

N d/% 0.82 0.80 0.79 1.46

S d/% 0.57 0.53 0.19 1.75

Q d,net/ (kJ/kg) 15919 12388 9249 19819

表2混煤比例

Tab.2 The blending ratio

Single coal ratio/%

Blended coal No.

Huolinhe Meihe Fengguang Yangcaogou 1# 80 20 0 0

2# 70 30 0 0

3# 80 0 20 0

4# 70 0 30 0

5# 80 0 0 20

6# 70 0 0 30

7# 60 20 10 10

8# 70 10 10 10

9# 0 40 30 30

2 EXPERIMENT

This investigation were done at Combustion Research Facility (CRF), which is introduced from Canada. It’s designed for a maximum coal feed rate of 20 kg/h medium sulfur coal at a firing rate of 640 MJ/h (as shown in figure 1). It has functions of advanced control system, on-line measurement and record of experimental result.

The test rig consists of five parts, which are the combustion system, data acquisition and control system, compressing air and cooling system, the system of sampling and analysis of flue gas as well as milling system. The furnace is a refractory-lined cylindrical chamber, composed of four identical modules, the bottom three with cylindrical cooling jackets. The height is 3.6m, and the diameter is 0.3m. The furnace temperature is measured by platinum- rhodium thermocouple. The flue gas that leaving the furnace is continuously monitored by O2, NO x, CO2, CO and SO2 analyzers. The slag is got in the cooling drawer at the bottom of the furnace and the fly ash is sampled at the bottom of ESP. The coal feed rate is 20 kg/h.

3 RESULTS AND DISCUSSION

3.1 Burnout properties of brown-blended coals

In this investigation, the slag is got in the water-cooling drawer at the bottom of the furnace, the fly ash is sampled at the bottom of ESP. The coke adhered to furnace wall. The coke is scratched from wall after test. Also, the loss of solid unburnout from the furnace is used to judge the burnout properties of blended coals. Generally, the loss of solid unburnout q l is calculated as follows

32825

()%

100100

fh fh

ad lz lz

l

r fh lz

a c

A a c

q

Q c c

=+

??

(1) Where Q r is heat quantity input to the furnace, kJ/kg;

A ad is the content on the air-dry basis; A fh is the quota of fly ash in the amount of fuel ash; A dz is the quota of ash forming the slag in the amount of fuel ash; C fh, C dz are respectively contents of combustible matter in fly ash and slag.

The precondition, in which the equation is used, is a fh+a lz =1.When most of the coal ash forms the fly ash and slag, the quota of ash forming the coke in the amount of fuel ash is very little. So the existence of coke can be omitted. In this condition, the equation (1) can correctly describe the burnout property of coal. Additionally, it is difficult to get the quota of coke in the conditions of the real boilers in power plants. Therefore the equation (1) is often adopted when calculating the solid un-burnout loss of pulverized- coal combustion of the real boilers. But at the conditions of this experiments, the quota of coke is very large and varies from the range of 10.70~ 40.48%, so, the loss of solid un-burnout caused by the coke cannot be neglected. So the loss of solid un-burnout is defined as follows:

32825

()%

100100100

fh fh lj lj

ad lz lz

l

r fh lz lj

a c a c

A a c

q

Q c c c =++

???

(2) Where a lj is the quota of the ash forming the coke in the amount of fuel ash; c lz is the content of combustible matter in the coke, %.

The result according to the equation (2) is shown in table 3. Because of the ash quantity is very great,

第18期王春波等:混煤燃烧特性研究99

the single Fengguang coal combustion is not well. For the three single brown coals, the burn-off rate of Meihe coal is the highest and that of Yangcaogou coal is the lowest. For the blended coals, the burnout property of 2# (3M+7H) is better than that of 1# (2M+8H), and the burnout property of 6# (3Y+7H) is worse than that of 5#(2Y+8H). The burnont property of Yangcaogou coal is better than that of Fengguang coal, then the burnout property of 5# (8H+2Y) is better than that of 3# (8H+2F). So it can be found that when two types of coals are mixed, the higher percentage that good burnout coal accounts for, the better the burnout properties of blended coals is. F is the Fengguang coal, as shown in Fig. 1 and Fig.2.

表3混煤的燃尽率

Tab.3 Burn-off rate of blended coals Serial number Solid unburnout loss/% Blended Coals

1 2.35 5#(8H+2Y)

2 2.39 3#(8H+2F)

3 2.5

4 2#(7H+3M)

4 2.77

5 9#(4M+3F+3Y)

5 3.47 Meihe

6 4.09 4#(7H+3F)

7 4.14 1#(8H+2M)

8 4.17 7#(6H+2M+1F+1Y)

9 4.83 Huolinhe

10 5.23 6#(7H+3Y)

11 6.45 8#(7H+1M+1F+1Y)

12 10.24 Yangcaogou

1—jig crane; 2—belt conveor; 3—magnet; 4—roller crusher; 5—crusher coel feed hopper; 6-variable sppe blow through feedel; 7—feed blower; 8—coal puvlverizer; 9—sliencer; 10—air heater; 11—filter; 12—cyclone; 13—pulse jet dust collector; 14—explosion barrier; 15—vortex-type vacuum pump;

16—vent to atmosphere; 17—screw conveyor; 18—pulverized coal feed hopper; 19—volumetric screw feeder; 20—burner; 21—primary air blower; 22—primary air heater; 23—secondary air blower; 24—secondary air heater; 25—furnace chamber; 26—flue; 27—air-cooler heat exchangers; 28—blower;

29—flue gas trace heater; 30—electrostatic precipitator(ESP); 31—flyash hopper; 32—transformer; 33—exhaust blower; 34—chimney

图1 CRF试验台

Fig. 1 CRF test rig

3.2 Slagging of blended coals

Slagging is a complex physical and chemical process. It is not only related to the composition of coal ash, but also is influenced by the type of burners, the structure of furnace, the temperature level in furnace, the aerodynamic field of furnace and atmosphere in furnace. At present, there are some methods to predict and estimate the slagging of pulverized-coal combustion, such as ash fusion, ash composition and ash viscosity, but none of them is accurate enough to predict correctly in practice.

On the basis of the test rig, the ratio of coke attached to the wall over the amount of slag on the bottom of the furnace were got. It is used as a parameter of slagging and used to evaluate the extent of slagging in furnace in this paper. The bigger the ratio is, the easier the slagging is. Table 4 showed the result of the ratio of coke to slagging. From table 4 it

100 中国电机工程学报第25卷

can be found, the tendency of slagging of Meihe coal and 5#(2Y8H) coal are obvious. However, there is no difference to the Huolinhe coal. It agrees with the slagging tendency in boilers of Shuangliao Power Plants on the whole. The ratio of coke to slagging is a reasonable discriminant parameter of slagging. From slagging characteristics of Meihe coal, 2# coal, Yangcaogou coal, 1# coal, 6# coal, Huolinhe coal, the results showed that the slagging characteristics of blended coals are among fractional coals. The slaggings characteristic of coal that slagging badly was changed by the blended coal that not easy slagging, so the slagging can be lightened.

表4在炉底附着的焦炭和渣的比例

Tab.4 The ratio of the coke attached

to furnace wall over the slag on bottom of furnace

Serial number Blended Coals Coke/slag

1 9#(4M+3F+3Y) 2.92

2 Meihe 1.89

3 2#(7H+3M) 1.84

4 5#(8H+2Y) 1.44

5 Yangcaogou 1.27

6 7#(6H+2M+1F+1Y) 1.12

7 1#(8H+2M) 1.17

8 6#(7H+3Y) 1.11

9 3#(8H+2F) 0.97

10 8#(7H+1M+1F+1Y) 0.96

11 4#(7H+3F) 0.53

12 Huolinhe 0.39

According to table 4, the slagging property of 5#(2Y8H) coal is more serious than that of Huolinhe coal and Yangcaogou coal. It showed, when the blending of a coal that has high slagging potential with another coal with low slagging potential, the trouble of slagging get worse. The reason is that the eutectic phenomenon of ash composition makes the ash fusion of the mixed coal lower than that of any of the coals used in the blending. So, improper blending of coals will cause serious slagging. F is the Fengguang coal, as shown in Fig. 1 and Fig. 2.

3.3 NO x emission

3.3.1 Distribution of NO x concentration along the furnace

NO x is always the concern of coal combustion because it is harmful to environment[9-13]. However, there are few investigation done on blended coals at presert. The distribution of NO x concentration along the furnace fired with a single type of coal and blended coals shown in Fig. 2. It can be found, the concentration of NO x at the beginning of ignition is larger, and owing to the coke reduction at the burnout stage, the NO x concentration getting less. Furthermore, the distribution of NO x concentration of blended coals which has two peaks is different from that of single coal with only one peak. The reason is that when two types of coals are mixed, the sequence of volatile matter liberation of the two types of coals differs from each other and the volatile matter of the two types of coals interacts.

1000 2000 3000

residence time/ms

N

O x

l

e

v

e

l

?6

图2沿炉膛NO x浓度分布

Fig2 The distribution of NO x concentration

along the furnace

3.3.2 Influence of the content of N on NO x emission

As Fig.3 showed, with the content of N of coal increasing, the amount of NO x emission is increased. Because NO x emission during pulverized-coal combustion process is mainly produced by fuel NO x, under the same conditions, the increment of the content of N of coal contributes to the NO x

production[14].

the content of N of coal/%

N

o

x

c

o

n

c

e

n

t

r

a

t

i

o

n

?6

0.4 0.8 1.2 1.6

图3 NO x与煤中含N量关系

Fig. 3 NO x level with different content of N of coal 3.3.3 Influence of the fineness of coal on NO x emission

The NO x concentration in the conditions of the different fineness of coal particles is showed in Fig.4. The fineness is that R90=22.5% and R 200=2.3%. The coarseness is that R 90=35% and R 200=4.1%. It showed

第18期 王春波等: 混煤燃烧特性研究 101

that when the fineness of coal particles is different, NO x concentration is different. With the fineness of coal increasing, NO x concentration increases. One reason is that the increment of the fineness of coal makes the liberation of N from coal easier; the other is that the increment of the fineness of coal makes the mixture of pulverized-coal with air better.

Excess of oxygen/%

N o x l e v e l ?6

图4 NO x 与氧量关系

Fig.4 NO x level with excess of oxygen

3.3.4 Influence of the oxygen on NO x emission

Fig.5 showed the influence of the oxygen on NO x emission. It can be found the influence is obvious, more excess oxygen more NO x . The main reason is that the middle production NH I and HCN are easily transformed to N 2 in low oxygen condition. They will transform to NO x in high oxygen condition. So, the way of reducing excess oxygen is a good method to reduce NO x emission, even the unburned loss not be

increased.

Excess of oxygen/% N o x l e v e l ?6

图5 NO x 与炉膛出口氧量关系 Fig.5 NO x level with different oxygen

3.3.5 NO x emission of fractional coal and blended coals

Tab.5 showed the NO x emission of fractional coal and blended coals when the excess air coefficient is 1.4. F is the Fengguang coal, as showed in Fig.1 and Fig.2. It showed that the NO x emission of 1# blended coals is higher. The NO x emission of 4# blended coals is the lowest. Although there are some relationships between fractional coal and blended coals, there are

no obvious rules to NO x emission. Maybe the factors is complex, such as content of N of coal, excess oxygen, pulverized coal fineness.

表5 几种煤与混煤NO x 释放量

Tab.5 NO x emission of fractional coal and blended coals

Serial number

Coal NO x emission ×10?6

1 1# 630

2 6# 600

3 9# 537

4 7# 529

5 2# 520

6 5# 516

7 8# 510

8 3# 487 9

Huolinhe 463 10 Meihe 439 11 Yangcaogou

290 12

4#

276

3.4 SO x emission

Because of the action of the alkalescence oxide of ash, some sulfur oxide of flue gas will be reacted. So, it has a sulfur emission coefficient. This work adopts the concept as follows:

K e =sulfur emission of flue gas/ the content of sulfur of coal

The influence of K e is the alkalescence oxide of ash mostly, such as Na 2O, K 2O, they are steady compounds, have not reaction to SOx. CaO, MgO, Al 2O 3 and Fe 2O 3 have sulfur retention effect. Especially, the sulfur reaction effect of CaO and MgO is the greatest. K e reflects the sulfur retention effect of alkalescence oxide of ash in a certain extent. Tab.6 showed the SO 2 emission of coals vs the excess oxygen is 1.4.

From Tab.6, it can be found that the sulfur of the fractional coal is lower except Meihe coal. The reduction sulfur of all blended coals is less than 0.2%, and they are all low sulfur coal. So, the SO x emission is lower. The sulfur emission coefficient of fractional coal and blended coals is between 0.6 and 0.85. The SO 2 emission is reduced greatly when blended low sulfur coal Huolinhe with high sulfur coal Meihe. Such as 1# blended coals and 2# blended coals. The 1# blended coals (20%Meihe+80%Huolinhe) makes the SO 2 emission reduce from 1189×10?6 of single Meihe coal combustion to 510×10?6. In three fractional coals, the K e of Meihe coal is the largest,

102 中国电机工程学报第25卷

that of Yangcaogou is the least. In nine blended coals, the K e of 5# is the largest, then it is 9#, 6#, 8#, 2#, 1#, 7#, 4# and 3# in turn. The SO2emission of blended coals, the 9# is the largest, then it is 2#, 1#, 5#, 7#, 8#, 6#, 4# and 3# in turn. F is the Fengguang coal, as showed in Fig. 1 and Fig.2.

表6几种煤与混煤SO2释放量

Tab.6 SO2 emission of fractional coal and blended coals Coal [s]/% [s]Z/% K e[SO2](×10?6)

Meihe 1.64 0.3486 0.82 1189

Huolinhe 0.5 0.1315 0.70 376

Yangcaogou 0.34 0.1183 0.67 291 1# 0.726 0.1749 0.68 510

2# 0.839 0.1966 0.71 600

3# 0.43 0.1215 0.47 236

4# 0.39 0.1165 0.60 290

5# 0.47 0.1289 0.94 489

6# 0.44 0.1275 0.83 420

7# 0.56 0.1686 0.73 457

8# 0.68 0.1469 0.65 476

9# 0.79 0.1994 0.92 819 The symbol: [S]—sulfur of coal, S ad, %; [S]c—reduction sulfur , [S]Z=[S]ad×4186/Q ad,net,; K e—SO2emission coefficient; [SO2]—concentration of SO2 in flue gas, 10?6.

From Tab.6, we can find that the SO x emission of some blended coals that are composed of two single coal with different proportion is near fractional coal, such as 1# and 2# blended coals. The SO x emission is reduced with the reduction of the ratio of high sulfur coal. The SO x emission of some blended coals is higher than fractional coal, such as 5# and 6# blended coals. Many researchers of USA studied the SO x emission rule of blended coals, they considered that the SO x emission of blended coals is the linearity connection to fractional coal[15-16]. This paper considers that the SO x emission of blended coals has not better rule. The reason is complex. It must be carried through experimental study in factual application.

4 CONCLUSION

In this paper, the experimental research on the properties of burnout and slagging of blended coals and the emission characteristic has been done. The loss of solid unburnout q l is corrected and is used to judge the burnout properties of blended coals. It is considered that when two types of coals are mixed, the high percentge the coal which has the good burnout characteristic accounts for, the better the burnout properties of blended coals are.

The ratio of the coke attached to the wall of furnace over the slag on the bottom of the furnace is presented as a discriminant parameter of slagging. It were found, when the coal that has high slagging blended with the coal that has low slagging potential, the condition of slagging will get worse.

The characteristics of NO x emission of blended coals have been studied. The result is that with the increasing of oxygen and the content of N of coal and fineness of pulverized coal the amount of NO x emission increases.

The characteristics of SO x emission of blended coals also have been studied. The result is that the SO x emission of blended coals has not better rule. It must be carried through experimental study in factual application.

Acknowledgement

This research were subsidized by the Funds that Accelerates the Development of Science and Technology for Younger in Electric Power Industry (SPQKJ02-07) and PhD Fund 09310015 of North China Electric Power University.

REFERENCES

[1] Li Songge ng.Experimental study on the comprehensive behavior of

combustion of brown-blending coals[C].Proceedings of 4thinter.

symp. on coal combustion,Beijing,China,1999.

[2] Research report of comprehensive rebuild of Yuanbaoshan Power

Plant No.3 boiler milling system[R].The State Engineering Technology Research Center of Combustion of Power Plant,1999.[3] Task report of comprehensive rebuild of Yuanbaoshan Power Plant

No.3 boiler milling system[R].The State Engineering Technology Research Center of Combustion of Power Plant,1999.

[4] Application reports of comprehensive rebuild of Yuanbaoshan Power

Plant No.3 boiler milling system[R].The State Engineering Technology Research Center of Combustion of Power Plant,1999.[5] Li Yonghua.Study on the high efficiency and low pollution

combustion characteristic of blending coals[D].Baoding:North China Electric Power University,2000.

[6] Rimmer R,Hill D,Knutson D.Coal blend experience[C].Proc 3rd

EPRI Conf.on the Effects of Coal Quality on Power Plants,San Diego.USA,1992:124-129.

[7] 李永华,李松庚.褐煤及其混煤燃烧NO x生成的试验研究[J].中

国电机工程学报,2001,21(8):34-36.

Li Yonghua,Li Songgeng.Experimental study on the formation of

第18期王春波等:混煤燃烧特性研究103

NO x of brown and brown-blending coal combustion.Slagging [J].Proceedings of the CSEE,2001,21(8):34-36.

[8] 李永华,陈鸿伟.800MW锅炉混煤燃烧数值模拟[J].中国电机工

程学报,2002,22(6):101-104.

Li Yonghua,Chen Hongwei.Numerical simulation of blending coals combustion of 800MW boiler[J].Proceedings of the CSEE,2002,22(6):101-104.

[9] 李永华,陈鸿伟.煤粉燃烧排放特性数值模拟[J].中国电机工程

学报,2003,23(3):166-169.

Li Yonghua,Chen Hongwei.Numerical simulation on emission characteristics of pulverized coal cobbustion[J].Proceedings of the CSEE,2003,23(3):166-169.

[10] 方立军,高正阳.低挥发分煤燃烧NO x排放特性的试验研究[J].中

国电机工程学报,2003,23(8):211-214.

Fang Lijun,Gao Zhengyang.Experimental study on performance of NO x emission for low Volatilization coals[J].Proceedings of the CSEE,2003,23(8):211-214.

[11] 李凤瑞,陈耀如.一种既能保证煤粉燃烧器稳燃又能缓解炉膛结渣

的方法[J].中国电机工程学报,2001,21(11):84-86.

Li Fengrui,Chen Yaoru.A method assuring flame stability in coal- fired burner and weaking slagging[J].Proceedings of the CSEE,2001,21(11):84-86.

[12] 周昊,朱洪波.大型四角切圆燃烧锅炉NOx排放特性的神经网络

模拟[J].中国电机工程学报,2002,22(1):33-37

Zhou Hao,Zhu Hongbo.An artificial neural network model on NOx

emission property of high capacity tangentialiy firing boiler [J].Proceeding of the CSEE,2002,22(1):33-37.

[13] 向军,熊友辉.PDF-ARRHENIUS方法模拟煤粉燃烧氮氧化物生

成[J].中国电机工程学报,2002,22(6):156-160.

Xiang Jun,Xiong Youhui.Using PDF-ARRHENING to simulate 3-Dimensionally NO x Formation during coal combustion [J].Proceedings of the CSEE,22(6):156-160.

[14] Shinji Kambara,Bordword G R.Relation between function forms of

coal nitrogen and NO x emissions from pulverized coal combustion [J].Fuel,1995,74(9):1551-1554.

[15] Gunderson J R,Selle S J,Harding N S.Technological assessment for

blending western and eastern coals for SO2 compliance[C].Proc 3rd EPRI Conf.on the Effects of Coal Quality on Power Plants.San Diego.California,USA,1992:113-118.

[16] Baur P S.Control coal quality through blending[J].Power,1981,

3(3):52-55.

收稿日期:2005-03-03。

作者简介:

王春波(1973-),男,博士,副教授,从事洁净煤燃烧方面的研究;

李永华(1968-),男,博士,副教授,现在Inst.f.Energietechnik/ LTNT,ETH Zentrum/ML J14CH-8092 Zurich/Switzerland 做高级访问学士,从事燃烧数值模拟方面研究。

粉煤灰特性及应用

粉煤灰的特性及应用 摘要:中国是以煤炭为主要能源的国家,电力产量的76%是由煤炭产生的,每年用煤超过4亿吨,占全国原煤产量的三分之一。1997年全国排放的粉煤灰已达到1.6亿t,成为世界最大的排灰国。但是,目前我国的粉煤灰利用率仅为30%左右,主要用于筑路基和回填,每年仍有1亿t未能利用的粉煤灰,储存于灰场中。每年需征地3 333 hm2用于储灰,建灰场费用和运行费用都很高;另外,粉煤灰用于筑路或回填会受地区、时间的限制,存在使用不均衡、不连续的问题。因此,应该大力拓展粉煤灰在其他领域的应用。 关键词:粉煤灰特性综合利用 1.粉煤灰特性 1.1化学特性 燃料煤由有机物及无机物组成,有机物燃烧后生成碳、氢、氧,无机物燃烧后即生成粉煤灰。粉煤灰的化学成分与煤种、产地、燃烧炉型等有关。我国低钙灰的成分比较接近,其化学组成见表1。 由表1可见,粉煤灰的主要成分为氧化硅、氧化铝及氧化铁,其总量约占粉煤灰的85%左右。低钙煤中氧化钙含量较低,基本无自硬性;但是,目前我国高钙灰的排放量有明显增长的趋势,而高钙灰含有一定的自硬性矿物,有利于增进粉煤灰的强度贡献。另外,近年来随着锅炉容量的不断提高,炉内煤粉燃烧趋于完全,代表影响材料长期稳定性的烧失量也逐渐降低,因此可以说,经过高温燃烧后的粉煤灰是相当纯净的建材原料。 粉煤灰的化学组成Ⅲ 成分SiO2 A12O3 Fe2O3 CaO MgO SO3 Na2O K2O 烧失量 含量50.6 27.2 7.0 2.8 1.2 0.3 0.5 1.3 8.2 1.2物理特性 煤粉在锅炉中燃烧时,其无机物经历了分解、烧结、熔融及冷却等过程,冷却后的粉煤灰颗粒主要由硅铝玻璃体和少量碳粒组成,玻璃体又以单珠、连珠体和海绵状不规则多孔体组成。粉煤灰的品质主要取决于这些粒径、形貌不一的各种颗粒成分的组合比例。其中,粉煤灰的活化能力主要靠硅铝玻璃体,而在常温下硅铝玻璃体以多聚物组成为主,活化能力较低。因此,常温下粉煤灰是一种性质稳定的材料。 1.3粉煤灰的放射性和浸出物毒性 在人类日常的生活环境中,到处都存在着微量天然的放射性物质,主要为238 U、232 Th、226 Ra和40 K等4种放射性元素,只要其含量不超过一定的标准,对人类健康就不会带来负面影响。GB 6763—86中规定,建筑材料用工业废渣中放射性物质的含量应满足下列要求:ARa/330+An/260+AK/3800≤1 (1) ARa/200≤1 (2) 根据杨钦元[4]等测得的粉煤灰天然放射性元素的比活度,按上述两个公式[2][33计算的结果分别为o.93和o.73,均未超出国家标准,说明粉煤灰产品的放射性对人体是安全的。 粉煤灰中除了主要元素外,尚有一定量的镐、砷、铬、铅、汞、铜、锌、镍等对人体健康可能不利的微量元素。这些微量元素对环境的影响主要通过浸出作用体现。吴贤中[53等人

煤吸附水特性的研究

3第37卷 第4期 2006年7月   太原理工大学学报 J OU RNAL OF TA IYUAN UN IV ERSIT Y OF TECHNOLO GY  Vol.37No.4  J uly2006 文章编号:100729432(2006)0420417203 煤吸附水特性的研究 李祥春,聂百胜 (中国矿业大学资源与安全工程学院,北京100083) 摘 要:主要分析了煤吸附水的机理及其对吸附瓦斯的影响。分析表明,煤对水分子的吸附从本质上是由于水分子与煤表面分子相互吸引的结果,它们之间的作用力主要包括van der Waals力和氢键。van der Waals力来源于原子和分子间的色散力、取向力(静电力)、诱导力和交换力4种作用。由于水分子与煤表面分子的作用力比较强,煤中水分的存在降低了煤的甲烷吸附量。 关键词:煤;水;吸附;分子间力 中图分类号:TD77 文献标识码:A 我国是煤炭资源大国,煤层气资源极为丰富。煤层气的开采具有重要意义:一是从根本上消除了煤炭开采中造成的瓦斯爆炸、瓦斯突出等灾害;二是降低了大量瓦斯排放造成的环境污染;三是可以缓解我国的能源紧张局面。由于煤层气藏的形成需要有一个稳定的水动力条件,因此,储层中含有大量的水和煤层气共存。在煤层气开采过程中存在单相水流阶段、非饱和流阶段和水气两相流阶段,因此,研究煤吸附水的机理及其对吸附瓦斯的影响对煤层气的开采将很有意义。 1 煤的物理结构 煤是一种多孔介质,其分子结构存在着晶体缺陷,具有较大的内表面积和容纳空间。其孔隙结构分为基质孔隙和裂隙孔隙,是一种双重孔隙系统。其特征为:煤基质被天然裂隙网分成许多方块(基质块体)。基质是主要的储存空间,裂隙是主要的渗流通道。裂隙孔隙主要包括独特的割理系统和其它天然裂隙,后者与割理系统相比,受局部构造等因素控制,重要性小得多。煤层割理主要是由煤化作用过程中的煤物质结构、构造等的变化而产生的裂隙。根据在层面上的形态和特征,分为面割理和端割理,通常正交或近似正交,垂直或近似垂直于煤层面。煤的孔隙性测定表明,煤的孔隙分布是很不均匀的,并且各种煤孔隙及孔隙连通类型也不同。煤的孔隙包括了互相连通和互不连通的两大部分,前者指流体(气体、液体)可以通过的孔隙,后者指流体不能通过的部分。通常认为相互连通的孔隙空间称为有效空间,不能相互连通的孔隙空间称为无效孔隙空间,而整个孔隙空间称为总孔隙空间。煤的天然孔隙率和裂隙率是煤的一个主要特征,它决定了煤的吸附容积和煤的储存性能。 2 煤吸附水的本质 煤体表面是在煤体破裂或晶体生长时形成的,无论哪一种情况,表面都有剩余的不饱和键和键能,因此具有“表面能”[1]。由能量最低原理可知,系统的能量越低越稳定,所以煤表面在平衡过程中总是力图吸收周围其它物质以降低其表面自由能。另外,由于煤体在地层深部受到上覆岩层压力的作用、地质活动的影响以及采矿等因素的影响,一直处于流变或变形过程,会生成许多新的表面,在这些新生表面上也会产生许多悬键,它们也具有极性,处于力的非平衡态,煤的新生表面实际上是众多断裂化学键的集合,这些断裂化学键是非常活泼的,也是极不稳定的,具有极高的能量,它们极易与周围其它物质的分子或原子发生作用而得以饱和,降低表面的能量,达到新的能量平衡态。正是这种表面能的存在,使得表面对外界的物质分子、原子、离子等均会产生吸附作用,对水分子当然也会产生吸附作用。表面能的高低对煤体表面的吸附能力起决定性的影响。处于煤体表面的分子、原子或离子的吸引力和表面 3收稿日期:2005209202 基金项目:国家自然科学基金资助项目(50404015) 作者简介:李祥春(1979-),男,内蒙古呼盟人,博士研究生,主要从事矿井瓦斯吸附渗流理论方面的研究,(Tel)133********, (E2mail)chinalixc123@https://www.sodocs.net/doc/7512850217.html, 通讯联系人:聂百胜,副教授,(Tel)010-823756620,(E2mail)Bshnie@https://www.sodocs.net/doc/7512850217.html,

生物质与煤共热解特性研究

生物质与煤共热解特性研究 摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。 关键词:热重分析生物质煤热解共热解 随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。 1 生物质能的转化 生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。 固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。在生物质热化学转化过程中,热解是一个重要的环节。生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。生物质的组成、结构等对热解也都有影响。研究生物质与煤共同作为燃料所具有的特性可为更广泛的利用生物质能提供参考依据。 2 试验 2.1 试验仪器及性能指标 采用美国Perkin-Elmer公司生产的热重-差热联用仪(TG/DTA),其性能指标如下:

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

常用光学塑料性能

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5%

常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响

日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定

煤粉热解特性实验研究

第28卷第26期中国电机工程学报V ol.28 No.26 Sep.15, 2008 2008年9月15日 Proceedings of the CSEE ?2008 Chin.Soc.for Elec.Eng. 53 文章编号:0258-8013 (2008) 26-0053-06 中图分类号:TQ 530文献标识码:A 学科分类号:470?10 煤粉热解特性实验研究 魏砾宏1,李润东1,李爱民1,李延吉1,姜秀民2 (1.沈阳航空工业学院清洁能源与环境工程研究所,辽宁省沈阳市 110034; 2.上海交通大学机械与动力工程学院,上海市闵行区 200240) Thermogravimetric Analysis on the Pyrolysis Characteristics of Pulverized Coal WEI Li-hong1, LI Run-dong1, LI Ai-min1, LI Yan-ji1, JIANG Xiu-min2 (1. Institute of Clean energy and Environmental Engineering, Shenyang Institute of Aeronautical Engineering, Shenyang 110034, Liaoning Province China; 2. School of Mechanical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240, China) ABSTRACT: The pyrolysis characteristics of different particle size Hegang(HG) and Zhungaer(ZGE) coal were investigated by non-isothermal thermogravimetry in high purity argon. The results show that there are four stages (dehydration, holding, rapid weight-loss and slow weight-loss) during the non-isothermal weight loss process of different granularity coal powders, the differential thermo- gravimetry(DTG) curve has two weight loss peaks when temperatures lower than 1400℃. There was no differences in the weight-loss characteristics of various samples at the temperature below 400℃. For the pyrolysis characteristics of HG coal with rising heating-up rate , the initial release temperature decreases, the maximum weight loss rate and pyrolysis index D increase. Therefore the heating-up rate increase is favorable to improving pyrolysis characteristics of pulverized coal. In addition, comparison between similar particle size HG and ZGF coal at 10℃/min heating rate shows that the pyrolytic characteristics of HG coal with high ash and similar volatile is better than ZGE coal. KEY WORDS: pulverized coal; pyrolysis characteristics; particle size; thermogravimetric analysis 摘要:利用热天平,以高纯氩气为气氛气体,研究了细化鹤岗煤和准噶尔煤的热解特性。实验结果表明,不同粒度的细化和超细煤粉的热失重过程可以分为4个阶段,在1400℃之前热失重微分曲线有2个失重峰。室温~400℃,各样品的失重特性无明显区别。400~980℃,粒度对煤粉失重速率间存在较好规律性。升温速率对鹤岗细煤粉热解特性的影响表现在,随着升温速率的提高,挥发分的初析温度降低;热 基金项目:国家高技术研究发展计划基金项目(2002AA527051);辽宁省教育厅A类计划项目(2004D079)。 The National High Technology Research and Development of China (863 Programme)(2002AA527051).解最大失重速率增大,达到最大失重速率的温度升高,煤粉的热解特性指数D值增大,即升温速率的增加有利于细煤粉的热解。此外,在10℃/min加热条件下,对比了平均粒径基本相同的鹤岗煤和准噶尔煤的热解特性,发现挥发分含量接近,而灰分含量较高的鹤岗煤的热解特性明显优于准噶尔煤。 关键词:煤粉;热解特性;颗粒粒度;热分析 0 引言 煤的热解作为煤燃烧过程中的一个重要的初始过程,对煤粉着火有极大的影响,也影响到燃烧的稳定性及后期的燃尽问题。由于煤本身具有复杂性、多样性和不均一性,因此影响煤热解的因素繁多,如煤阶[1]、矿物成分和含量[2]、粒径[3-4]、升温速率[5]、温度[6-7]、停留时间[5]、压力[8-9]、煤的显微组分[10]、气氛[11]等。超细煤粉燃烧技术是目前一种重要的有效控制NO x排放的燃烧技术(在电站煤粉锅炉燃烧方面,将超细化煤粉定义为20μm以下的煤粉[12]),美国2000年清洁煤技术项目中将超细煤粉再燃作为降低燃煤NO x排放的主要技术之一。本文采用非等温热重分析方法,研究了粒度、升温速率和煤种对细化和超细化煤粉的热解特性的影响,由微分热重曲线计算热解反应动力学参数。 1 实验部分 1.1 样品的选取和制备 实验采用鹤岗(HG),准噶尔(ZGE)煤,经过碾磨,不进行筛分制成细化和超细化煤粉,原煤的煤质分析数据见表1。

神华煤特点

神华煤特点 6月7日,神华股份在港完成招股,以7.5港元的价格发行30.635亿H股,筹资229.76亿港元。6月15日,神华股份(01088 HK)首日上市交易,收于7.3元。 我们认为,神华上市对A股煤炭上市公司的影响主要体现在两个方面:一方面,神华通过上市在资金、市场拓展及企业形象等方面得到进一步加强,从而对现有的上市公司造成竞争压力;另一方面,神华作为煤炭行业的龙头,其上市定位将成为现有的十多家煤炭公司估值重要的参照系,从而引发重新定位和估值分化。 同质产品面临压力 神华股份历年煤炭业务收入占主营业务收入比重始终在70%左右,我们认为,上市后神华必然会在其原煤的生产、运输、销售及综合利用等方面加大投入,因此,在这些环节与神华存在竞争的产品或企业将首先感受到压力,由于资源开采企业的扩张能力还受到资源禀赋及国家政策的制约,因此细分行业之间尚存在一定的进入壁垒,目前与神华不存在明显同质性的产品或企业中短期内受到的影响不大。 资源性竞争加剧 神华股份的4大矿区横跨晋、陕、蒙三省区,目前的主产区为神东公司及准能公司。 神华的主要开采区域在陕晋蒙三省交界处的乌兰木伦河沿岸,随着资源条件及配套能力的变化,其新增投资的重心正日益向内蒙准格尔、伊金霍洛及山西保德地区倾斜。其2007年前的主要新增产能包括补连塔一带扩建至3000万吨、黑岱沟技改扩建至2000万吨等。在相应区域拥有矿井的煤炭上市公司仅伊泰股份一家,但在相近区域有开采项目的则包括兖州煤业、西山煤电及拟上市的大同煤业的母公司同煤集团。 对动力煤企业冲击较大 神华煤特点为低灰(8.0%左右)、特低硫(小于0.50%)、特低磷、特低氯和中高发热量(低位热值5600~6000Kcal/kg),其用户包括电力、冶金、建材等多个行业,主要作为动力煤出售,而基本没有冶金和化工的原料煤生产。 从神华动力煤与部分上市煤炭企业的商品煤性能比较可以看出,神华煤的低硫低灰优于几乎所有上市公司,这对电厂无疑具有较强的吸引力,但其缺点在于挥发分较高,不适合长时间储存,另外,发热量为中等。因此,仅从性能指标看,神华煤与其他优质动力煤各有长短。目前,神华煤最大的竞争优势在于其生产成本,由于生产工效在国内位居首位,加上产运销一体化的模式,使神华煤炭的生产成本远低于国有重点煤炭生产企业的平均水平。2003年原中央财政企业原选煤成本为128.04元/吨,而神东矿公司的煤炭完全成本仅为71.93元/吨。成本优势为神华煤在电煤价格谈判上留出了很大的余地,使其可以较为轻松地面对"煤电博弈"。 由于目前电煤仍供不足需,加之电煤价格的市场化改革仍在进行中,神华在电煤方面的成本优势还体现得并不明显。一旦电煤市场出现走平甚至下滑的趋势,神华的成本优势将直接转化为对其他电煤企业的压力。一般认为,由于优质动力煤资源的缺乏,动力煤市场疲软在

煤的种类及特性

一、煤的种类(按炭化程度分) 1. 泥煤(草煤、泥炭)8380~10500kJ/kg 2. 褐煤10500~16700kJ/kg 3. 烟煤21000~29400kJ/kg 4. 无烟煤(白煤)21000~25200kJ/kg 一、矿物原料特点 (一) 煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。 6.脆度 是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。 7.断口 是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。煤的原始物质组成和煤化程度不同,断口形状各异。

褐煤燃烧特性

褐煤燃烧特性 中国煤炭分类,首先按煤的挥发分,将所有煤分为褐煤、烟煤和无烟煤;对于褐煤和无烟煤,再分别按其煤化程度和工业利用的特点分为2个和3个小类;烟煤部分按挥发分>10%~20%、>20%~28%、28%~37和>37%的四个阶段分为低、中、中高及高挥发分烟煤。 一、燃煤产生烟尘的主要因素: 煤燃烧产生的烟有两种:一种是煤粉太细,直接被风力带出形成黑烟,这种情况较少;第二种是煤的挥发分高,还没有完全燃烧,就变成烟尘飞出去了,变成黑烟。 在燃烧制度和操作规程没有改变时,在设计燃用烟煤的锅炉燃烧褐煤或部分掺烧褐煤,与设计用煤偏差较大, 发热量低, 入炉煤的灰分、水分均高于设计煤种, 更由于炉膛截面积相对较小,在锅炉输出热功率相同时的烟气量相对大, 导致炉膛烟气速度相对高,造成燃烧不充分,形成黑烟。 二、褐煤主要特性: 1)热值低, 一般收到基低位发热值Qn e.t ar为8 370~ 16 750 kJ/kg, 即2 000~ 4 000 kcal/kg, 蒙东褐煤大致为3 000~ 4 200 kcal /kg。在锅炉保持同样蒸发量的条件下, 褐煤的燃料消耗量要比烟煤更多。由于褐煤热值低, 相同负荷下, 相比燃用烟煤其煤耗会增大。如果总燃煤量不增大, 锅炉出力可能相应降低。 2)水份大, 一般收到基水分Mar为20~ 40%,蒙东褐煤为28~ 32% 左右。在制粉系统中不易被干燥, 要求干燥介质的输入热量更高一些。 3)挥发份高, 一般干燥无灰基挥发分Vdaf为40~ 60% , 蒙东褐煤为45% 左右, 容易着火燃烧,但也容易引起堆放自燃;褐煤中挥发分析出温度点低,前期燃烧迅速,着火前移相对较多;同时,由于烟气量的增大,导致烟气流速增大,使得煤粉颗粒与碳颗粒在炉内停留时间减少,致使褐煤不充分燃烧,加剧污染物排放浓度; 4)易结渣, 一般灰渣软化温度t2 比较低, 蒙东褐煤t2 为1200e 左右; 褐煤的煤灰成分中多数表征为A l2O3 含量偏低、C aO偏高, 灰熔点及灰特性表征褐煤大多为易结渣煤种。 三、改善措施 1、燃料对锅炉的适应性

低挥发分无烟煤及其混煤燃烧性能研究

第26卷/2000年第1期湖南电力研究与试验低挥发分无烟煤及其混煤燃烧性能研究 黄’伟1,熊蔚立1,杨剑峰1,曹映春2 (1.湖南省电力试验研究院,湖南长沙410007;2.湖南省火电建设公司,湖南株洲412000) 摘要:采用热天平和一维火焰炉对耒阳低挥发分无烟煤及其混煤的着火、燃烧、燃尽 以及结渣特性等进行试验研究,分析了挥发分含量厦掺配比对煤燃烧性能的影响。根据 试验结果,运用模糊数学方法进行综合评判,确定了混煤的最佳掺配比,为混煤的合理 燃烧提供了科学依据。 关键词:无烟煤;混煤;燃烧特性;最佳掺配比 中图分类号:TK227.1文献标识码:A文章编号:1008—0198(2006)01—00ll-05 Studyoncombustioncharacteristicsoflow—gradeanthracite coalanditsmixedcoal HUANGWei‘,XIONGWei—lil,YangJian—Fen91,CAOYing—chun2 (1.HunanElectrlcPowerTestandResearchInstitute.Changsha410007.China:2.HunanThermal PowerConstructlonCompany,Zhuzhou412000,Chlna) Abstract:Thisarticleinvestigatesthecharacteristicofignition,combustion,burn-outandslagf。rmatlonaboutlow gradeanthraciteanditsmixedcoalsinLeiyang.Theinfluenceofvolatilecomponentandmixed—proportionforcoal combustionisanalyzed.Basedollthetestresult.theoptimizedmixed—proportionisdecidedbybluralgebramethod, provldingscienticalfoundationtoreasonablecombustionofmixedcoal. Keywords:anthracite;mixed—coal.combustioncharacteristic;optimizedmixed—proportion 电站锅炉燃煤的燃烧特性对机组的设计和运行有很大影响,燃烧器、炉膛和各级受热面的设计布置主要取决于燃料特性。由于无烟煤挥发分含量低,难以着火与稳定燃烧,炉膛型式及燃烧器的选择显得尤为重要。未阳电厂二期工程为2×300MW燃煤w型火焰锅炉,为充分利用湖南省的煤炭资源,设计燃用未阳本地低挥发分无烟煤。 l耒阳低挥发分无烟煤的燃烧特性 耒阳低挥发分无烟煤煤质特性如下: 工业分析:M.一8.11%,旭d一2.20%…A一24.89%,V女f一6.19%,Q。。。,一2l248kJ/kg。 元素分析~C一62.29%,H。,一1.08%~0=2.83%,Ⅳ。,一0.42%~S一0.38%。 灰熔点:t1—1260。C,£2—1315℃,f3—1415C。 灰成分:Fe:03—4.81%,CaO一3.4%,MgO= 收稿日期;2005—09—091.33蹦,Na20=1.20%,K:O一1.92%,si02=55.93%,A1203—23.98%,Ti02—1.49%。 1.1着火性能 根据西安热工研究院对国内20种动力用煤(包括无烟煤、贫煤、劣质煤、烟煤及褐煤)的反应指数及着火温度的测定结果,所得到的煤挥发分与煤反应指标和着火温度的回归分析结果,如表1所示。在实验室滴管炉上也进行了着火温度试验。结果与上述回归分析结果基本接近。 表1试验煤种及对比煤种着火性能数据煤种束阳煤金竹山煤晋东南煤永安煤 反应指教(RT)/C450435401515 着火温度(IT)/℃850836818974 着火距离(占全火焰)/蹦30.528.9234364由表1可见,未阳无烟煤属于最难燃的无烟煤之一,其着火性能比金竹山煤和晋东南无烟煤差,比福建永安煤略好。 ·1】‘

煤种分类及煤质特征

煤种分类及煤质特征 分为十四大类,24小类,大类为: 1)无烟煤:煤化程度最高,含碳量高达90%—98%,含氢量较少,一般小于4%。外观呈黑至钢灰色,因其光泽强,又称白煤。硬度高,不易磨碎。纯煤的真密度为1.4—1.9g/cm3,燃点高,火焰短,化学反应弱.主要生产氮肥和民用,少数电厂也用。. 2)贫煤:是煤化程度最高的烟煤,受热时几乎不产生胶质体,所以叫贫煤。含碳量高达90%—92%,燃点高,火焰短,发热量高持续时间长,主要用于动力和民用。 3)瘦煤:是煤化程度最高的炼焦用煤。特性和贫煤一样,区别是加热时产生少量的胶质体,能单独结焦。因胶质体少,所以称瘦煤。灰融性差,多用于炼焦。 4)1/3焦煤:介于焦煤、肥煤与气煤之间的含中等或较高挥发分的强粘结性煤。单独炼焦时,能生成强度较高的焦炭。

5)气肥煤:挥发分高、粘结性强的烟煤。单独炼焦时,能产生大量的煤气和胶质体,但不能生成强度高的焦炭。 6)1/2中粘煤:粘结性介于气煤和弱粘煤之间的、挥发分范围较宽的烟煤。 7)贫瘦煤:变质程度高,粘结性较差、挥发分低的烟煤。结焦性低于瘦煤。 8)焦煤:是结焦性最好的炼焦煤,也称主焦煤。中等挥发分,一般大于18%—30%,大多能单独炼焦。Y 值一般大于12%—25%,主要是炼焦用。 9)气煤:是煤化程度最底的炼焦煤,干燥无灰基挥发分均大于30%,胶质层最大厚度大于5—25mm,隔绝空气加热能产生大量煤气和焦油。主供炼焦,也作为动力煤和气化用煤。煤质低灰低硫,可选性好,是我国炼焦煤中储量最多的一种。 10)肥煤:中等煤化程度的烟煤,高于气煤。挥发分一般为24%—40%,胶质层最大厚度大于25mm,软化温度低,有很强的粘结能力,是配煤炼焦的重要成分。主要用于炼焦,也作动力用煤。

各种塑料燃烧特性

各种塑胶燃烧特性: 序号非透明塑料比重(G/CM)软化温度燃烧性自熄性火焰颜色燃烧味燃烧时特性 1.ABS 104 很容易非黄火带烟橡胶甜味软化变黑,起泡" 2.HDPE 120 容易非黄顶蓝火腊味溶时有着火漏滴 3.HIPS 75 容易非黄火带黑烟花香味溶化,起泡" 4.LOPE 容易非黄顶蓝火腊味溶时有着火漏滴 5.PA6 220 容易是黄边蓝火烧头发味溶时泡沫 6.PBT 225 容易大都是白光带烟有气味溶时有着火漏滴 7.PTEPC 260 容易是黄火有气味溶时有着火漏滴 8.POM 不容易非淡蓝火刺鼻,引起泪水溶时有着火漏滴" 9.PP 79-113 容易非黄顶蓝火腊昧溶时有着火漏滴 10.PPO 容易非黄火带烟甜花香乌黑残余物 11.PPS 282 因难是无火硫磺味烧黑起泡 12.UPVC 66-92 不很容易是黄火酸味软化变黑 序号透明塑料比重软化温度烧烧性自熄性火焰颜色燃烧味燃烧时特性 "13 GPPS 78-86 容易非黄火带黑烟花香味熔化,起泡" "14 PC 不很容易是黄火带烟电木味软化起泡,炭化" 15 PETPA 230 容易是光黄火甜酸味变黑有着火漏滴 16 PMMA 60-88 容易非黄顶蓝火带烟水果味溶化起泡 17 SAN 66-96 容易非黄火带烟花甜味变黑有泡 其它特性; 序号料名烘料温度(0C)烘料时间(hr)适当模温(0C)可塑化料温(0C)密度(g/cm3)收缩率(%)热变形温度(0C) 1.PVC(S) 60~70 1~2 50~70 140~180 / (~) N-A 2.PVC(H) 60~70 1~2 50~70 150~180 ()() N-A 3.LDPE 70~80 1~2 20~50 160~240 ()(~) 35-50 4.HDPE 70~100 1~2 20~70 200~280 ()(~) 40-75

印尼煤种特性

印尼煤的煤质分析:全水分27.74,灰分6,挥发分35.4,硫0.3,低位发热量4278Kcal。如用流化床锅炉燃烧此煤种,由于灰分太少,无法发挥流化床锅炉的优势,无法有效的传递热量,负荷肯定受影响,建议与其他物料或煤种掺烧。 流化床锅炉的掺烧方式大致有三种: 1、在印尼煤中掺烧石英砂,由于石英砂在高温下硬度非常大,会加剧受热面的磨损,最好不要采用。 2、如果贵厂还有链条炉或者附近有其他企业燃烧链条炉,可以将将链条炉渣掺烧到印尼煤中。链条炉渣的热值可以达到2000 Kcal左右。 3、在印尼煤中掺烧煤矸石,利用煤矸石的高灰分提高混合煤种的灰分比例。选择一种煤矸石:灰分73,挥发分20,低位发热量2231Kcal。将70%的印尼煤和30%的煤矸石混合后低位发热量为3664 Kcal,灰分为26.1,挥发分为30.78。经计算燃烧混合煤的锅炉热效率为88.7%,每小时燃煤量14.9吨(10.4吨印尼煤和4.5吨煤矸石)。 经过混合后的煤种品质可认为烟煤,完全适应471或478型流化床锅炉,但和燃用孟县煤有一些区别: 1、燃混合煤(低位发热量为3664 Kcal)的每小时煤量比用孟县煤(低位发热量5850 Kcal)大了60%。燃用孟县煤时需要适当调整一二次风量,保证煤与空气量相配合适。 2、燃烧不同煤种时循环流化床锅炉主循环回路和尾部对流

烟道的热量分配是用区别的。燃用低挥发分的孟县煤时,炉膛采用了较高的床温,因此进入尾部对流烟道的烟气温度高,携带的热量要比燃用混合煤多。燃用孟县煤时需要注意过热器气温和喷水量的调整。 济南锅炉厂设计处 2010年9月9日 根据锅炉专业通过丽村印尼保运人员了解,该煤种由于挥发份高,灰份低在炉子本身的燃烧调整上表现出来的主要特点如下: 1、具有较高的燃烧效率,非常容易燃尽,单从挥发份和灰份上讲类似于油页岩。 2、燃用此煤种很难蓄积料层,建立良好的物料循环,需要进行掺伴,1(印尼煤)/5(其他煤种)。 3、由于此煤种挥发份偏高会分较低,着火点低但同样其熔点也较低,表现出来的燃烧特性较粘,容易使落煤管、放渣管产生挂焦堵塞。 4、为了降低结焦的可能性保证锅炉的运行安全,床温控制较低一般不超过900度,对传热效率有一定的影响。 综上所述根据印尼煤的各种特性,我认为印尼煤进行掺伴燃烧具有较高的可行性,同时可以有效提高锅炉效率,与市场上低价位低热量、低挥发份的煤种进行掺伴,总体平衡经济性上应该占有一定的优势,但最佳的掺伴比例需要一定的时间段进行试烧

煤粉特性

1煤粉特性及自燃爆炸的条件 煤粉发生自燃和爆炸是由于煤的特性在加工成煤粉后所具有的特性 以及煤粉所处的环境条件所决定的。 1.1煤粉的流动性 它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此,制粉系统的严密性要好。 1.2煤粉的自燃与爆炸 积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中,煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤粉的爆炸。 影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。 一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。 煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。 煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在1.2~2kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气粉混合物温度越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在0.01~0.15s的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向外传 播而产生的很大的冲击力和声音。 潮湿煤粉的爆炸性较小,对于褐煤和烟煤,当煤粉水分稍大于固有水分时一般没有爆炸危险。 2制粉系统爆炸原因分析

煤的特性

煤炭指标定义 1、全水和内水 全水是煤的外在水分和内在水分之和。外在水分:在一定条件下煤样与周围空气湿度达到平衡时所失去的水分;内在水分:在一定条件下煤样与周围空气湿度达到平衡时所保持的水分。这两个指标对计算低位热值,影响很大,尤其是全水,1个全水影响低位热值大约60大卡。 2、灰分 煤在彻底燃烧后所剩下的残渣称为灰分。煤中灰分增加,发热量降低、排渣量增加,煤容易结渣;一般灰分每增加2%,发热量降低100kcz1/kg左右。 3、全硫 煤炭的硫含量。 4、挥发分 煤中有机质的可挥发的热分解产物。其中除含有氮、氢、甲烷、一氧化碳、二氧化碳和硫化氢等气体外,还有一些复杂的有机化合物。实验中将煤样在隔绝空气条件下高温加热,从煤中有机质分解出来的液体和气体的总量中减去水分,就得出挥发分。 5、固定碳 煤的固定碳是指煤在隔绝空气的条件下有机物质高温分解后剩下的残余物质减去其灰分后的产物,主要成分是碳元素。根据固定碳含量可以判断煤的煤化程度,进行煤的分类。固定碳含量越高,挥发分越低,煤化程度越高。固定碳含量高,煤的发热量也越高。 6、热值 7、灰渣特性 将煤灰与糊精混合塑成三角锥体,放在高温炉中加热,根据灰锥形态变化确定。 DT(变形温度):灰锥尖端开始变圆或弯曲时的温度; ST(软化温度):灰锥弯曲至锥尖触及托板或灰锥变成球形时的温度; HT (半球温度):灰锥形变至似半球形,即高约等于底长一半时的的温度; FT(熔化温度、流动温度)。灰锥熔化展开高度在1.5mm以下薄层时的温度。 煤灰是多种矿物质组成的混合物,这种混合物并没有一个固定的熔点,而仅有一个熔化温度的范围.开始熔化的温度远比其中任一组分纯净矿物质熔点为低.这些组分在一定温度下还会形成一种共熔体,这种共熔体在熔化状态时,有熔解煤灰中其他高熔点物质的性能,从而改变了熔体的成及其熔化温度. 煤灰的熔融性和煤灰的利用取决于煤灰的组成. 8、硬度(可磨系数) 煤的耐磨性、软硬程度,是指煤样破碎成粉的相对难以程度,是指煤能低抗外来机械作用的能力。用HGI表示。

农业废弃物混煤燃烧特性及污染物排放特性研究

农业废弃物混煤燃烧特性及污染物排放特性研究农业废弃物是重要的生物质资源,由于它具有资源丰富和利用过程环境友好等特点受到了世界各国的广泛关注。然而在目前的技术条件下农业废弃物混煤燃烧是大规模利用农业废物的方法之一,农业废弃物混煤燃烧不仅可以降低污染物的排放,并且可以高效的利用低热值的农业废弃物物,是一种高效且环保的获取能源的方法。由于农业废弃物混煤燃烧的现在技术条件限制和对燃烧特性认识的欠缺以及国内没有相关的扶植政策,使得混燃技术在中国并没有普及。 本文以此为背景,选用麦秆、玉米秆和稻壳三种典型的农业废弃物,研究农业废弃物混煤(无烟煤和褐煤)燃烧时的燃烧特性和污染物排放特性。使用德国NETZSCH公司的STA409C型热重分析仪对农业废弃物和煤样单独燃烧和混合燃烧时的燃烧特性进行了研究,考察了在不同混合比例和不同升温速率下的混合物的燃烧特性。结果表明,当农业废弃物掺混比为20%的时候混合物整体表现出煤样的特性,当掺混比升高到50%的时候混合物整体表现出生物质的特性。 升温速率的升高有利于混合物的燃烧。运用Coats-Redfern积分法求得动力学特性参数,结果表明农业废弃物挥发分燃烧阶段所需的活化能明显低于焦炭燃烧阶段更低于煤燃烧所需的活化能,当农业废弃物混煤燃烧时能明显降低煤燃烧所需的活化能,提高煤的燃烧性能。总的来说农业废弃物混煤燃烧能明显提高煤的燃烧特性使用管式炉进行燃烧过程中污染物排放的实验研究,主要针对SO2、NO和HCl这三种污染物进行了研究,实验中对农业废弃物和煤单独燃烧时的污染物排放特性进行了研究并考察了不同掺混比和不同炉温条件下的污染物排放特性。 结果表明相对于煤单独燃烧而言,农业废弃物混煤燃烧能降低SO2和NO的排

相关主题