搜档网
当前位置:搜档网 › 供水管道检漏的主要方法

供水管道检漏的主要方法

供水管道检漏的主要方法
供水管道检漏的主要方法

供水管道检漏的主要方法

简介:供水管道检漏的主要方法

关键字:检漏

由于人类对供水管道漏水的共识,先后研究了一些检漏方法,也研制了一些仪器。例如,在德国、英国等经济发达的国家通常采用的检漏方法有:音听检漏法,相关检漏法,漏水声自动监测法和分区检漏法等。前三种检漏是靠漏口产生的声音来探测漏点的,这对无声的泄漏就没有办法了。而分区检漏法是通过计量管道流量及压力来判别有无漏水存在,就是所谓的最小流量法。目前我国大城市已基本采用主动检漏法,地市级相当一部分在改变为主动检漏法,但县市级大部分仍在采用被动检漏法。在检漏方法之中绝大部分都使用音听检漏法,或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进行,许多水司会逐步引进更为先进的检漏仪器和采用更为有效和快速的检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。

音听检漏法

音听检漏法分为阀栓听音和地面听音两种,前者用于查找漏水的线索和范围,简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。

漏点预定位是指听漏棒、电子听漏仪或噪声自动记录仪来探测供水管道漏水范围的方法,根据使用仪器的不同,操作的方法也不尽相同,到目前止,实用的,有效诉,成本低的预定位技术主要有阀栓听音法,当然类同于GPL99、GPL95,包括PARMALOGA等方法,虽然也能用当其综合效果不好,而且成本高。

(1)阀栓听音法

阀栓跌间法是用听漏棒或电子放大听漏仪直接在管道暴露点(如消火检、阀门及暴露的管道等)听测由漏水点产生的漏水声,从而确定漏水管道,缩小漏水检测范围。金属管道漏水声频率一般在300~2500Hz之间,而非金属管道漏水声频率在100~700Hz之间。听测点距漏水点位置越近,听测到漏水声越大;反之,越小。

(2)地面听音法

当通过预定位方法确定漏水管段后,用电子放大听漏仪在地面听测地下管道的漏水点,并进行精确定位。听测方式为沿着漏水管道走向以一定间距逐点听测比较,当地面拾音器靠近漏水点时,听测到的漏水声越强,在漏水点在上方达到最大。

拾音器放置间距与管道材质有关,一般说来,金属管道间距为1~2米,而非金属管道为0.5~1米,水泥路面间距为1~2米,土路面为0.5米。

相关检漏法

相关检漏法是第三代技术,是世界上包括中国用的最多的先进、有效的一种精确确定漏点的检漏方法,特别适用于环境干扰噪声大、管道埋设深或不适宜用地面听漏法的区域。用相关仪可快速准确地测出地下管道漏水点的准确位置。

一套完整的相关仪主要是由一台相关仪主机(无线电接收机和微处理器等组成)、二台无线电发射机(带前置放大器)和二个高灵敏度振动传感器组成。其

工作原理为:当管道漏水时,在漏口处会产生漏水声波,并沿管道向远方传播,当把传感器放在管道或连接件的不同位置时,相关仪主机可测出由漏口产生的漏水声波传播到不同传感器的时间差Td,只要给定两个传感器之间管道的实际长度L和声波在该管道的传播速度V,漏水点的位置Lx就可按下式计算出来。

Lx=(L-V×Td)K2

式中的V取决于管材、管径和管道中的介质,单位为mKms,并全部存入相关仪主机中。

相关仪也经历了从低到高性能的发展过程,现代高性能的相关仪具有时间域和频率域(FFT)时实相关处理功能,同是具有高分辨率(0.1ms)、频谱分析及陷波、自动滤波、测管道声速和距离等功能,如德国SEBA的相关仪SEBADYNACO RR,新型相关仪CORRELUXPL都具备这些功能。

漏水声自动记录监测法

以德国SEBA泄漏噪声自动记录仪为例,德国SEBA的GPL99是由多台数据记录仪和一台控制器组成的整体化声波接收系统。当装有专用软件的计算机对数据记录仪进行编程后,只要将记录仪放在管网的不同位置,如消火检、阀门及其他管道暴露点等,按预设时间(如深义2∶00~4∶00)同时自动开K关记录仪,可记录管道各处的漏水声信号,该信号经数字化后自动存入记录仪中,并通过专用软件在计算机上进行处理,从而快速探测装有记录仪的管网区域内是否存在漏水。人耳通常能听到30dB以上的漏水声,而泄漏噪声自动记录仪可探测到10dB 以上的漏水声。

数据记录仪放置距离视管材、管径等情况而定,一般说来,金属管道可选2 00~400米的间距,非金属管道应在100之内的间距。

判别漏水的依据是:每个漏水点会产生一个持续的漏水声,根据记录仪记录的噪声强度和频繁度来判断在记录仪附近是否有漏水的存在,计算机软件自动识别并作二维或三维图。

分区检漏法

在管道听测漏水声时,一般说来,漏点大产生的漏水声比漏点小产生的漏水声要大一声,但漏点大到一定程度漏水声反而小了,因此,我们不能认为听到的漏水声大,其漏水量就大,有时实际情况正姨相反。分区检漏法使漏水点按漏水量大小分烦恼成为可能,并因此能做到:控制大的漏水点并首先被排除掉。

每个管网中都存在着多处小的漏水点和几处大的漏水点,经验表明,漏水总量的80%%是由20%%大漏水点造成的。因此,尽快排除大的漏水点才能更好地控制漏耗,降低漏失率,同时,分区检漏可大大提高检漏速度。

所谓分区检漏法是:是主要应用流量计测漏。首先关闭与该区相连的阀门,使该区与其他区分离,然后用一条消防水带一端接在被隔离区的消火栓上,另一端接到流量计的测试装置上;再将第二条消防水带一端接在其他区的消火栓上,另一端接流量计的测试装置上,最后开启消火栓,向被隔离区管网供水。借助于流量计,测量该区的流量,可得到某一压力下的漏水量。如果有漏水,可通过依此关K开该区的阀门,可发现哪一段管道漏水。德国SEBA的流量计TDM10-60

正是为分区检漏而设计的。

采用分区检漏法检漏的优点:

(1)能迅速排除大的漏水点;

(2)系统地测试,可进行管网状况分析;

(3)用所测流量与正常流量比较,可以发现漏水的早期迹象。

其不足之处就是可能会影响部分居民用水。另它装载在车上操作起来方便。区域泄漏普查系统法

区域泄漏普查系统法是一种目前最新型的,经过实践证明实用有效的一种方法。它在方法和技术上主要是集了上述2,3,4三种方法的优点,并应用了目前声学,电子,软件,通讯,信号处理,数字化处理等综合技术。

区域泄漏普查系统(以下简称多探头相关仪),由英国BADCOM公司研究生产,埃德尔集团自主开发中文操作界面,是目前世界上独一无二的:集漏水预定位和精定位于一体,仅一次检测即可完成一定区域内的漏点预定位和漏点精定位的仪器,而且对管道属性要求不高,可以在不清楚管材管径的情况下进行漏水定位。从而实现了从发现漏水点到漏水点精确定位,从一段管线到大面积的检漏普查,仅用一套仪器就可完成。

多探头相关仪,顾名思义多探头,从2个探头开始,最多可配置到192个探头;以实现区域漏水声音的记录。普通相关仪则是我们已熟知的,其原理是根据漏水声沿管道传播到传感器的时间差来确定漏点位置的,而多探头相关仪有强大的软件支持,可反复利用在测试中收集到的大量相关测漏数据来验证检测结果,因此大大提高了检测的效率和准确度。

多探头相关仪的记录仪(简称探头)具有防水功能,不用无线发射,可排除无线干扰和盲区,区域泄漏普查系统可对PVC管和水泥管进行检漏。

测试时间不受限制(从10秒~3小时),可在白天或夜间测试,避免了其它产品只能在夜间测试的局限性。

多探头相关仪既应用了世界的领先技术,也充分反映了实用性:可自动生成模拟管网图。

常用的几种氦质谱检漏方法(1)

书山有路勤为径,学海无涯苦作舟 常用的几种氦质谱检漏方法(1) 氦质谱检漏方法比较多,根据被检件的测量目的可以分为两种类型,一种是漏点型,另一种是漏率型;在实际检验过程中要根据检验的目的选用最合理的方法, 要以被检器件的具体情况而定,灵活运用各种检漏方法。 1、测定漏点型氦质谱检漏方法确定漏点型既是确定要检部件的具体漏点或漏孔的位置,在大部件或大型部件中较为常见,如卫星、导弹弹体、弹头、输气管道、气罐、油罐、锅炉等。 1.1、喷氦法氦质谱检漏方法这是最常用的一种方法,通常用于检测体积相对较小的部件,将被检器件和仪器连通,在抽好真空后,在被检器件可能存在漏孔的地方(如密封接头,焊缝等) 用喷枪喷氦,如图4 所示,假如被检器件某处有漏孔,当氦喷到漏孔上时,氦气立即会被吸入到真空系统,从而扩散到质谱室中,氦质谱检漏仪的输出就会立即有响应,使用这种方法应注意:氦气是较轻的惰性气体,在喷出后会自动上升,为了准确的在漏孔位置喷氦,喷氦时应自上而下,由近至远(相对检漏仪位置) ,这是因为在喷下方时氦气有可能被上方漏孔吸入,就很难确定漏孔的位置; 再者漏孔离质谱室的距离检漏仪反应时间也不同,因此喷氦应先从靠近检漏仪的一侧开始由近至远来进行。 图4 喷氦法检漏示意图 在检测较大部件时要借助机械泵进行真空预抽,就可以提高检漏效率和时间,如图5 所示,喷氦法在检查那些结构比较复杂的,密封口和焊缝又比较多而且挤在一起的小容器时,由于氦喷出后会很快扩散开来,往往不容易准确地确定漏隙所在的部位,要采取从不同角度喷氦,仔细观察反应时间上的差别和将已发现的漏孔用真空封泥暂时封起来等办法,就可以把漏孔逐个检出。

管道防腐层决陷检测技术

编号:AQ-JS-08239 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 管道防腐层决陷检测技术Detection technology of pipeline anti-corrosion coating settlement

管道防腐层决陷检测技术 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 管道内外实施腐蚀防护和控制,采用防腐蚀涂层是防护手段之一,效果除取决于涂料质量,涂覆工艺等因素外,涂覆的涂层质量检测也很重要。尤其对埋地管道,在不挖开覆上的情况下,要方便而准确地查出埋地管道走向、深度、防腐层漏蚀点和故障点的位置,必须采用检测仪器, (1)涂层针孔缺陷的高压电火花检漏方法。高压电火花检测是国内外广泛采用的检测方法。这一方法易于操作,反应直观,工作效率高,且对涂层本身没有破坏,属于无损检测这一范畴。 电火花检漏仪亦称涂层针孔检测仪,它是用来检测油气管道、电缆、搪瓷、金属贮罐,船体等金属表面防腐蚀涂层施工的针孔缺陷以及老化腐蚀所形成的微孔、气隙点。它已成为石油工程建设质量检验评定的专业工具之一,这类仪器的工作原理基本相同,只是在内部线路、外形、可靠性等方面不尽相同,根据目前防腐蚀涂层

的规范和要求,这类仪器的研制逐渐趋向交直流两用;高压输出连续可调;电压显示为数字显示;运用防腐蚀层以及输出高压范围更宽,并实现针孔漏点的计数、打标新功能。 ①检测原理金属表面防腐蚀绝缘涂层过薄、漏铁微孔处的电阻值和气隙密度都很小,当检漏仪的高医探极经过针孔缺陷处时,形成气隙击穿产生电火花放电,同时给检漏仪的报警电路产生—个脉冲电信号,驱动检漏电路声光报警。 ②SL系列的技术指标、结构和使用方法 a.SL系列电火花检漏仪的主要技术指标 (a)测量防护层厚度范围A型仪器为0.03~3.5mm;B型仪器为3.5~10.0mm。 (b)输出高压A型仪器为0.50~15.0kV;B型仪器为15.0~36.0kV。 (c)电源交流(220±5%)V或机内直流,A型仪器为6V;B型仪器为8.4V。 (d)功耗1mm时,V=7843(6—1)

PET瓶封盖密封性检测方法

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/5a4100801.html,) PET瓶封盖密封性检测方法 本文主要介绍PET饮料瓶盖密封性的检验指标和检验方法。 1.检验方法 1)往水罐注入水,确保当瓶放入水罐时水位浸过瓶盖; 2)对于PET瓶,将瓶盖连同瓶口在瓶颈位置切割下来,用专用夹具密封; 3)将气管与穿孔头连接,将样品浸入水罐,合上仪器盖,检查盖是否锁好; 4)将仪器底座前面的压力表的红色指针复位至零; 5)将选择开关向右打到“Test”位; 6)如发现瓶盖裙脚处有气泡,立即将选择开关向左打到“Hold”位(以便观察漏气情况)或打到“Vent”位使瓶压减压至零,记录压力表中红色指针所指示的压力; 7)如瓶盖裙脚处无气泡,压力读数会持续上升,直至达到压力设定值; 8)将选择开关向左打到“Vent”位使瓶压减压至零,松开仪器盖,从水罐中取出样品; 9)拆下穿孔头上的气管,逆时针旋出穿孔头,取出样品。

对包装物进行封盖密封性测试的频率受许多因素影响,其中包括:封盖机的工作状况、封盖速度、盖和瓶的供应商的数量、封盖机的防护保养周期等。 2.我们提出以下的测试频率及方法供参考: 1)每班开始时,从每个封盖头提取3个被测样品,目视检测所有的样品的封盖位置。先用KZJ-SST-2封盖密封性测定仪(以下简称KZJ-SST-2)鉴定每个封盖头下取来的其中一个样品的封盖密封性并记录结果,发现哪个封盖头下的样品检测结果不合格,工作人员必须对该封盖头的剩余2个样品进行测试,如果剩余的两支中任何一只的测试结果不合格,那么就有必要对这个封盖头进行校正工作。 2)每次封盖头调节后,应取样品进行测试。 3)当更换使用新的瓶或瓶盖时,或者使用从不同的供应商购

真空检漏常用方法和技巧

真空检漏1 一、概述1.概漏的基本概念真空检漏就是检测真空系统的漏气部位及其大小的过程。漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。漏率,即单位时间内流过漏孔(包括间隙)的气体量。2.漏孔、漏率及其单位真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小。所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。用漏率表示漏孔大小时,如果不加特殊说明,则是指在漏孔入口压力为×105Pa,出口压力低于×103Pa,温度为296士3K的标准条件下,单位时间内流过漏孔的露点温度低于248K的空气的气体量。漏率的单位是帕斯卡×立方米/秒,记为Pam3/s。为了方便,有时用帕斯卡×升/秒,记为PaL/s。3.最大容许漏率真空系统漏气是绝对的,不漏气是相对的在真空检漏技术中所指的“漏”是和最大容许漏率的概念联系在一起的。对于动态真空系统,只要其平衡压力能够达到所要求的真空度,这时即使存在着漏孔,也可以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。动态真空系统的最大容许漏率qLmax应满足qLmax≤1/10PwS (1) 式中Pw----系统工作压力S----系统的有效抽速对于静态真空系统,要求在一定时间内,其压力维持在容许的压力以下,这时即使存在着漏孔,同样叮以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。如果要求在时间t内,容积为V的系统的压力由p 升至pt,则其最大容许漏率qLmax应满足qLmax≤(pt-p)V/t (2) 各种真空设备的

供水管道泄漏检测及相关仪的原理与使用

供水管道泄漏检测及相关仪的原理与使用 (南通市自来水公司 徐少童) 摘 要 介绍了相关仪的基本原理,使用方法等 关键词 相关 数字滤波 噪声 引言 随着我国的经济建设的发展,水资源短缺越来越成为限制我们发展的瓶颈之一,如何解决这个问题已经被逐步提到了战略高度,因此,合理利用水资源,降低漏损就成了我们水利工作者的重中之重。 减少漏损就要有相应的方法,目前我国大部份地区的检漏手段还停留在几十年前的水平,而国外在近二三十年则有了很大的发展,我们要做好这项工作就必须了解他们的技术,并能够最终掌握。 当前,简陋技术最先进的设备当属相关仪了,国外已有普通相关仪,多探头相关记录仪等多种产品,但究其根本,原理都是一样的,本人经过多方学习以及查阅相关资料,对其原理有了进一步的认识,下面就先从相关仪的基本原理说起。 一. 相关仪的基本原理 当管道发生泄漏时,能够产生比普通水声频率高较多的声压波沿管道传播,泄漏噪声频率高低主要取决于泄漏点的大小,泄漏噪声传播速度主要取决于管道直径和管材;通过放置在管道两端(泄漏点包围在中间)的振动传感器或声发射传感器测量泄漏信号,由于泄漏点可能位于管道不同位置,因此泄漏声传播到达两个传感器的时间不同,利用两列信号的互相关分析,一般即可确定泄漏噪声到达两个传感器的时间差。根据该时间差,通过两个传感器间的距离和声波在该管材中的传播速度,即可计算出泄漏点距两个传感器的距离。 设)(),(t y t x 为所测量的两列信号,则其相关函数计算公式如下: )()()(1 lim )(0τττ-=-=?∞→yx T T xy R dt t x t y T R 若信号为周期信号或一段信号可以反映信号全部特征,则可以采用一个共同周期或一段信号内的均值代替整个历程的平均值。对于泄漏声波信号,只要采集的两列信号均覆盖了在500m 以内泄漏声传播的全过程即可,不必无限制采集。这样,互相关函数计算公式可如下近似: )()()(1 )(max 0max τττ-=+=?yx T xy R dt t y t x T R

桩基检测的7种方法

桩基检测的7种方法 桩基检测,分为桩基施工前和施工后的检测:施工前,为设计提供依据的试验桩检测,主要确定单桩极限承载力;施工后,为验收提供提供依据的工程桩检测,主要进行单桩承载力和桩身完整性检测。 桩基检测的7种方法 1单桩竖向抗压静载试验 单桩竖向静载荷试验是指将竖向荷载均匀的传至建筑物基桩上,通过实测单桩在不同荷载作用下的桩顶沉降,得到静载试验的Q—s曲线及s—lgt等辅助曲线,然后根据曲线推求单桩竖向抗压承载力特征值等参数。 目的确定单桩竖向抗压极限承载力;判定竖向抗压承载力是否满足设计要求;通过桩身应变、位移测试,测定桩侧、桩端阻力,验证高应变法的单桩竖向抗压承载力检测结果。 2单桩竖向抗拔静载试验

在桩顶部逐级施加竖向抗拔力,观测桩顶部随时间产生抗拔位移,以确定相应的单桩竖向抗拔承载力的试验方法。 目的确定单桩竖向抗拔极限承载力;判断竖向抗拔承载力是否满足设计要求;通过桩身应变、位移测试,测定桩的抗拔侧阻力。 3单桩水平静载试验 采用接近水平受力桩的实际工作条件的方法确定单桩水平承载力和地基土水平抗力系数或对工程桩水平承载力进行检验和评价的试验方法。单桩水平载荷试验宜采用单向多循环加卸载试验法,当需要测量桩身应力或应变时宜采用慢速维持荷载法。 目的确定单桩水平临界和极限承载力,推定土抗力参数;判定水平承载力或水平位移是否满足设计要求;通过桩身应变、位移测试,测定桩身弯矩。 4钻芯法 钻孔取芯法主要是采用钻孔机(一般带10mm内径)对桩基进行抽芯取样,根据取出芯样,可对桩基的长度、混凝土强度、桩底沉渣厚度、持力层情况等作清楚的判断。

目的测检灌注桩桩长、桩身混凝土强度、桩底沉渣厚度,判断或鉴别桩端持力层岩土性状,判定桩身完整性类别。 5低应变法 低应变检测法是使用小锤敲击桩顶,通过粘接在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,频率信号,从而获得桩的完整性。 目的检测桩身缺陷及其位置,判定桩身完整性类别。 6高应变法 高应变检测法是一种检测桩基桩身完整性和单桩竖向承载力的方法,该方法是采用锤重达桩身重量10%以上或单桩竖向承载力1%以上的重锤以自由落体击往桩顶,从而获得相关的动力系数,应用规定的程序,进行分析和计算,得到桩身完整性参数和单桩竖向承载力,也称为Case法或Cap-wape法。 目的判定单桩竖向抗压承载力是否满足设计要求;检测桩身缺陷及其位置,判定桩身完整性类别;分析桩侧和桩端土阻力;进行打桩过程监控。 7声波透射法

密封性检测方法概述-软包装行业

密封性检测方法概述-软包装行业

包装的密封性能是关乎包装内容物质量的关键因素,这是因为包装的密封性决定了成品包装独立于外界环境的程度,若包装的密封性比较差,包装内部的气体含量或成分则易发生变化,如包装外部的气体渗透进包装内部或包装内部充填的气体散失,若包装内部含有液体成分还易出现漏液等问题,上述现象均可引起产品质量的降低。包装的密封性问题一般比较隐蔽,无法用肉眼辨识,故很难在出厂前发现并及时处理,往往是在出厂之后的长期流通、储存过程中因包装缓慢漏气、漏液,引发内容物出现发霉、结块、胀袋等质量问题,企业因此而承受较大的风险和经济损失。故包装的密封性问题一直是困扰企业的一大难题。 软包装行业密封性检测适用标准: 目前国内常用的包装袋密封性检测主要标准是《GB/T 15171 软包装袋密封性能试验方法》 ,该标准测试方法采用负压法测试原理,即抽真空法测试。试验原理是:通过对设备的真空室抽真空,使浸在真空室水中的试样产生内外压差,查看试样是否出现漏气的情况,以此判断试样的密封性能;或通过对真空室抽真空,使试样产生内外压差,通过观察试样膨胀及释放真空后试样形状恢复情况,判断试样的密封性能。

该测试方法适用的包装类型: 适用于玻璃瓶、管、罐、盒等的整体密封性试验。 适用于塑料袋、瓶、管、罐、盒等的整体密封性试验。 适用于金属瓶、管、罐、盒等的整体密封性试验。 适用于纸塑复合袋、盒类包装的密封性测试。 密封性检测试验仪器介绍: MFY-01密封试验仪(Labthink兰光)专业适用于食品、制药、医疗器械、日化、汽车、电子元器件、文具等行业的包装袋、瓶、管、罐、盒等的密封试验。亦可进行经跌落、耐压试验后的试件的密封性能测试。通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,为确定相关的技术要求提供科学的依据。 密封试验仪,又可称为密封仪、密封性测试仪、包装袋密封检测仪、塑料瓶密封测定仪、瓶盖密封性试验仪等。

供水管道检漏的主要方法和仪器

供水管道检漏的主要方 法和仪器 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

谈我国供水管道检漏的主要方法和仪器 高伟(埃德尔集团) 发布时间:2006-12-22 一﹑前言 淡水是人类生存最基本的条件之一,水资源贫乏和环境污染是制约城镇供水的主要因素。供水管道漏水是对宝贵水源的浪费,他不仅增加了净水成本,而且还额外地增大了供水设施的投资费用,同时,也导致一些次生灾害。因此,保护水源,节约用水,检漏降损,已成为全人类的共识。 二﹑我国供水管道漏失状况 据中国水协1998统计,我国城市水司平均漏失率为12~13%,如果按单位管长单位时间的漏水量统计,则我国的漏水量远大于经济发达国家,具体数字见表一: 表一:单位比漏水量统计表 其中,漏失率=漏水量/供水量×100%; 单位比漏水量=年漏水量/(365×24×管长), m3/h/km,即为单位管长单位时间的漏水量。

目前我国多数城市采用被动检漏法或以此法为主,而地下管道漏水的规律是由暗漏到明漏,有时暗漏的水流入河道、下水道或电缆沟后始终成不了明漏,因此我国城市水司降低漏耗的潜力还相当大。做好检漏工作可极大地提高有效供水能力,对节约用水,提高水司的社会效益和经济效益具有重大意义。 三﹑供水管道漏水声的种类及传播 供水管道担负的任务是将净水输送到用户,以满足人们最基本的需要。然而,供水管道也会发生漏水情况,当发生时,喷出管道的水与漏口摩擦,以及与周围介质等撞击,会产生不同频率的振动,由此产生漏水声。漏水声的种类通常可分为三种:(1)漏口摩擦声:是指喷出管道的水与漏口摩擦产生的声音,其频率通常为300~2500Hz,并沿管道向远方传播,传播距离通常与水压﹑管材﹑管径﹑接口﹑漏口等有关,在一定范围内,可在闸门﹑消火栓等暴露点听测到漏水声。 (2)水头撞击声:是指喷出管道的水与周围介质撞击产生的声音,并以漏斗形式通过土壤向地面扩散,可在地面用听漏仪听测到,其频率通常为100~800 Hz之间。 (3)介质摩擦声:是指喷出管道的水带动周围粒子(如土粒,沙粒等)相互碰撞摩擦产生的声音,其频率较低,当把听音杆插到地下漏口附近时,可听测到,这为漏点最终确认提供了依据。 四﹑供水管道检漏的主要方法 由于人类对供水管道漏水的共识,先后研究了一些检漏方法,也研制一些仪器,例如,在德国﹑英国等经济发达国家通常采用的检漏方法有:音听检漏法,相关检漏法,漏水声自动监测法和分区检漏法等。前三种检漏法是靠漏口产生的声音来探测漏点的,这对

埋地管道防腐层检测技术

一、埋地管道腐蚀评价与防腐层检测技术 1、1防腐层检测技术及仪器的现状 1) 变频—选频法 上世纪90年末,东北输油管理局与邮电部第五研究所结合我国输油行业的管理模式,完成了长输管线上以测量单元管段防腐绝缘电阻、评价防腐层完好状况方法的研究。该方法就是将一可变频率电信号施加到待测管道的一端,从另一端检测信号的衰减幅度,通过调节信号的频率使信号衰减达到一定范围(23dB)时,根据信号频率的高低来推断防 腐层绝缘电阻值,因此称为“变频—选频法”。此方法被列入石油 天然气公司的SY/T5919-94标准,为我国管道防腐层评价的后续工 作奠定了基础。变频-选频测量方法特点就是:适合于长输管道的 检测,具有使用简便,检测费用较低等优点;但该方法对操作人员 要求较高,在使用之前需设定一些参数,较为复杂;所需与测量仪 配合的设备较多;只能对单元管道(通常为1km)及有测试桩的管道 进行绝缘电阻测量,无法判断破损点位置;当管段中有支管、阳极 时须通过开挖检测点来分段检测。 2)直流电压梯度(DCVG)技术 直流电压梯度技术的代表仪器就是加拿大Cath-Tech公司生产的DCVG。它可对有阴极保护系统的管道防腐层破损点进行检测。其原理就是:在管道中加入一个间断关开的直流电信号,当管段有破损点时,该点处管道上方的地面上会有球面的电场分布。DCVG使用毫伏表来测量插入地表的两个Cu/CuSO4电极之间的电压差。当电极接近破损点时,电压差会增大,而远离该点时,压差又会变小,在破损点正上方时,电压差应为零值,以此便可确定破损点位置。再根据破损点处IR 降可以推算出破损点面积。破损点形状可用该点上方土壤电位分布的等位线图来判断。 仪器优点:(1)灵敏度很高,可以精确地定位防腐层破损点; (2)采用了非对称的交变信号,消除了其她管中电流、土壤杂散电流的干扰,测量 准确率很高; (3)可以区别管道分支与防腐层的破损点; (4)可以准确估算出防腐层面积。并且也能对防腐层破损的形状进行判断。 缺点就是:设备价格较贵、测量工作劳动强度大,须配合定位仪使用;由于电极与地面直接接触,因此当地面介质导电性差时,测量结果不稳定;通常仅适用于有外加电流阴极保护系统的管线,对于那些没有阴保系统的管线可通过直流发电机建立临时阴极保护系统完成检测;不同的土壤环境会对检测信号产生一定的影响。 3)皮尔逊法(人体电容法) 也属于地面电场法的范畴,目前国产检测仪器多采用该方法。其工作原理就是:给埋地管道发送特定频率的交流电信号,当管道防腐层有破损点时,在破损处形成电流通路,产生漏电电流,向地面辐射,并在漏点上方形成地面电场分布。用人体做检漏仪的传感元件,检测人员在漏点附近时,检测仪的声响与表头都开始有反应,在漏点正上方时,仪器反应最强,从而可准确地找到防腐层的破损点。

常见包装袋密封性检测标准方法

常见包装袋密封性检测标准方法 包装袋广泛应用于食品包装以及药品包装的各个领域,以其包装成本经济、易于加工、易于控制、易于生产等优势而成为目前市场上极为普遍的一种包装形式,包装袋的密封性能、封口强度是包装袋质量的重要指标,其关乎着包装内容物的产品质量、保质期,同时也是产品流通环节的必要保障。 而在包装袋生产过程中由于众多因素的影响,可能会产生封合时的漏封、压穿或材料本身的裂缝、微孔,而形成内外连通的小孔。这些都会对包装内容物产生很不利的影响,特别是食品、医药包装、日化等行业,密封性将直接影响产品的质量。密封性不好是造成日后渗漏腐败的主要原因。其中风琴袋的包装特别是四层处最容易出现泄漏。广州标际对密封性测试的相关标准可见详表1:表1 密封性测试的有关标准 密封性测试具体方法各不相同,国内生产实践中常用GB/T 15171-1994标准。 1.着色液浸透法 这种方法通常用来检验空气含量极少的复合袋的密封性。方法如下:将试验液体(与滤纸有明显色差的着色水溶液)倒入擦净的试验样袋内,密封后将袋子平放在滤纸上,5min后观察滤纸上是否有试验液体渗漏出来,然后将袋子翻转,对其另一面进行测试。 2.水中减压法(真空法) 这种方法又包括真空泵法和真空发生器法,通常用来检验空气含量较多的复合袋。

(1)真空泵法 测试装置主要由透明耐压容器、样品架以及真空系统(真空泵、真空表等)组成。这种方法有如下缺点:形成真空的时间长,且不稳定;密封性能不好;压力为指针式显示,精度偏低。因此现在已逐步被淘汰。 (2)真空发生器法 这种方法目前在软包装行业内应用广泛,它利用射流原理,正压变负压形成稳定的空气源,高精度电子压力传感器实时显示测试容器内的真空度,微电脑自动控制,试验参数(真空度和保持时间)可随意设定,达到真空所需时间短,真空保持平稳,密封性能好。 3.测试步骤 根据GB/T 15171-1994软包装件的密封性能试验方法:在水的作用下,外层材料的性能在试验期间是否会发生变化,如外层采用塑料薄膜的包装外,可以通过对真空室抽真空,使浸在水中的试样产生内外压差,以观测试样内气体外逸或水向内渗入情况,以此判定试样的密封性能。 参照GB/T 15171-1994标准,在真空室内放入适量的蒸馏水,将包装袋浸入水中,袋子的顶端与水面的距离不得小于25mm.盖上真空室的密封盖,设置真空度,并保持30s。在此期间如有连续的气泡产生,则为漏气,孤立的气泡不视为泄漏。 需要说明的是,该设备的真空度数值0~-100Kpa可以设定,此外该设备还具有自动保压、补压功能,达到设定的压力后自动计时开始保压,保压时间到后如不漏气则为合格产品,若未达到设定的压力与时间即出现冒泡现象,则包装袋视为不合格,可手动泄压,打开密封盖,更换试样袋,重新设置真空度和保持时间。所设置的真空度值根据试样的特性(如所用包装材料、密封情况等)或按有关产品标准的规定确定,但不得因试样的内外压差过大使试样发生破裂或封口处开裂。 4. 泄漏常见原因及解决方法(见表2) 表2包装袋泄漏常见原因及解决方法

机械密封研磨及检测方法

第7章机械密封研磨与抛光 201、密封摩擦副研磨与抛光的作用? 我们在设备密封维修中经常遇到密封的摩擦副变形,为了保证摩擦副的平面度,就需要进行研磨和抛光工作。研磨与抛光加工一般是用磨料、磨液及磨具对时密封的动静环表面进行研磨与抛光后获得预定的形状和表面粗糙度。它是一种高精度的加工方法,也是作为高硬度材料的一种加工方法。机械密封摩擦副的表面的平面度要求高,粗糙度小,采用一般的加工方法很难达到,所以就需要用研磨和抛光的方法解决。 研磨与抛光加工是将工件表面与磨具接触,两者之间加入研磨剂,在运动过程中,从工作表面去除极薄的面层,从而获得高精度的表面。研磨抛光改善了密封环工作端面的组织,为密封提供一个耐磨损的表面,其作用是: ①使摩擦系数减小, ②表面强度得到相应得提高 ③提高耐腐蚀性 ④表面美观它能提高表面反光系数,便于用光学平晶检测平面度。研磨抛光改善了密封环工作端面的组织,为密封提供一个耐磨损的表面,其作用是:使摩擦系数减小,表面强度得到相应得提高提高耐腐蚀性,表面美观它能提高表面反光系数,便于用光学平晶检测平面度。

202、维修中常用磨料有哪些种? 各种磨料具有不同的特性,研磨密封环常用磨料的有: ①氧化铝系列氧化铝系列磨料有白色的结晶的纯氧化铝(AI203)俗称百刚玉,(Cr203)称为铬刚玉,常用的是百刚玉,初研时采用百刚玉和碳化硼,粒度在W14-W40,半精研用W14-W7,精研用W5-W1 ②炭化物系主要有纯炭化硅(Sic)为绿色,当有微量元素时为黑色,还有炭化硼(BC)为黑色硬度超过炭化硅而低于金刚石。还有金刚石系。 正确选择磨料非常重要,根据修磨的工件的硬度来选择磨料。磨料的硬度决定加工密封环的速度和表面粗糙度。常用的是,百刚玉和碳化硼。初研时采用粒度在W14-W40,半精研用W14-W7,精研用W5-W1。 203、常用的磨液和磨具有哪些? 磨液磨料需要用磨液来作载体,将磨料悬浮在其中,这需要按一定的比例配制成磨液即称为研磨剂,研磨剂或抛光剂。它具有一定的润滑、减少摩擦、冲洗、减少热量的作用。一般常用的有:洁净的水、轻质煤油、菜子油及酒精,还要添加一定的添加剂,主要目的就是防止研磨的表面产生划痕。它的作用是: ①增加润滑,避免磨粒划伤密封环表面。 ②冷却密封环、避免热变形、防防蚀。

加工中心定位精度检测的七种方式

加工中心定位精度检测的七种方式 数控加工中心定位精度,是指机床各坐标轴在数控装置控制下运动所能达到的位置精度。数控加工中心的定位精度又可以理解为机床的运动精度。普通机床由手动进给,定位精度主要决定于读数误差,而数控机床的移动是靠数字程序指令实现的,故定位精度决定于数控系统和机械传动误差。机床各运动部件的运动是在数控装置的控制下完成的,各运动部件在程序指令控制下所能达到的精度直接反映加工零件所能达到的精度,所以,定位精度是一项很重要的检测内容。 1、直线运动定位精度检测 直线运动定位精度一般都在机床和工作台空载条件下进行。按国家标准和国际标准化组织的规定(ISO标准),对数控机床的检测,应以激光测量为准。在没有激光干涉仪的情况下,对于一般用户来说也可以用标准刻度尺,配以光学读数显微镜进行比较测量。但是,测量仪器精度必须比被测的精度高1~2个等级。 为了反映出多次定位中的全部误差,ISO标准规定每一个定位点按五次测量数据算平均值和散差-3散差带构成的定位点散差带。 2、直线运动重复定位精度检测 检测用的仪器与检测定位精度所用的相同。一般检测方法是在靠近各坐标行程中点及两端的任意三个位置进行测量,每个位置用快速移动定位,在相同条件下重复7次定位,测出停止位置数值并求出读数最大差值。以三个位置中最大一个差值的二分之一,附上正负符号,作为该坐标的重复定位精度,它是反映轴运动精度稳定性的最基本指标。 3、直线运动的原点返回精度检测 原点返回精度,实质上是该坐标轴上一个特殊点的重复定位精度,因此它的检测方法完全与重复定位精度相同。 4、直线运动的反向误差检测 直线运动的反向误差,也叫失动量,它包括该坐标轴进给传动链上驱动部位(如伺服电动机、伺趿液压马达和步进电动机等)的反向死区,各机械运动传动副的反向间隙和弹性变形等误差的综合反映。误差越大,则定位精度和重复定位精度也越低。 反向误差的检测方法是在所测坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为7次),求出各个位置上的平均值,以所得平均值中的最大值为反向误差值。 5、回转工作台的定位精度检测

油罐检漏检测

油罐检漏离线检测 油罐检漏离线检测 一. 油罐底板试漏方法 油罐底板在建成和维修以后必须进行检漏。常用的方法有:真空箱试漏法、漏磁扫描探伤、气体检漏和充水试压等方法。 1.真空试漏法 用薄板做成无底的长方形盒子(图),盒顶部严密地镶嵌一块厚玻璃,盒底四周边沿包有不透气的海绵橡胶,使盒子严密地扣在底板上。盒内用反光的白漆涂刷。盒子上装抽气短管和进气阀。试验焊缝时,先在焊缝上涂肥皂水,再将真空盒扣上,用真空泵将盒内抽成55kPa的真空度,观察盒内有无气泡出现,如有气泡,应作出标志加以焊补。 常被用来检查焊缝,特别是圆周焊接部分,不常用于整个罐底。 2. 气体检测方法 氦检漏仪也被用于埋地管线和罐底的检漏,它检测埋地管线时,不用清扫油品。罐底的检测步骤为,首先将氦气注入到罐底以下,然后在罐内侧检测是否存在氦气。这种办法被证明在泄漏点定位十分有效。但是它需要在罐底钻孔以注入气体。最重要的问题是气体必须能够扩散到罐底的所有区域,但是由于阻碍和渗透的不均匀性,这是不可能的。气体的扩散会遇到两个难题:①罐壁的重量会使气体往罐边缘部分的扩散很困难,②当一种粘性产品曾经在罐底渗漏,它会阻止气体的运动。气体扩散的难题会导致不能检测出所有的泄漏点。 3.氨气渗漏法 ①沿罐底板周围用粘土将底板与基础间的间隙堵死,但应对称地留出4~6个孔,以检查氨气的分布情况。②在底板中心及周围应均匀地开出3~5个直径18~20mm的孔,焊上直径20~25mm的钢管,用胶管接至氨气瓶的分气缸。③在底板焊缝上涂以酚酞—酒精溶液。其成分(质量比)为:酚酞4%,工业酒精40%,水56%。天气寒冷时,应适当提高酒精浓度。④向底板下通入氨气,用试纸在粘土圈上的孔洞处检查,验证氨气在底板下已分布均匀后即开始检查焊缝表面,此时在焊缝上刷酚酞—酒精溶液,如呈现红色,即表示有氨气漏出,用铅油标出漏处。⑤底板通氨气时,附近严禁动火。底板补焊前,须用压缩空气将氨气吹净,并经检查合格后方可进行补焊。 4. 水压试验中的泄漏检测 水压试验是一种结构试验,仅仅是在靠近罐壁的地方进行了大维修时才用。染料可以用来帮助人们定位泄漏点。但是即使在水里添加了染料,也不能当作检漏。大部分罐底的泄漏渗透不到罐壁以外,而是渗透到罐底土壤下面,在罐外根本看不出来。在水压试验中进行质量测量使其变成一种有效的检漏方法。用2~3天的时间,就可以确定油罐是否存在泄漏。水压试验中可仅用6~10英尺的水。 5. 漏磁扫描探伤 金属储罐底板的腐蚀状况,可用专用的检测仪器——磁涡流扫描仪,其原理是漏磁法,仪器上装有强磁铁,磁铁之间装有磁场强渡传感器,当底板有缺陷时,磁场分布就会发生变化,传感器就能检测到这种磁场变化。该仪器能够准确测定腐蚀的深度、面积以及裂纹的长度。

供水管道检漏的主要方法

供水管道检漏的主要方法 简介:供水管道检漏的主要方法 关键字:检漏 由于人类对供水管道漏水的共识,先后研究了一些检漏方法,也研制了一些仪器。例如,在德国、英国等经济发达的国家通常采用的检漏方法有:音听检漏法,相关检漏法,漏水声自动监测法和分区检漏法等。前三种检漏是靠漏口产生的声音来探测漏点的,这对无声的泄漏就没有办法了。而分区检漏法是通过计量管道流量及压力来判别有无漏水存在,就是所谓的最小流量法。目前我国大城市已基本采用主动检漏法,地市级相当一部分在改变为主动检漏法,但县市级大部分仍在采用被动检漏法。在检漏方法之中绝大部分都使用音听检漏法,或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进行,许多水司会逐步引进更为先进的检漏仪器和采用更为有效和快速的检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。 音听检漏法 音听检漏法分为阀栓听音和地面听音两种,前者用于查找漏水的线索和范围,简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。 漏点预定位是指听漏棒、电子听漏仪或噪声自动记录仪来探测供水管道漏水范围的方法,根据使用仪器的不同,操作的方法也不尽相同,到目前止,实用的,有效诉,成本低的预定位技术主要有阀栓听音法,当然类同于GPL99、GPL95,包括PARMALOGA等方法,虽然也能用当其综合效果不好,而且成本高。 (1)阀栓听音法 阀栓跌间法是用听漏棒或电子放大听漏仪直接在管道暴露点(如消火检、阀门及暴露的管道等)听测由漏水点产生的漏水声,从而确定漏水管道,缩小漏水检测范围。金属管道漏水声频率一般在300~2500Hz之间,而非金属管道漏水声频率在100~700Hz之间。听测点距漏水点位置越近,听测到漏水声越大;反之,越小。 (2)地面听音法 当通过预定位方法确定漏水管段后,用电子放大听漏仪在地面听测地下管道的漏水点,并进行精确定位。听测方式为沿着漏水管道走向以一定间距逐点听测比较,当地面拾音器靠近漏水点时,听测到的漏水声越强,在漏水点在上方达到最大。 拾音器放置间距与管道材质有关,一般说来,金属管道间距为1~2米,而非金属管道为0.5~1米,水泥路面间距为1~2米,土路面为0.5米。 相关检漏法 相关检漏法是第三代技术,是世界上包括中国用的最多的先进、有效的一种精确确定漏点的检漏方法,特别适用于环境干扰噪声大、管道埋设深或不适宜用地面听漏法的区域。用相关仪可快速准确地测出地下管道漏水点的准确位置。 一套完整的相关仪主要是由一台相关仪主机(无线电接收机和微处理器等组成)、二台无线电发射机(带前置放大器)和二个高灵敏度振动传感器组成。其

管道外防腐层破损检测的DCVG技术

管道外防腐层破损检测的DCVG技术 一、引言 自从上世纪80年代初,世界范围内开展了有关管道防腐方法及检测技术的研究,开发出了多种管道腐蚀与防护的检测方法、技术及设备。其中,最为有效的是直流电位梯度(Direct Current V oltage Gradient,DCVG)检测法。该检测技术具有最为准确、检测项目全面等优点,在国外得到了广泛的应用,成为管道外防腐层检测的首选方法。英国DC V oltage Gradient Technology & Supply Ltd公司开发的DCVG设备最初用于英国国内的军用检测方面,只需另配上直流供电电源就可以检测埋地管道外防腐层的情况。该仪器是根据澳大利亚发明家John Mulvaney的研究成果开发出来的,主要包含两个部分:电流断流器和测量仪。DCVG公司具有近30年的仪器设计、制造、使用、数据分析等方面的丰富经验,有数千台检测仪在世界范围内应用。更重要的是几千个应用DCVG仪器的防腐层腐蚀的工程案例。天津嘉信公司作为国内专业的检测技术应用开发者,为DCVG检测设备的总代理商和授权技术支持和培训中心,不仅能够向用户提供优秀的DCVG检测设备,并能够进行DCVG电位梯度检测的专业知识和工程应用的技术支持和培训。 图1. DCVG检测系统的组成 二、DCVG方法技术原理 当阴极保护电流(CP)加载到管道上时,在外防腐层破损处的保护电流会流入管道,在周边的土壤形成了电位梯度,相应的就在管道上方的地面上也建立了地面电位的分布场。越接近破损点的部位,电位梯度就越大,管道上方地面的电流密度就越大。一般来说,裸露面积越大其附近的电流密度越大,地面的电位梯度也就越大。

高效过滤器检漏方法及标准(最全版)

高效过滤器检漏方法及标准大全 阅读目录: 1.高效过滤器的检漏方法 1.1.钠焰法 1.1. 2.测试原理 1.2.计数扫描法 1.2.3 .实际存在的问题 1.2.5.DOP粒子扫描正压检漏法 1.3.油雾法 1.4 .粒子计数器法 2.高效过滤器PA0检漏方法的简介 2.1.目的和原理 2.2.发烟的方法 2.3.两种发烟方法的比较 24检测PA0气溶胶浓度仪器 2.5.PAO气溶胶 26安装完后的高效过滤器PA0检漏操作的解析 3.高效过滤器的使用寿命 4.公司简介 5.相关阅读 摘要 本文主要介绍了高效过滤器检漏的方法和原理,分为钠焰法、计数扫描法、油雾法、粒子计数器法以及重点介绍高效过滤器PAO检漏方法和检测PAO气溶胶浓度的仪器,并介绍高效过滤器的使用寿命与洁净室综合评定测试。 关键词 高效过滤器检漏检测方法PAO检漏DOP钠焰法计数扫描法油雾 法粒子计数器气溶胶 1.高效过滤器的检漏方法

1.1.钠焰法 1.1.1.原理: 钠焰法原理是将氯化钠水溶液喷雾、干燥形成质量中值直径约为0.4呻的氯化钠气溶胶作为试验尘。在被测高效滤料的前后进行含尘空气采样,并引到钠火焰光度计内,测出与含尘浓度相关的光电流值,从而算出滤料的透过率。 1.1. 2.测试原理 试验尘源为单分散相氯化钠盐雾,“量'’为含盐雾时氢气火焰的亮度,主要仪器为火焰光度计。盐水在压缩空气的搅动下飞溅,经干燥形成微小盐雾并进入风道。在过滤器前后分别采样,含盐雾气样使氢气火焰的颜色变蓝、亮度增加。以火焰亮度来判断空气的盐雾浓度,并以此确定过滤器对盐雾的过滤效率。国家标准规定的盐雾颗粒平均直径为0.4^m,但对国内现有实测结果为0.5呻。欧洲对实际试验盐雾颗粒中径的测量结果为0.65呻。随着其他检测方法的普及,欧洲已经不再使用钠焰法。国内有关部门正在修订原来的国家标准,是废止还是继续使用钠焰法,意见还没有等到落实。 1.2 .计数扫描法 1.2.1.《洁净室施工及验收规范》(JGJ71-90)中规定,被检高效过滤器必须已检测过风量,并设计风速80%-120%之间运行,对于被检高效过滤器上风侧的颗粒浓度对受控粒径对于20.5呻粒子的浓度,必须>3.5x104pc/L,对受控粒径>0.1 gm的粒子浓度,必须>3.5x106- 3.5x107pc/L。使用最小采样量>1L/min的粒子计数器扫描法,对高效过滤器安装接缝和主断面进行扫描检测,检测点应距被测表面20-30mm,测头以5-20mm/s的速度移动,对被检过滤器整个断面、封胶头和安装框架处进行扫描。 1.2.2.在《洁净室施工及验收规范》中规定,由高效过滤器下风侧泄漏浓度换算成的穿透率来衡量是否合格,其合格标准如下。对于高效过滤器: k,=1_n k=c2/c1 k'表示高效过滤器的额定透过率;n表示高效过滤器的额定效率;k表示高效过滤器的实际泄漏率;C1表示上风侧含尘浓度;c2表示高效过滤器下风侧含尘浓度。 规范规定,高效过滤器的实际泄漏率不得大于额定透过率的2倍,即k<2 k'… 1.2.3 .实际存在的问题

供水管道检漏的几种方法

供水管道检漏的几种方法作者:管道修补器,管道连接器发表时间:2010-2-26 18:26:25 地市级相当一部分在改变为主动检漏法,目前我国大城市已基本采用主动检漏法。但县市级大部分仍在采用主动检漏法。检漏方法之中绝大部分都使用音听检漏法,或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进行,许多水司会逐步引进更为先进的检漏仪器和采用更为有效和快速的检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。 音听检漏法 前者用于查找漏水的线索和范围,音听检漏法分为阀栓听音和地面听音两种。简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。 根据使用仪器的不同,漏点预定位是指听漏棒、电子听漏仪或噪声自动记录仪来探测供水管道漏水范围的方法。操作的方法也不尽相同,目前止,实用的有效诉,本钱低的预定位技术主要有阀栓听音法,当然类同于GPL99GPL95包括PA RMA LOGA等方法,虽然也能用当其综合效果不好,而且本钱高。 1阀栓听音法 从而确定漏水管道,阀栓跌间法是用听漏棒或电子放大听漏仪直接在管道表露点(如消火检、阀门及暴露的管道等)听测由漏水点产生的漏水声。缩小漏水检测范围。金属管道漏水声频率一般在3002500Hz 之间,而非金属管道漏水声频率在100700Hz 之间。听测点距漏水点位置越近,听测到漏水声越大;反之,越小。 2地面听音法 用电子放大听漏仪在地面听测地下管道的漏水点,当通过预定位方法确定漏水管段后。并进行精确定位。听测方式为沿着漏水管道走向以一定间距逐点听测比较,当地面拾音器靠近漏水点时,听测到漏水声越强,漏水点在上方达到最大。

大容器检漏方法

大型容器的检漏技术(1) 时间:2008-11-13 来源:北京真空电子技术研究所编辑:曹辉玲 文献下载:[检漏方法]大容器的检漏技术 本文是我俩和同仁们一起从事检漏工程近十年的经验总结,也是我们在大连鞍钢新轧—镀锌钢板线(1650m3容器)、湘潭江南机器厂—电子束焊机(30m3)、西安629厂—真空淬火炉(60m3)、天津无缝钢管厂——钢管退火线(400m3)。北京生物工程电子显微镜(40m3)、西安红旗厂——真空熔炼炉(80m3)、包头稀奥科——真空感应炉(1500吨)、上海铅笔厂——真空烧结炉(40m3)、沈阳造币厂多层镀膜机、保定变压器厂——变压器生产线、北京四季青散热器厂——散热器(86米长、重4吨)、北京电力试验研究中心——各种大型变压器(十余台)、各火力发电厂真空凝汽器(几十台)、北京长辛店实力源公司——多弧镀膜机、河南南阳中光宇集团——光学镀膜机等等近百台、线(大于10m3)。工作中遇到形形色色的困难问题,用各种方案比对的结果。 一、大容器应用设备的最大漏率与相关参数 大于20m3=20000L的工程容器称为大容器。 表1列出大容器应用设备的最大漏率与相关参数。

二、目前国内外常用的大容器检漏方法 1、喷吹法:排气空间可进行单层或双层检漏。(如图1) 2、氦盒法(如图2)

3、氦罩法(如图3)

■用边界下面泵、试验排气 ■用氦气覆盖所有的或部分试验边界ν ν■用氦检漏仪检测漏孔或测量总漏率。 这种试验是可作为最普通的喷吹探漏 4、负压分流法: 目前国内外常用的大容器检漏方法,氦质谱负压分流法,如图4所示,有三种不同连接方式 图4 负压分流法的3种连接方式

管道防腐层地面检测技术介绍

刘珍河南汇龙合金材料有限公司 管道防腐层地面检测技术介绍 管道检测是在不进行大面积地面开挖,不破坏原有防腐层,通过一种先进的检测仪器对埋地金属管道防腐层破损、防腐层状况及管道阴极保护系统进行快速、准确、有效评估的一种检测技术。管道检测不仅可以尽早排除安全隐患,避免对环境的污染,而且还能合理制定管道维护方案,减少不必要的经济损失,以利于管道安全高效运行。该技术可以广泛用于输油、输水、输气、给排水、污水、化工、动力、电力等埋地金属钢质管道。 管道检测技术在全国各油、水、气公司已经广泛应用,其检测技术和效果已得到了认可,定期对管道进行检测,对它的防腐层进行评估,对腐蚀严重的管道的及时修复或禁用,或给管道进行阴极保护,这样就可以减少资源浪费和环境保护,大大增加管道的使用寿命,同时还可以有效的控制了偷盗资源现象。 管道检测技术是通过发射机在管道和大地之间施加低频的正弦电压,给待检测的管道发射检测信号电流,在地面上沿路由检测管道电流产生的交变电磁场强度及变化规律。采用这种方法不但可找管定位,还在很大程度上排除了大地的电性和杂散电流的干扰,具有很好的实用性。同时,通过管道上方地面的磁场强度换算出管中的电流变化,可以判断出管道的支线位置或破损缺陷等。其原理是:管道的防腐层和大地之间存在着分布电容耦合效应,且防腐层本身也存在着弱而稳定的导电性,使信号电流在管道外防腐层完好时的传播过程中呈指数衰减规律,当管道防腐层破损后,管中电流便由破损点流入大地,管中电流会明显衰减,引发地面的磁场强度的急剧减小,由此可对防腐层的破损进行定位。在得到检测电流的变化情况后,根据评价模型可推算出防腐层的性能参数值Rg。然而,这是一个相对比较的过程,该过程受到不同检测频率、管道结构等因素的影响。为消除包括管道规格、防腐结构、土壤环境等因素的影响,将均匀传输线理论应用于管-地回路,建立相应的数学模型,可以有效地分析及消除上述影响,定量地对管道的防腐层质量进行综合评价。河南汇龙合金材料有限公司刘珍

相关主题