搜档网
当前位置:搜档网 › 农杆菌介导法

农杆菌介导法

农杆菌介导法
农杆菌介导法

农杆菌介导的高效水稻遗传转化体系的研究A Highly Efficient Agrobacterium - mediated Rice Transformation Method

水稻是基因组研究的模式植物 ,近年来水稻基因组研究取得了很大进展 ,构建了遗传图谱和物理图

谱 ,完成了籼稻和粳稻的全基因组草图测2 - 3序 ,以及第 1 号和第 4 号染色体的精细测4 - 5序 ,并对第 10 号染色体的结构进行了详细分析。在此基础上 ,各实验室大规模地 ,系统地进行水稻功能基因研究 ,普遍采用的研究手段是基因标签技术。基因标签技术包括 T - DNA 和转座子标签 ,创建大量的基因标签体是功能基因研究的材料平台。而根癌农杆菌介导的水稻遗传转化是水稻基因标签技术中的重要步骤之一。本研究完善了根癌农杆菌介导的水稻转化方法 ,以期为水稻功能基因研究提供丰富材料 , 为水稻重要农艺性状的改良开辟途径。

1材料

以水稻品种日本晴(Oryza sativa L. ssp.japonica)为试验材料。菌株类型为 EHA105 超毒力菌株 ,载体为增强子捕获载体 pFX- E24. 2 - 15R(见图 1) ,载体上带有 GUS报告基因、35 S的 CaMV 启动子序列和潮霉素选择标记基因(HYG) 。农杆菌菌株为EHA105。

2方法

2.1水稻愈伤组织的诱导诱导方法参照 HIEI7等。将日本晴水稻种子去壳 ,用 75 %乙醇灭菌 5min ,再用2. 5 %的次氯酸钠灭菌处理不同时间(40min ,37 min ,30 min 和 25 min) ,以确定最佳灭菌时间 ,灭菌后用无菌水冲洗 6~8 次 ,于 MS 固体培养基上28 ℃避光培养 ,30 d 后 ,将愈伤组织进行继代培

养 ,得到胚性愈伤组织。

2.2农杆菌转化愈伤组织用 AB 固体培养基+氯霉素 25 mg/L + 利福平 20 mg/L + AS 20 mg/L培养农杆菌 ,在20 ℃下培养5~6 d。用无菌勺子轻轻刮下培养的农杆菌 ,放入 AAM液体培养基中(加有2 mg/L 2 ,4

- D ,0.7 g/L 脯氨酸 ,20 mg/L AS) ,在80 rpm/min ,27 ℃下 ,摇荡培养 4 h。将挑好的胚性愈伤组织放入锥形瓶 ,菌液倒入另一锥形瓶中 ,并加入AAM培养基( +AS50 mg/L) ,分别调节OD600值至不同数值(0. 120、0. 145、0. 158、0. 190、0. 195) ,以确定最佳的发杆菌浓度。然后将菌液倒入愈伤组织中 ,用手轻摇 ,感染 15 min。再吸干菌液 ,将愈伤组织放入装有滤纸的培养皿中干燥 ,移至共培养基上27 ℃下共培养3~4 d。

2.3转化体的获得将共培养的愈伤组织转出 ,无菌水漂洗 3~4 次 ,再用 NB 培养基 + 50 mg/L 头孢霉素在室温下100 rpm摇洗1~2 h ,洗2 遍后吸干放在滤纸上。将吸干的愈伤组织转入 N6 选择培养基上( + 50 mg/L 潮霉素 + 500 mg/L 头孢霉素) ,27℃下暗培养20 d后 ,继代一次。将新长出的抗性愈伤组织转移到N6 预分化培养基上 ,28 ℃下 ,暗培养7 d。将抗性愈伤组织转移到 N6 分化培养基上 ,28下 ,光照12 h/ d ,培养2~3 周后 ,新鲜愈伤组织将有绿点出现 ,每2 周继代一次 ,待分化出完整小苗后转入壮苗培养基MS中。炼苗并移栽。

2.4 GUS染色分析参照Jefferson 的方法 ,切取 T0 代转化体的叶片、种子等器官进行染色 ,在 37℃下反应 12~16 h ,弃去染色液 ,用 95 %的酒精脱色 ,在解剖显微镜下观察拍照。染色液组成为 50mM的磷酸钠盐缓冲液 ,pH7. 0 ,10 mMEDTA ,0. 1 %TritonX- 100 ,1 mg/ml 的 X - Gluc ,0. 1 mM 铁氰化钾 ,0.1 mM亚铁氰化钾 ,20 %甲醇。

3结果与分析

3.1不同灭菌时间对愈伤诱导率的影响灭菌是转化成功的关键技术之一 ,既要保证灭菌彻底 ,又不能影响种子萌发和产生愈伤。用2.5 %次氯酸钠对200 粒种子分别处理 40 min、37 min、30min和25 min ,

结果表明 ,随着灭菌时间的增加 ,愈伤诱导率呈下降趋势。灭菌 40 min 时 ,愈伤诱导率仅为77 %,大部分种子不能萌发 ,推测可能是胚已被到灭菌效果 ,次氯酸钠对种子萌发无影响 ,种子萌发力强 ,但是由于萌发消耗了很多养分 ,反而部分抑制了愈伤组织的生长 ,故其愈伤诱导率为96.3 %,反而低于灭菌30 min 时的愈伤诱导率 97.3 %。而且 ,灭菌40 min 和 37 min 时 ,形成的愈伤颗粒比较小 ,侵染时易于褐死 ,不利于转化 ,而灭菌 30 min 时的愈伤颗粒大小在 3 mm左右 ,适合于转化 ,且诱导率最高。因此 ,2. 5 %次氯酸钠的最适灭菌时间为 30min。

3.2愈伤组织的继代培养时间对转化率的影响愈伤组织经过多代培养后 ,会产生体细胞突变 ,不利于转化体的筛选。同时 ,多代培养后 ,愈伤组织逐渐衰老死亡 ,将大大降低转化效率。但是传统的方法直接用诱导的愈伤来转化 ,也会降低转化效率 ,这可能是细胞的周期状态影响了转化效率 ,有报道认为当愈伤组织细胞处于细胞周期 S时期和 G2 周9期的比例高时转化效率最高 ,而且 S 期是细胞DNA复制期 ,此时转化有利于 T- 链转变成双链 ,增加稳定整合和遗传。所以经过适当的继代培养 ,可以使细胞处于转化最佳状态而提高转化效率。本实验通过观察 ,经继代培养后的愈伤组织表面光滑 ,质地致密 ,粒形好 ,继代

培养 6~7 d 时转化率最高。培养时间太短 ,愈伤组织表面粗糙 ,粒小 ,不利于转化;培养时间过长则愈伤组织变软 ,发粘 ,转化后易褐化死亡。

3.3农杆菌浓度对转化效率的影响农杆菌浓度直接影响到转化效率。农杆菌浓度太低时 ,每个愈伤组织块产生的抗性愈伤数极少 ,大部分不产生抗性愈伤;浓度太高 ,则愈伤组织很容易被过度侵染 ,共培养后

无法恢复活力 ,在进行选择培养时 ,大多数会褐化死亡。本研究用不同 OD 值的农杆菌菌液分别处理生长状况良好一致的 300 个愈伤组织 ,发现当OD600值为 0.145~0.190 时 ,转化效率基本保持在 79 %左右 ,当 OD600值低于 0. 145 时 ,转化率较低 ,超过 0. 190 时 ,愈伤死亡数量增多 ,并且选择培养时 ,因过多的农杆菌覆盖在抗性愈伤组织上 ,抑制了其生长。

4 结论与讨论

农杆菌转化效率的影响因子包括菌株类型、水稻基因类型、培养基成分组成、组织培养条件等。笔者通过对日本晴水稻转化条件的研究 ,发现在日本晴的转化过程中 ,当种子灭菌30 min时 ,愈伤的诱导率最高 ,继代培养 6~7 d后的转化率最高 ,菌浓度 OD600值为 0. 145~0. 190时 ,转化效率高。另外 ,试验还发现在分化培养时 ,黑暗条件下预培养7 d的可以大大减少愈伤组织的褐化程度 ,分化效率达到

85 %。优化后转化体系大大减少了组织培养时间 ,3 个月即可获得转化植株 ,不但节省成本 ,而且减少由于组培而激活 Tos17 等水稻内源转座子从而造成体细胞突变的频率。

农杆菌介导的基因转化技术已经很成熟 ,但是要适应高通量的水稻基因组研究 ,快速完成 T -DNA插入饱和突变体的创制 ,需要大大提高抗性愈伤组织的分化效率。传统转化技术将转化后的愈伤组织直接放在同一培养基上进行分化与选择培养 ,容易造成愈伤组织因褐化而抑制分化。因为选择培养基中含有的高浓度抗生素使未转化的愈伤组织褐化而产生酚类等有毒物质 ,抑制了抗性愈伤组织的生长和分化。有人对传统转化方法进行初步改进 ,把抗性愈伤组织单独放在含有抗生素的分化培养基上培养 ,但是由于抗生素的影响以及分化培养基中的ABA等见光分解 ,结果直接影响了分化效果。笔者在此基础上做了进一步的改进 ,将选择培养基上的抗性愈伤组织转到分化培养基上 ,然后放置在黑暗下培养 7 d ,再转到新的分化培养基上光照下培养 ,只需 10 d 左右就能分化成苗 ,分化效率可达85 %。该方法的优点在于使 ABA 在黑暗下充分发挥作用 ,促使愈伤组织很好的转入分化生理状态 ,再进行光照以提供能量进行分化。而且由于该方法减少了培养时间 ,也就降低了组织培养造成的体细胞突变的概率。

本实验的GUS染色分析显示,GUS基因已在水稻的叶片,根,颖壳,种皮,胚及胚乳各个部位表达,

染色阳性率达到30 %,表明T- DNA 已经稳定整合到水稻基因组中。

农杆菌的活化培养及介导的遗传转化

农杆菌的活化培养及介导的遗传转化 一、目的要求 通过实验掌握农杆菌的活化与培养技术与农杆菌介导获得目的基因的转化植株。 二、基本原理 农杆菌共培养法最早是由Marton 等(1979 年)以原生质体为受体建立起来的,经过一系列改进后,目前已经成为最常用的转化方法。共培养法是利用Ti 质粒系统,将农杆菌与植物原生质体、悬浮培养细胞、叶盘、睫段等共同培养的一种转化方法。 三、材料及方法 1.含目的基因共整合载体或双元载体的根癌农杆菌。 2.植物幼苗。 (一)细菌培养液直接浸染法 操作︰ (1)无菌受体材料的准备︰叶片、睫段、胚轴、子叶等均可做受体材料,有两种来源。取自无菌试管苗。 取自田间或温室栽培植株︰叶片、睫尖、睫段用蒸馏水冲冼1 遍后,70%乙醇洗45 秒,0.1%升汞消毒6~8 分钟,无菌水冲洗三遍,无菌滤纸吸干水分。 (2)受体材料预培养︰将无菌叶片剪成0.5cm×0.5cm 的小块或用6mm 打孔器凿成圆盘,无菌胚轴、睫切成约0.8~1cm 长的切段,接种在愈伤组织诱导或分化培养基上进行预培养,注意叶片近轴面向下︰预培养2~3 天,材料切口处刚刚开始膨大时即可进行侵染。 (3)农杆菌培养︰从平板上挑取单菌落,接种到20mL 附加相应抗生素的细菌培养液体培养基(pH7.0)中,在恒温摇床上,于27℃, 180r/ min 培养至OD600 为0.6~0.8。 取OD600 为0.6~0.8 的菌液,按1%~2%的比例,转入新配制的无抗生素的细菌培养液体培养基中,可在与上相同的条件下培养6 小时左右,OD600 为0.2~0.5 时即可用于转化;或同时加入100~500μmol/的AS; (4)侵染︰于超净工作台上,将菌液倒入无菌小培养皿中(可根据材料对菌液的敏感情况进行不同倍数的稀释)。从培养瓶中取出预培养过的外植体,放入菌液中,浸泡适当时间(一般1~5 分钟,不同材料处理时间不同)。取出外植体置于无菌滤纸上吸去附着的菌液。 (5)共培养︰将侵染过的外植体接种在愈伤组织诱导或分化培养基上(烟草为MS 十 IAA0.5mg/L + BA2.0mg/L) ,在28℃暗培养条件下共培养2~4 天(光对某些植物的转化有抑制作用,故需暗培养,共培养时间因不同植物而异)。

根癌农杆菌介导的真菌转化

根癌农杆菌介导的真菌转化 以下是为大家整理的根癌农杆菌介导的真菌转化的相关范文,本文关键词为根癌,杆菌,介导,真菌,转化,根癌,杆菌,介导,真菌,转化,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。 根癌农杆菌介导的真菌转化 (一)农杆菌电击感受态制备及电击转化A感受态的制备 1)将农杆菌菌液划线于Yeb平板(50μg/mlkana),28℃,36-48h。

2)挑单菌落至3mlYeb试管(50μg/mlkana)中,28℃,200rpm培养过夜。3)转1ml至50mlYeb中,28℃,200rpm培养至oD600=0.8。 4)于4℃,5000rpm,10min收集菌体。 5)用50mL10%的甘油(去离子水配置,湿热灭菌)洗沉淀3次(4℃,5000rpm,10min),洗涤时一定要把菌体悬浮均匀。 6)重悬于1ml10%甘油中(约1011个细胞/ml),可立即使用,或分装为每管50μl,液氮速冻后,-80℃保存备用。b电击转化 1)将1μl质粒加入到农杆菌感受态细胞中,混匀,转至无菌预冷的电击杯中。2)将电击杯放入电转化仪的电极之间,16kv/cm,5ms。 3)取出电击杯,迅速加入200-300μlYeb(不加抗生素),并将混合液转入ep管中。4)于28℃,220rpm,2-3h。 5)将50-100μl菌液涂布于Yeb平板(50μg/mlcar和50μg/mlkana)上,于28℃培养2-3天后,挑斑鉴定。 (二)农杆菌化学感受态制备及化学法转化https://www.sodocs.net/doc/5113299530.html,petentcells 1)Inoculateasinglecolonyto5mlLb2)growat28℃tologphage,shakingat250rp m 3)Inoculate2mlofthecultureto50mlLbmediumandgrowtooD600=0.5ca.8h ours4)chillonicefor10minutes 5)spindownthecellsbycentrifugationat3000g(8000rpm)for10minutesat4℃

农杆菌介导转化法的概述

农杆菌介导转化法的概 述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

学年第学期 2014级硕士生生物化学期末论文任课老师: 开课学院: 课程名称: 学院: 专业: 学号: 姓名: 2015年6月20日

农杆菌介导转化法的概述 摘要:自从1983年转基因植物诞生以来,植物基因工程成为发展最快、应用潜力最大的生物技术领域之一。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因,通过各种方法转移到植物的基因组中,使之稳定遗传并赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。[1]? 目前,应用于植物转基因较多的方法有基因枪轰击法和农杆菌介导法。由于基因枪轰击的随机性,容易出现突变、丢失和引起基因沉默等不利于外源基因在宿主植物的稳定表达的缺点,而农杆菌介导法是一种天然的植物遗传转化系统,外源基因在转基因植物中的拷贝数低、遗传稳定,是最常用的转基因技术[2]。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化法在一些单子 叶植物(尤其是水稻)中也得到了广泛应用。本文对农杆菌介导转化法进行综述。 关键词:农杆菌转化方法转化效率 1?关于农杆菌 农杆菌[3-5]是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性的感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。与植物基因转化有关的有根瘤农杆菌和发根农杆菌这两种类型。 1.1??根癌农杆菌

依据Ti质粒诱导的植物细胞产生的冠瘿碱的种类不同,根癌农杆菌可分为4种类型:章鱼碱型(Octopine)、胭脂碱型(Nopaline)、农杆碱型(Agropine)和琥珀碱型(Succinamopine)。? 原始的Ti质粒根据其功能的不同可分为4个区: —DNA?region):不同来源的菌株,T-DNA的长度在12~24?kb,它是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关.T-DNA上最重要的是T-DNA区两端的边界各为25?bp的重复序列.其中14?bp是完全保守的,分10?bp(CAGGAATATAT)和4?bp(GTAA)不连续的2组.左右2个边界(LB和RB)是T—DNA转移所必需的,只要其存在,T-DNA可以将携带的任何基因转移并整合到植物基因组中,转移的方向是从右向左,T-DNA的右边界在T-DNA的整合中对于靶DNA位点的识别具有重要作用?,因此,尤以右边界更为重要。 位于T-DNA以外的1个30-40kb的区域内,该区段编码的基因虽然并不整合进植物基因组中,但对T-DNA的转移和整合非常重要。这些基因也称为Ti质粒编码毒性基因(vir)。目前,对章鱼碱型农杆菌Ti质粒 pTi15955和胭脂碱型农杆菌Ti质粒pTiC58的vir区进行了全序列分析,在章鱼碱型Ti质粒的vir区发现了8个操纵子,分别为virA-vjrH,共包括23个基因(virA,virB1-virB11,virC1,virC2,virD1-virD4,virE1,virE2,virF,virG,virH).而胭脂碱型Ti质粒的vir 区不含vjrF和virH操纵子,它含有另一个基因tzs?,也有学者认为有大约35个vir基因成簇排布于vir区。

农杆菌介导转化法的概述

农杆菌介导转化法的概述 自从1983年转基因植物诞生以来,植物基因工程成为发展最快、应用潜力最大的生物技术领域之一。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因,通过各种方法转移到植物的基因组中,使之稳定遗传并赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。[1] 目前,应用于植物转基因较多的方法有基因枪轰击法和农杆菌介导法。由于基因枪轰击的随机性,容易出现突变、丢失和引起基因沉默等不利于外源基因在宿主植物的稳定表达的缺点,而农杆菌介导法是一种天然的植物遗传转化系统,外源基因在转基因植物中的拷贝数低、遗传稳定,是最常用的转基因技术[2]。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化法在一些单子叶植物(尤其是水稻)中也得到了广泛应用。本文对农杆菌介导转化法进行综述。 1 关于农杆菌 农杆菌[3-5]是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性的感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。与植物基因转化有关的有根瘤农杆菌和发根农杆菌这两种类型。 1.1根癌农杆菌 根癌农杆菌(Agrobacterium tumefaciens)含有Ti质粒,能诱导被侵染的植物细胞形成肿瘤,即诱发冠瘿瘤;Ti质粒是农杆菌染色体外的遗传物质,为双链共价闭合环状DNA分子,大小约200-250kb。 依据Ti质粒诱导的植物细胞产生的冠瘿碱的种类不同,根癌农杆菌可分为4种类型:章鱼碱型(Octopine)、胭脂碱型(Nopaline)、农杆碱型(Agropine)和琥珀碱型(Succinamopine)。 原始的Ti质粒根据其功能的不同可分为4个区: 1.1.1T-DNA区(Transfer—DNA region):不同来源的菌株,T-DNA的长度在12~24 kb,它是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关.T-DNA上最重要的是T-DNA区两端的边界各为25 bp的重复序列.其中14 bp 是完全保守的,分10 bp(CAGGAATATAT)和4 bp(GTAA)不连续的2组.左右2个

农杆菌转化法原理

农杆菌转化法原理 This manuscript was revised on November 28, 2020

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用 MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天 ; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

农杆菌介导的植物转基因技术实验指导

农杆菌介导的植物转基因技术 一、实验目的 1 了解低温离心机、恒温振荡培养箱、超净工作台等仪器的使用。 2 学习真核生物的转基因技术及农杆菌介导的转化原理;掌握农杆菌介导转化植物的实验方法,了解转基因技术的操作流程。 二、实验原理 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤。农杆菌通过侵染植物伤口进入细胞后,可将 T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 实验一培养基配制 一、仪器和试剂 1、仪器:高压灭菌锅,超净工作台 2、药品:Beef extract (牛肉浸膏) 5g/L ,Yeast extract (酵母提取物) 1g/L ,Peptone (蛋白胨) 5g/L ,Sucrose (蔗糖) 5g/L ,MgSO4.7H2O 0.4g/100ml ,Agar (琼脂)1.5g/100ml,MS粉,有机溶液,肌醇,Fe盐,NAA(萘乙酸),6-BA (6-苄氨基腺嘌呤),卡那霉素(kan),利福平(rif ),链霉素(str )。 二、实验方法 第一组配制YEB固体培养基 1、配制250mlYEB固体培养基:先称取1.25g Beef extract (牛肉浸膏); 1.25g Peptone (蛋白胨);0.25g Yeast extract (酵母提取物);1.25g Sucrose

(蔗糖);1g MgS04.7H2O琼脂粉3.75g ;将上述药品置于250ml三角瓶中,用量筒称取 200ml蒸馏水将其溶解混匀,然后再定容至250ml,用NaOH调pH=7.4。 2、灭菌:将盛有250ml 培养基的三角瓶封口,在三角瓶表面写清培养基名称,用高压灭菌锅进行灭菌。 3、抗生素的加入:高压灭菌后,待培养基温度降到50-60 C时(手可触摸)加入已经过滤好的抗生素(100用/ml kan+50⑷/ml Str+ 50旧/ml rif ),以免温度过高导致抗生素失效。 4 、倒板:将抗生素与培养基混匀,每个平皿倒15ml 培养基,可以倒16个平皿,倒完后打开平皿盖,在紫外灯下照10min,等待培养基凝固,盖上平皿盖,封口备用。 第二组配制YEB液体培养基 1、配制500mlYEB液体培养基:先称取2.5g Beef extract (牛肉浸膏);2.5g Peptone (蛋白胨); 0.5g Yeast extract (酵母提取物); 2.5g Sucrose (蔗糖); 2g MgSO4.7H2O将上述药品置于500ml三角瓶中,用量筒称取450ml蒸馏水将其溶解混匀,然后再定容至500ml,用NaOH调pH=7.4。 2、灭菌:将盛有500ml 培养基的三角瓶封口,在三角瓶表面写清培养基名称,用高压灭菌锅进行灭菌。 3、抗生素的加入:高压灭菌后,待培养基温度降到50-60 C时(手可触摸)加入已经过滤好的抗生素(100用/ml kan+50⑷/ml Str+ 50旧/ml rif ),以免温度过高导致抗生素失效。 4 、分装:将培养基分别分装到试管和三角瓶中,每个试管中分装5ml,分 装12个试管。每个三角瓶中倒入35ml,共12个三角瓶。 5、分装好后,封口备用。 第三组配制MS液体培养基 1、配制500mlMS液体培养基:先在500ml三角瓶中加入400ml蒸馏水,称取2.15gMS 粉置于蒸馏水中,搅拌均匀;再向其中加入5ml 100倍Fe盐浓缩液;5ml100倍肌醇浓缩液;5ml有机溶液的混合液,然后混匀定容至500ml,用NaOH 调pH=5.8。

农杆菌介导转化和再生的杨树

农杆菌介导法转基因杨树 摘要: 杨树品种已发展为一种植物转化和再生系统。叶植,从稳定发芽培养的一个杨树杂交NC - 5339(银白杨标本),被共培养用于农杆菌遗传转化关于一个烟草的看护培养。致瘤的和无防备的农杆菌株隐藏包含一个双元载体,其中包含两个新霉素磷酸转移酶II(NPT II')和细菌5莽草酸3-磷酸合酶(EPSP)(AROA)嵌合基因融合。没有开发芽,叶外植体时,双元缴械拉力的根癌农杆菌菌株共培养。然而,转化的植物,没有野生型的T-DNA获得使用农杆菌株原癌基因的二进制。NPT II '酶的活性检测,Southern印迹法分析和免疫学检测证实了遗传转化成功细菌EPSP合酶Western印迹。这是首次报道成功收回转化植株森林树,也是第一个记录的插入和重要农艺性状的外源基因的表达成木本植物物种。 关键词:白杨;转化;农杆菌 前言 基因工程树种的能力将是特别有用的遗传改良,如大型成熟的植物并长期有性世代倍(Nelson and Haissig 1984; Sederoff and Ledig 1985)。森林树种的应用重组DNA技术的一个先决条件是发展的基因转移系统。方法,例如显微注射(Crossway et al.1986)和直接DNA摄入(Paszkowski et al. 1985; Fromm et al. 1986) 已被用于外源基因引入到草本作物物种,但是,最有效的基因转移的方法,利用自然感染冠瘿病的机制造成的有机体,农杆菌(Bevan et al. 1983 ; Fraley et al. 1983 ; Herrera-Estralla, 1983). 。根癌农杆菌的自然感染周期期间,细菌的T-DNA 整合到宿主植物的染色体,从而导致肿瘤对植物的生产(奇尔顿等人,1980)。可以删除和替换而不影响根癌农杆菌的T-DNA转移到植物(DeGreve等,1982)的能力,由异源基因的肿瘤诱导基因。这些修改后的根癌农杆菌菌株的原生质体,悬浮细胞,外植体组织的共培养,可导致转化植物缺乏致癌基因性状的隔离。因此,我们着手开发一个混合型杨树无性系,银白杨x grandidentata的(NC - 5339 )作为载体的农杆菌转化体系。 有许多特征能使杨树NC-5339得到理想的转化研究首先,杨树是一个重要的全球森林树种。这是一个快速增长的落叶阔叶树,栽培主要用于纸浆生产。对

农杆菌介导法

实验九植物遗传转化——农杆菌介导法 一、目的 了解农杆菌转化的机理;掌握农杆菌介导转化水稻的技术 二、原理 根癌农杆菌(Agrobacterium tumefaciens)具有跨界转移DNA的能力。下列因子与转化过程有关: 1. Ti 质粒(tumor-inducing plasmid)上的T-DNA (transferred DNA) T-DNA是农杆菌Ti质粒上能够转移到植物基因组的一段DNA序列。T-DNA含有RB和LB两个边界,它们是25bp的正向重复序列,是T-DNA 转移的顺式作用元件。不同类型的农杆菌其边界序列有所不同,但划线部分为完全保守序列。置于该边界内的任何外源基因均可被转化。LB缺失突变后农杆菌仍能致瘤,但RB缺失会导致致瘤能力丧失,这时几乎完全没有T-DNA的转移。 LB(-链)5’GT TTACACCACAA TA TATCCTG CCA 3’ RB(+链)5’TGA CAGGA TA TA TTGGCGGGTAA AC 3’ 2. Ti质粒上的Vir区(virulence region)操纵子 转化所必需的基因有vir A、B、C、D、E、G。其中蛋白VirD1/D2识别T-DNA边界RB和LB;VirC识别T-DNA右边界的超驱增强子;VirD2在T-DNA底链起内切酶作用造成切刻,并与T-链5’ 共价结合,带有1个核定位信号NLS;VirB形成转移复合通道;VirE2为单链DNA 结合蛋白,有2个NLS。该操纵子的表达顺序如下: vir A和vir G组成型表达形成VirA和VirG蛋白→VirA被植物创伤信号分子激活→激活的VirA使VirG激活→激活的VirG 诱导vir C、D、E、B、F、H表达。 3. 农杆菌染色体基因组相关基因:chv A、chv B(农杆菌运动、附着)、chv D、chv E(编码单糖结合蛋白、趋化性)、psc A、att、cel(合成纤维素丝,附着)。它们与农杆菌的趋化性和识别附着植物细胞有关。 4. 寄主细胞表面受体 5.诱导条件: 小分子酚类化合物:如乙酰丁香酮(AS,acetosyringone)、羟基乙酰丁香酮(OH-AS,hydroxyacetosyringone);它们是植物细胞创伤反应的一部分,或创伤细胞合成木质素的一部分,是莽草酸合成途径的产物。植物细胞必须在创伤和活跃的代谢状态下才能产生AS及OH-AS。农杆菌对一系列植物酚类化合物具有趋化性,同时高浓度的AS又可使农杆菌的vir 基因活化表达。这些化合物是双子叶植物细胞壁合成的前体,通常不存在于单子叶植物中,这正说明了为什么根癌农杆菌不易感染单子叶植物。若要实现农杆菌对水稻的转化,必须添加这类诱导物。 糖类:如D-葡萄糖、D-木糖等。它们在Vir区基因诱导和农杆菌毒力上起一定作用。 高浓度的肌醇可促进vir基因的表达。 低pH:pH 5.1-5.8 时Vir区基因的诱导达到最高水平。

农杆菌介导转化法的概述

学年第学期 2014 级硕士生生物化学期末论文 任课老师:开课学院:课程名称:学院:专业:学号:姓名: 2015 年 6 月 20 日 农杆菌介导转化法的概述 摘要:自从1983年转基因植物诞生以来,植物基因工程成为发展最快、应用潜力最大的生物技术领域之一。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因,通过各种方法转移到植物的基因组中,使之稳定遗传并赋予植物新的农艺性状,如抗虫、抗病、抗逆、高产、优质等。[1]

目前,应用于植物转基因较多的方法有基因枪轰击法和农杆菌介导法。由于基因枪轰击的随机性,容易出现突变、丢失和引起基因沉默等不利于外源基因在宿主植物的稳定表达的缺点,而农杆菌介导法是一种天然的植物遗传转化系统, 外源基因在转基因植物中的拷贝数低、遗传稳定,是最常用的转基因技术[2]。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化法在一些单子叶植物(尤其是水稻)中也得到了广泛应用。本文对农杆菌介导转化法进行综述。关键词:农杆菌转化方法转化效率 1关于农杆菌 农杆菌[3-5]是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性的感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。与植物基因转化有关的有根瘤农杆菌和发根农杆菌这两种类型。 1.1根癌农杆菌 依据Ti质粒诱导的植物细胞产生的冠瘿碱的种类不同,根癌农杆菌可分为4 种类型:章鱼碱型(Octopine)、胭脂碱型(Nopaline)、农杆碱型(Agropine)和琥珀碱型(Succinamopine)。 原始的Ti质粒根据其功能的不同可分为4个区: 1.1.1T-DNA区(Transfer—DNA region):不同来源的菌株,T-DNA的长度在12~24 kb,它是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关.T-DNA上最重要的是T-DNA区两端的边界各为25 bp的重复序列.其中14 bp是完全保守的,分10 bp(CAGGAATATAT)和4 bp(GTAA)不连续的2组.左右2 个边界(LB 和RB)是T —DNA 转移所必需的,只要其存在,T-DNA 可以将携带的任何基因转移并整合到植物基因组中,转移的方向是从右向左,T-DNA 的右边界在T-DNA 的整合中对于靶DNA位点的识别具有重要作用,因此,尤以右边界更为重要。 1.1.2 毒性区(vir 区):位于T-DNA 以外的1 个30-40kb 的区域内,该区段编码的基因虽然并不整合进植物基因组中,但对T-DNA的转移和整合非常重要。这些基因也称为Ti质粒编码毒性基因(vir)。目前,对章鱼碱型农杆菌Ti质粒pTi15955 和胭脂碱型农杆菌Ti质粒pTiC58的vir区进行了全序列分析,在章鱼

农杆菌介导转基因的原理

农杆菌介导转基因的原理? 转基因技术的飞速发展为生物定向改良和分子育种提供了一种较佳的方法,并使其成为基因工程和育种的最有效途径,目前应用较广泛的转基因技术有农杆菌介导法、花粉通道法、显微注射法、基因枪法、离子束介导法等等,其中农杆菌介导法以其费用低、拷贝数低、重复性好、基因沉默现象少、转育周期短及能转化较大片段等独特优点而备受科学工作者的青睐。农杆菌介导法主要以植物的分生组织和生殖器官作为外源基因导入的受体,通过真空渗透法、浸蘸法及注射法等方法使农杆菌与受体材料接触,以完成可遗传细胞的转化,然后利用组织培养的方法培育出转基因植株,并通过抗生素筛选和分子检测鉴定转基因植株后代。 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 农杆菌转化的详细机理已有大量综述, 并介绍新进展. 野生型根癌农杆菌能够将自身的一段DNA转入植物细胞. 因为转入的这一段DNA含有一些激素合成基因, 因而导致转化细胞自身激素的不平衡从而产生冠瘿瘤. 这些致瘤菌株都含有一个约200 kb的环状质粒, 被称为Ti(tumor inducing)质粒, 包括毒性区(Vir 区)、接合转移区(Con区)、复制起始区(Ori区)和T-DNA区4部分. 其中与冠瘿瘤生成有关的是Vir区和T-DNA区. 前者大小为30 kb, 分virA~J等至少10个操纵子, 决定了T-DNA的加工和转移过程. T-DNA可以将携带的任何基因整合到植物基因组中, 但这些基因本身与T-DNA的转移与整合无关, 仅左右两端各25 bp的同向重复序列为其加工所必需, 其中14 bp是完全保守的, 分10和4 bp不连续的两组. 两边界中以右边界更为重要. VirA作为受体蛋白接受损伤植物细胞分泌物的诱导, 自身磷酸化后进一步磷酸化激活VirG蛋白; 后者是一种DNA 转录活化因子, 被激活后可以特异性结合到其他vir基因启动子区上游的一个叫vir框(vir box)的序列, 启动这些基因的转录. 其中, virD基因产物对T-DNA进行剪切, 产生T-DNA单链. 然后以类似于细菌接合转移过程的方式将T-DNA与VirD2组成的复合物转入植物细胞], 在那里与许多VirE2蛋白分子(为DNA单链结合蛋白)相结合, 形成T链复合物(T-complex). 在此过程中VirE1作为VirE2的一个特殊的分子伴侣具有协助VirE2转运和阻止它与T-DNA链结合的功能. 实验表明, 转基因植物产生的VirE2蛋白分子也能在植物细胞内与VirD2-T-DNA形成T链复合物. 之后, 这一复合物在VirD2和VirE2核定位信号(NLS)引导下以VirD2为先导被转运进入细胞核. 转入细胞核的T-DNA以单或多拷贝的形式随机整合到植物染色体上. 研究表明T-DNA优先整合到转录活跃区, 而且在T-DNA的同源区与DNA的高度重复区T-DNA的整合频率也比较高. 整合进植物基因组的T-DNA也有一定程度的缺失、重复、填充和超界等现象发生, 例如在用真空渗透法转化的拟南芥中有66%出现超界现象, 甚至有整个Ti质粒整合进植物基因组的报道, T-DNA超界转移现象的机理尚不完全清楚, 可能与其左边界周边序列有关. 现在, 对农杆菌感染过程中其本身因子的转录与调控已研究得相当深入, 但

农杆菌介导的瞬时表达系统

农杆菌介导的瞬时表达系统 一.溶液配制 乙酰丁香酮AS 0.1M,取0.101gAS溶于5mLDMSO中,在工作台上用灭过菌的0.45μM滤膜过滤,分装入无菌小管,-20℃冰冻保存; MES 1M 调pH=5.6,过滤除菌; MgCl2 1M 过滤后灭菌; Kan 终浓度100mg/ml,过滤除菌。 (AS ,MES均购自泰安齐旺试剂公司) YEB过夜培养液(30ml) MES AS Kan 10mM 20μM 50μg/ mL 300μl 6μl 15μl 悬浮培养液(50ml) MES 10mM 500μl AS 200μM 100μl MgCl2 10mM 500μl YEB培养基(pH 7.2) 酵母膏 牛肉膏 蛋白胨 蔗糖 MgSO4·7H2O 1g/L 5g/L 5g/L 5g/L 493mg/L 二.操作步骤 1. 挑起单个农杆菌菌落,接种3mL YEB培养基(含抗生素)在200r/min,28℃摇床培养过夜,储存时间比较长的菌液可多活化两次; 2. 接种2mL过夜培养的50mL的YEB液体培养基(含抗生素,10mM MES和20μM乙酰丁香酮),28℃摇床培养2-4h; 3. 将上述过夜培养菌液在4℃,8000g下离心6min,收集菌体; 4. 用渗透培养液重新悬浮沉淀的农杆菌细胞。调节浓度OD600至0.5-1.0(一般需要100-150mL渗透培养液),置室温培养至少3小时,无需振荡; 5. 对需要渗透处理的烟草植株无一定大小要求,一般4-5叶期,已经生长一个月左右的本生烟比较合适。一般渗透处理下部2-3个比较大的叶片。用针头在需要渗透处理的叶片背面非常细微地扎一细小的浅微孔,然后用3mL的无针头的注射器吸取2-3mL悬浮有农杆菌的渗透培养液,从针孔处将培养液轻微的注入叶片内。注意用一手指从叶片下面拖住叶片,将注射器平平地堵住针孔,不让液体从叶片边缘挤压出来。注射区域接近叶片边缘即可或根据自己的实验目的决定; 6. 将处理过的烟草放回温室,照常管理。一般沉默发生在2-5天内; 7. 在暗室里,利用长波紫外灯(MODEL SB-100P/F,365nm)观察渗透处理过的叶片,并拍照记录叶片侵染区绿色荧光表达的变化过程。

农杆菌介导法

农杆菌介导的高效水稻遗传转化体系的研究A Highly Efficient Agrobacterium - mediated Rice Transformation Method 水稻是基因组研究的模式植物 ,近年来水稻基因组研究取得了很大进展 ,构建了遗传图谱和物理图 谱 ,完成了籼稻和粳稻的全基因组草图测2 - 3序 ,以及第 1 号和第 4 号染色体的精细测4 - 5序 ,并对第 10 号染色体的结构进行了详细分析。在此基础上 ,各实验室大规模地 ,系统地进行水稻功能基因研究 ,普遍采用的研究手段是基因标签技术。基因标签技术包括 T - DNA 和转座子标签 ,创建大量的基因标签体是功能基因研究的材料平台。而根癌农杆菌介导的水稻遗传转化是水稻基因标签技术中的重要步骤之一。本研究完善了根癌农杆菌介导的水稻转化方法 ,以期为水稻功能基因研究提供丰富材料 , 为水稻重要农艺性状的改良开辟途径。 1材料 以水稻品种日本晴(Oryza sativa L. ssp.japonica)为试验材料。菌株类型为 EHA105 超毒力菌株 ,载体为增强子捕获载体 pFX- E24. 2 - 15R(见图 1) ,载体上带有 GUS报告基因、35 S的 CaMV 启动子序列和潮霉素选择标记基因(HYG) 。农杆菌菌株为EHA105。 2方法 2.1水稻愈伤组织的诱导诱导方法参照 HIEI7等。将日本晴水稻种子去壳 ,用 75 %乙醇灭菌 5min ,再用2. 5 %的次氯酸钠灭菌处理不同时间(40min ,37 min ,30 min 和 25 min) ,以确定最佳灭菌时间 ,灭菌后用无菌水冲洗 6~8 次 ,于 MS 固体培养基上28 ℃避光培养 ,30 d 后 ,将愈伤组织进行继代培 养 ,得到胚性愈伤组织。 2.2农杆菌转化愈伤组织用 AB 固体培养基+氯霉素 25 mg/L + 利福平 20 mg/L + AS 20 mg/L培养农杆菌 ,在20 ℃下培养5~6 d。用无菌勺子轻轻刮下培养的农杆菌 ,放入 AAM液体培养基中(加有2 mg/L 2 ,4

(完整word版)农杆菌介导植物转化的机制及影响转化效率的因素

二、农杆菌介导植物转化的机制及影响转化效率的因素 转化机制: 与植物基因转化有关的农杆菌有两种类型:根癌农杆菌(Agrobacterium tumefaciens)和发根农杆菌(Agrobacterium rhizogenes)。根癌农杆菌含有Ti 质粒。发根农杆菌含有Ri 质粒。根癌农杆菌的Ti 质粒和发根农杆菌Ri 质粒都具有一段转移DNA (transfer DNA,又称T-DNA),在农杆菌侵染植物时,T-DNA 可以插入到植物基因组中,使其携带的基因在植物中得以表达。由于T-DNA 能够进行高频率的转移,而且Ti 质粒和Ri 质粒上可插入大到甚至150kb 的外源基因,因此,Ti 质粒和Ri 质粒成为植物基因转化中的理想载体系统。 1 与农杆菌转化相关的基因 与转化相关的基因主要包括农杆菌染色体上的基因和Ti 质粒上T-DNA 以外Vir 区的基因。染色体基因包括chvA、chvB、att、pscA、chvD 以及chvB。它们大多编码一些膜相关蛋白,负责细菌向植物受伤细胞趋化移动和帮助细菌附着于植物受伤细胞上。ChvD 蛋白可能在低pH 和磷酸饥饿情况下提高VirG 蛋白的合成水平。ChvE 与VirA 蛋白共同对virG 起激活作用。 原始的Ti质粒根据其功能的不同,可分为4个区: (1)T-DNA区:是在农杆菌侵染细胞时,从Ti质粒上切割下来转移到植物基因组中的一段DNA,其携带的基因与肿瘤的形成有关,但与T-DNA本身的转移与整合无关。T-DNA 上最重要的是两端的2个边界(LB和RB),它们是T-DNA转移所必需的。只要其存在,T-DNA可以将携带的任何基因转移并整合到植物基因组中, T-DNA的右边界在T-DNA的整合中对于靶DNA位点的识别具有重要作用,因此,尤以右边界更为重要. (2)毒性区:位于T-DNA以外的1个30~40 kb的区域内,该区段编码的基因但对T-DNA 的转移和整合非常重要.这些基因也称为Ti质粒编码毒性基因(vir)。 (3)接合转移区:该区段存在有与细菌间接合转移有关的基因(tra),调控Ti质粒在农杆菌间转移。 (4)复制起始区:该区段调控Ti质粒的自我复制。在遗传转化过程中除了Ti质粒上的基因参与外,还有农杆菌染色体基因。染色体基因包chvA、chvB、att、pscA、chvD 以及chvB。它们大多编码一些膜相关蛋白,负责细菌向植物受伤细胞趋化移动和帮助细菌附着于植物受伤细胞上。延伸因子P对于农杆菌的生长非常重要,但非必需.高水平的糖结合蛋白一ChvE可以扩大VirA蛋白对酚类物质的识别范围。结合ATP盒式转运体类似物蛋白ChvD,参与Vir区基因的表达调控,chvD基因座中插入无启动子的lacZ,农杆菌侵染力以及Vir区基因表达量大大下降,ChvD突变体中virG组成型表达侵染力则得以恢复,这一现象说明ChvD通过影响virG表达控制毒性。 2 Vir 基因的诱导表达机制 在植物受到创伤后,创伤组织的细胞释放出创伤信号——酚类化合物,如乙酰丁香酮。

农杆菌介导的转化所用基本培养基配方

农杆菌介导的转化所用基本培养基配方 一、NB培养基配方(基本培养基) N6大量:(mg/l)母液:10X,1L(mg) 硝酸钾KNO3 硫酸氨(NH4)2SO4 磷酸二氢钾KH2PO4 硫酸镁MgSO4·7H2O 氯化钙CaCl2·2H2O 2830 463 400 185 166 28300 4630 4000 1850 1660 B5微量:(mg/l)母液:100X,1L(mg) 硼酸H3BO4 硫酸锰MnSO4·H2O 硫酸锌ZnSO4·7H2O 碘化钾KI 钼酸钠Na2MoO4·2H2O 硫酸铜CuSO4·5H2O 氯化钴CoCl2·6H2O 3 7.58 2 0.75 0.25 0.025 0.025 300 758 200 75 25 2.5 2.5 铁盐:(mg/l)母液:100X,1L(mg) 硫酸亚铁FeSO4·7H2O 乙二胺四乙酸二钠Na2EDTA 27.8 37.3 2780 3730 肌醇:(mg/l)母液:100X,1L(mg)肌醇Myo-inositol 100 10000 有机成分:(mg/l)母液:50X,1L(mg) 盐酸硫胺素ThiamineHCl 盐酸吡哆醇PyridoxineHCl 尼克酸Niacin 水解酪蛋白Casamino acids 谷氨酰胺Glutam 脯氨酸Proline ine 甘氨酸Glycine 10 1 1 300 250 500 2 500 50 50 15000 12500 25000 100

蔗糖Sucrose 30000mg/l 琼脂Phytagel 2400mg/l pH 5.8-5.9 注意:有机成分不能高压灭菌,须用滤器抽滤,分装后-20℃保存 二、AAM培养基配方 大量:(mg/l)母液:10X,1L(mg) 磷酸二氢钾KH2PO4 硫酸镁MgSO4·7H2O 氯化钾KCl 氯化钙CaCl2·2H2O 170 370 2940 440 1700 3700 29400 4400 微量:(mg/l)母液:100X,100ml(mg) 硫酸锰MnSO4·H2O 钼酸钠Na2MoO4·2H2O 硼酸H3BO4 硫酸锌ZnSO4·7H2O 碘化钾KI 硫酸铜CuSO4·5H2O 氯化钴CoCl2·6H2O 7.58 0.25 3 2 0.75 0.0387 0.025 758 25 300 200 75 3.87 2.5 铁盐:(mg/l)母液:100X,1L(mg) 硫酸亚铁FeSO4·7H2O 乙二胺四乙酸二钠Na2EDTA 27.8 37.3 2780 3730 肌醇:(mg/l)母液:100X,1L(mg)肌醇Myo-inositol 100 10000 维生素:(mg/l)母液:100X,1L(mg) 盐酸硫胺素ThiamineHCl 盐酸吡哆醇PyridoxineHCl 尼克酸Niacin 0.5 0.5 0.5 50 50 50 氨基酸:(mg/l) 甘氨酸Glycine 精氨酸Arginine 谷氨酰胺Glutamine 7.5 174 876

农杆菌转化法原理

农杆菌转化法原理: 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位(受伤处的细胞会分泌大量酚类化合物,从而使农杆菌移向这些细胞),并诱导产生冠瘿瘤或发状根。 根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中,并且可以通过减速分裂稳定的遗传给后代,这一特性成为农杆菌介导法植物转基因的理论基础。 人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 农杆菌转化植物细胞涉及一系列复杂的反应,主要包括:①受伤的植物细胞为修复创伤部位,释放一些糖类、酚类等信号分子。②在信号分子的诱导下,农杆菌向受伤组织集中,并吸附在细胞表面。③转移DNA上的毒粒基因被激活并表达,同时形成转移DNA的中间体。④转移DNA进入植物细胞,并整合到植物细胞基因组中。 方法:(根据不同受体环境基因要求而不同) 1.农杆菌准备 2.外植体的准备(愈伤组织、悬浮细胞系、幼嫩茎段或叶片); 3.用MS-AS液体培养基稀释原菌液15倍(1.5ml / 20ml)或离心后稀释3倍; 4.外植体与菌液共培养20 分钟; 5.放置在带滤纸的培养皿上(注意充分吸干多余的菌液); 6.将外植体接种到MS-AS固体诱导培养基,培养2-3天; 7.移至含卡那霉素(Kan)300mg/L和羧苄青霉素(Cb 300mg/L)的固体筛选培养基上进行Kan抗性愈伤组织的筛选; 8.隔20天,进行第二次筛选; 9.抗性愈伤组织在固体筛选培养基上分化成苗; 10 在生根培养基上生根,获得完整的再分化植株。

根癌农杆菌介导的基因转移

三、根癌农杆菌介导的基因转移 一、实验目的: 1、理解根癌农杆菌介导的基因转移的基本原理; 2、掌握根癌农杆菌介导的遗传转化技术流程。 二、实验原理: 根癌农杆菌是土壤菌属的一种革兰氏阴性细菌,能浸染大多数的双子叶植物和少数的单子叶植物。根癌农杆菌介导的基因转移是利用根癌农杆菌的Ti质粒将外源基因转入到植物细胞核基因组中,并进行整合表达的转化,这是一种天然的生物转化系统。 根癌农杆菌含有Ti质粒,它是根癌农杆菌所特有的位于染色体外独立的基因组,为双链闭合环状的DNA分子,Ti质粒上含有一段特殊的DNA----T-DNA。当植物受到伤害后,植物的细胞就会分泌如乙酰酊香酮等类的酚类化合物,这些酚类化合物能诱导根癌农杆菌染色体毒性基因的表达,促使农杆菌附着到受伤植物细胞表面。根癌农杆菌侵染植物后,其Ti质粒上的T-DNA部分转化并整合进入植物宿主细胞内,可以诱导植物细胞形成冠瘿瘤。经一系列复杂的变化过程,T-DNA 以单拷贝或低拷贝的形式随机整合到植物染色体上。因此,只要将外源基因插入到T-DNA ,Ti 质粒就可以作为天然载体,将外源基因导入到植物细胞中。 三、实验材料: (一)根癌农杆菌(含有外源基因) 烟草叶片 (二)溶液与缓冲液 1、MS基本培养基(PH=5.8) 2、烟草愈伤组织诱导或分化培养基(MSH):MS +NAA 0.1 mg/L +6-BA 2.0mg/L 3、烟草脱菌培养基:MSH+300 mg/L Cef 4、烟草筛选培养基:MS+300 mg/L Cef+20 mg/L Hpt 5、烟草生根培养基:1/2 MS 6、LB液体培养基:酵母提取物5 g/L、蛋白胨10g/L、NaCl 5g/L(PH=7.0) 7、无菌蒸馏水、10% NaClO、75%乙醇、Kan、Cef、Hpt母液 四、仪器设备及耗材: 无菌培养皿、封口膜、剪刀、镊子、手术刀、三角瓶、无菌滤纸、恒温摇床、微量移液器、吸头、超净工作台等等 五、实验方法与步骤: (一)、实验准备工作: 1、培养基的制备:MS基本培养基(PH=5.8)、烟草愈伤组织诱导或分化培养基(MSH)、烟草脱菌培养基、烟草筛选培养基、烟草生根培养基、LB液体培养基(PH=7.0) 高压灭菌锅中121℃,灭菌20min。 2、10% NaClO、75%乙醇、Kan、Cef、Hpt等母液制备。 (二)、无菌受体材料的准备: 1、无菌试管苗培养:将烟草种子放入1.5ml的离心管中,加入75%乙醇浸泡2min,用无菌蒸馏水冲洗3-5次,然后用10% NaClO 浸泡20min,无菌蒸馏水冲洗3-5次,播种至MS基本培养基中,于16h、12000lx光照和8h 黑暗25℃、70%相对

相关主题