搜档网
当前位置:搜档网 › 讲解:求解共点力平衡问题的八种方法

讲解:求解共点力平衡问题的八种方法

讲解:求解共点力平衡问题的八种方法
讲解:求解共点力平衡问题的八种方法

求解共点力平衡问题的八种方法

一、分解法

一个物体在三个共点力作用下处于平衡状态时,将其中任意一个力沿其他两个力的反方向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题,则每个方向上的一对力大小相等。

二、合成法

对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡转化为二力平衡问题。

[例1] 如图1所示,重物的质量为m,轻细绳AO和BO的A端、B端是固定的,平衡时AO是水平的,BO与水平面的夹角为θ,AO的拉力F1和BO的拉力F2的大小是( )

图1

A.F1=mg cos θ

B.F1=mg cot θ

C.F2=mg sin θ

D.F2=mg/sin θ

[解析] 解法一(分解法)

用效果分解法求解。F2共产生两个效果:一个是水平方向沿A→O拉绳子AO,另一个是拉着竖直方向的绳子。如图2甲所示,将F2分解在这两个方向上,结合力的平衡等知识解

得F1=F2′=mg cot θ,F2=

F2″

sin θ

mg

sin θ

。显然,也可以按mg(或F1)产生的效果分解mg(或

F1)来求解此题。

图2

解法二(合成法)

由平行四边形定则,作出F1、F2的合力F12,如图乙所示。又考虑到F12=mg,解直角三角形得F1=mg cot θ,F2=mg/sin θ,故选项B、D正确。

[答案] BD

三、正交分解法

物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解:F x合=0,F y合=0。为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。

[例2] 如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动。关于物块受到的外力,下列判断正确的是

( )

图3

A.推力F先增大后减小

B.推力F一直减小

C.物块受到的摩擦力先减小后增大

D.物块受到的摩擦力一直不变

[解析] 对物体受力分析,建立如图4所示的坐标系。

图4

由平衡条件得

F cos θ-F f=0

F N-(mg+F sin θ)=0

又F f=μF N

联立可得F=μmg

cos θ-μsin θ

可见,当θ减小时,F一直减小,故选项B正确。

[答案] B

四、整体法和隔离法

若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法。

[例3] (多选)如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m 的物体,若物体在直角劈上匀速下滑,直角劈仍保持静止,那么下列说法正确的是( )

图5

A.直角劈对地面的压力等于(M+m)g

B.直角劈对地面的压力大于(M+m)g

C.地面对直角劈没有摩擦力

D.地面对直角劈有向左的摩擦力

[解析] 方法一:隔离法

先隔离物体,物体受重力mg、斜面对它的支持力F N、沿斜面向上的摩擦力F f,因物体沿斜面匀速下滑,所以支持力F N和沿斜面向上的摩擦力F f可根据平衡条件求出。再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力F N地,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力F N′和沿斜面向下的摩擦力F f′,直角劈相对地面有没有运动趋势,关键看F f′和F N′在水平方向上的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定。

对物体进行受力分析,建立坐标系如图6甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力F N=mg cos θ,摩擦力F f=mg sin θ。

图6

对直角劈进行受力分析,建立坐标系如图乙所示,由牛顿第三定律得F N=F N′,F f=F f′,在水平方向上,压力F N′的水平分量F N′sinθ=mg cos θ·sinθ,摩擦力F f′的水平分量F f′cosθ=mg sin θ·cosθ,可见F f′cosθ=F N′sinθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力。

在竖直方向上,直角劈受力平衡,由平衡条件得:F N地=F f′sinθ+F N′cosθ+Mg =mg+Mg。

方法二:整体法

直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等、方向相反。而地面对直角劈的支持力、地面对直角劈的摩擦力是直角劈和物体整体的外力,所以要讨论这两个问题,可以以整体为研究对象。整体在竖直方向上受到重力和支持力,因物体在斜面上匀速下滑、直角劈静止不动,即整体处于平衡状态,所以竖直方向上地面对直角劈的支持力等于物体和直角劈整体的重力。水平方向上地面若对直角劈有摩擦力,无论摩擦力的方向向左还是向右,水平方向上整体都不能处于平衡状态,所以整体在水平方向上不受摩擦力,整体受力如图丙所示。

[答案] AC

五、三力汇交原理

物体受三个共面非平行力作用而平衡时,这三个力必为共点力。

[例4] 一根长2 m,重为G的不均匀直棒AB,用两根细绳水平悬挂在天花板上,当棒平衡时细绳与水平面的夹角如图7所示,则关于直棒重心C的位置下列说法正确的是( )

图7

A.距离B端0.5 m处

B.距离B端0.75 m处

C.距离B端

3

2

m处

D.距离B端

3

3

m处

[解析] 当一个物体受三个力作用而处于平衡状态,如果其中两个力的作用线相交于一点,则第三个力的作用线必通过前两个力作用线的相交点,把O1A和O2B延长相交于O点,

则重心C 一定在过O 点的竖直线上,如图8所示。由几何知识可知:BO =12AB =1 m ,BC =1

2BO

=0.5 m ,故重心应在距B 端0.5 m 处。A 项正确。

图8

[答案] A

六、正弦定理法

三力平衡时,三力合力为零。三个力可构成一个封闭三角形,如图9所示。

图9

则有:

F 1

sin α=

F 2

sin β=

F 3

sin γ

[例5] 一盏电灯重力为G ,悬于天花板上A 点,在电线O 处系一细线OB ,使电线OA 与竖直方向的夹角为β=30°,如图10所示。现保持β角不变,缓慢调整OB 方向至OB 线上拉力最小为止,此时OB 与水平方向的夹角α等于多少最小拉力是多少

图10

[解析] 对电灯受力分析如图11所示,据三力平衡特点可知:OA 、OB 对O 点的作用力

T A 、T B 的合力T 与G 等大反向,即T =G ①

图11

在△OT B T 中,∠TOT B =90°-α

又∠OTT B =∠TOA =β,

故∠OT B T =180°-(90°-α)-β=90°+α-β 由正弦定理得T B sin β=

T

sin

90°+α-β

联立①②解得T B =G sin β

cos α-β

因β不变,故当α=β=30°时,T B 最小,且T B =G sin β=G /2。 [答案] 30° G

2

七、相似三角形法

物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力的三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向。

[例6] 如图12所示是固定在水平面上的光滑半球,球心O ′的正上方固定一小定滑轮,细线一端拴一小球A ,另一端绕过定滑轮。今将小球从如图所示的初位置缓慢地拉至B 点。在小球到达B 点前的过程中,半球对小球的支持力F N 及细线的拉力F 1的大小变化情况是

( )

图12

A .F N 变大,F 1变小

B .F N 变小,F 1变大

C .F N 不变,F 1变小

D .F N 变大,F 1变大

[解析] 由于三力F 1、F N 与G 首尾相接构成的矢量三角形与几何三角形AOO ′相似,如图13所示,

图13

所以有F 1G =OA OO ′,F N G =R

OO ′

所以F 1=G

OA OO ′

, F N =G R OO ′

由题意知当小球缓慢上移时,OA 减小,OO ′不变,R 不变,故F 1减小,F N 不变,故C 对。

[答案] C 八、图解法 1.图解法

对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化情况判断各个力的变化情况。

2.图解法主要用来解决三力作用下的动态平衡问题

所谓动态平衡问题就是通过控制某一物理量,使物体的状态发生缓慢变化。从宏观上看,物体是运动的,但从微观上理解,物体是平衡的,即任一时刻物体均处于平衡状态。

3.利用图解法解题的条件是

(1)物体受三个力的作用而处于平衡状态。

(2)一个力不变,另一个力的方向不变或大小不变,第三个力的大小、方向均变化。 [例7] 如图14所示,一个重为G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态,今使板与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化

图14

[解析] 取球为研究对象,球受重力G 、斜面支持力F 1、挡板支持力F 2,因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形,当挡板逆时针转动时,

F 2的方向也逆时针转动,作出如图15所示的动态矢量三角形,由图可见,F 2先减小后增大,F 1始终随β增大而减小。由牛顿第三定律可知,球对挡板压力先减小后增大,球对斜面压

力减小。

图15 [答案] 见解析

专题受力分析_共点力的平衡

专题受力分析、共点力的平衡 一.受力分析 力学中三种常见性质力 1.重力:(1)方向:竖直向下(2)作用点:重心 2. (1)有多少个接触面(点)就有可能有多少个弹力 (2)常见的弹力的方向: 弹簧对物体的弹力方向:与弹簧恢复原长的方向相同 绳子对物体的弹力:沿着绳子收缩的方向. 面弹力(压力,支持力):垂直于接触面指向受力的物体. 3.摩擦力 (1)有多少个接触面就有可能有多少个摩擦力 (2)静摩擦力方向:与相对运动的趋势方向相反 (3)滑动摩擦力的方向:与相对运动方向相反 二.受力分析 1.步骤(1).确定研究对象(受力物体):可以是一个整体,也可以个体(隔离分析) 注意:只分析外界给研究对象的力,研究对象给别人的力不分析 (2). 受力分析要看物体的运动状态:静止还是运动 2.顺序:(1)外力:外力可以方向不变地平移 (2)重力 (3)接触面的力(弹力,摩擦力) 先弹力:看有几个接触面(点)。判断面上若有挤压,则垂直于接触面有弹力。 其次摩擦力:若有相对运动或者相对运动趋势,则平行于接触面有摩擦力 分析完一个面(点),再分析其他面(点) 3.检验:是否多画力或者漏画力 检查每一个力的施力物体是否都是别的物体 静止水平面 竖直面 运动斜面 二、共点力的平衡 1.共点力 作用于物体的或力的相交于一点的力. 2.平衡状态 (1)物体保持或的状态. (2)通过控制某些物理量,使物体的状态发生缓慢变化的过程(动态平衡). 物体的速度为零和物体处于静止状态是一回事吗? 提示:物体处于静止状态,不但速度为零,而且加速度(或合外力)为零.有时,物体速度为零,但加速度不一定为零,如竖直上抛的物体到达最高点时;摆球摆到最高点时,加速度都不为零,都不属于平衡状态.因此,物体的速度为零与静止状态不是一回事.

高一物理沪科版必修一第四章第3节 共点力的平衡及其应用 教案

共点力的平衡及其应用 教学目标: 一、知识目标 1:能用共点力的平衡条件,解决有关力的平衡问题; 2:进一步学习受力分析,正交分解等方法。 二、能力目标: 学会使用共点力平衡条件解决共点力作用下物体平衡的思路和方法,培养学生灵活分析和解决问题的能力。 三、德育目标: 培养学生明确具体问题具体分析: 教学重点: 共点力平衡条件的应用 教学难点: 受力分析、正交分解、共点力平衡条件的综合应用。 教学方法: 讲练法、归纳法 教学用具: 投影仪、投影片 教学步骤: 一、导入新课 (1)如果一个物体能够保持或,我们就说物体处于平衡状态。

(2)当物体处于平衡状态时: a:物体所受各个力的合力等于,这就是物体在共点力作用下的平衡条件。 b:它所受的某一个力与它所受的其余外力的合力关系是。 2:学生回答问题后,师进行评价和纠正。 3:引入:本节课我们来运用共点力的平衡条件求解一些实际问题。 二:新课教学 (一)用投影片出示本节课的学习目标: 1:熟练运用共点力的平衡条件,解决平衡状态下有关力的计算。 2:进一步熟练受力分析的方法。 (二)学习目标完成过程: 1:共点力作用下物体的平衡条件的应用举例: (1)用投影片出示例题1: 如图所示:细线的一端固定于A点,线的中点挂一质量为m的物体,另一端B用手拉住,当AO与竖直方向成 角,OB沿水平方向时,AO及BO对O点的拉力分别是多大? (2)师解析本题: 先以物体m为研究对象,它受到两个力,即重力和悬线的拉力,因为物体处于平衡状态,所以悬线中的拉力大小为F=mg。 再取O点为研究对像,该点受三个力的作用,即AO对O点的拉力F1,BO对O点的拉力F2,悬线对O点的拉力F,如图所示:

讲解:求解共点力平衡问题的八种方法

求解共点力平衡问题的八种方法 一、分解法 一个物体在三个共点力作用下处于平衡状态时, 将其中任意一个力沿其他两个力的反方 向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题, 则每个方向上的一对力大 小相等。 二、合成法 对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡, 把三力平衡转化为二力平衡问题。 [例1]如图1所示,重物的质量为 m ,轻细绳Ao 和Bo 的A 端、B 端是固定的,平衡 时AO 是水平的,BO 与水平面的夹角为 θ, AO 的拉力F i 和BO 的拉力F ?的大小是( ) A . F i = mgcos θ B. F i = mgcot θ C. F 2= mgs in θ D. F 2= mg/sin θ [解析]解法一(分解法) 用效果分解法求解。F 2共产生两个效果:一个是水平方向沿 A →O 拉绳子AO ,另一个 是拉着竖直方向的绳子。如图 2甲所示,将F 2分解在这两个方向上,结合力的平衡等知识 解得F i = F ?' = mgcot θ F ?= F —眉 卫迅。显然,也可以按mg (或F i )产生的效果分解 Sin θ Sin θ F i )来求解此题。 解法二(合成法) 由平行四边形定则,作出 F i 、F 2的合力F i2,如图乙所示。又考虑到 F i2 = mg ,解直角 三角形得F i = mgcot θ, F 2= mg/sin θ,故选项 B 、D 正确。 mg (或

[答案]BD 三、正交分解法 物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解: F X合=0, F y合=0。为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。 [例2]如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动。关于物块受到的外力,下列判断正确的是 A .推力F先增大后减小 B .推力F —直减小 C.物块受到的摩擦力先减小后增大 D .物块受到的摩擦力一直不变 [解析]对物体受力分析,建立如图4所示的坐标系。 r Γ∣Γ & ^^I匚 图4 由平衡条件得 FCoS θ—F f = 0 F N —(mg + FS in θ)= 0 又F f= μF N 可见,当θ减小时,F —直减小,故选项B正确。 [答案]B 四、整体法和隔离法 若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法 相结合的方法。 [例3](多选)如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m 联立可得 μ mg cos θ—μin θ 图3

§4.3共点力的平衡及其应用

§4.3 共点力的平衡及其应用 教学目标: 1.知道平衡的意义,知道共点力的平衡条件。 2.会通过对物体的受力分析,根据平衡条件列出不同方向上合力为零的方程。 3.能从平衡的普遍性体会平衡条件的价值,乐意研究有一定困难的问题。 教学重点: 共点力的平衡条件 教学难点: 共点力平衡条件的应用 课时安排: 2课时 教学进程 导入新课 在表演走钢丝的杂技节目时,由于观众总害怕演员摔下来,所以这个节目显得异常惊险。2000年我国高空王子阿迪力在南岳手持长杆成功的表演了未系保险绳走过1000多米钢丝绳的惊险绝技,在表演中阿迪力不断的调整姿势,保持身体处于平衡状态,最后顺利地走完全程。 1、什么是平衡状态? 2、阿迪力通过调整什么来保持身体处于平衡状态? 3、用到了什么物理知识呢? 推进新课 一、生活离不开平衡 放在讲桌上的粉笔盒,室内摆放的各种物品,雄伟的建筑,大自然中耸立的山峰,著名的比萨斜塔。他们都处于什么状态? 以上它们都保持着静止而处于平衡状态,所以静止是平衡的一种表现。 此外,沿平直铁路匀速运动的火车,发生沙尘暴时在空中徐徐下落的沙尘,挂在降落伞上的救灾物在空中匀速下降等,这些物体也都处于平衡状态。 由此我们可以知道:如果物体保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。 静止和匀速直线运动在物理学上具有等价性。处于平衡状态的物体加速度一定等于零,这是平衡的基本物理特征,物体的运动速度可以不等于零。 二、从二力平衡到共点力平衡 初中已经学习了二力平衡,当物体只受到两个力而处于平衡状态时,它们的合力F合=0.那么当物体受到三个力或三个以上共点力作用而处于平衡状态时,应满足什么条件呢? (实验探究)三个共点力的平衡 二个人合作,用三个测力计拉住小环O,记下三个测力计的拉力的方向及大小,用力的图示法在黑板上表示出各个力。若把其中F1,F2先合成一个力F’,即可以简化为二力平衡的情况。可以发现,它们同样满足条件:F合=0。 进一步研究表明:物体在多个共点力作用下平衡时,合力总等于零。这就是物体受到共点力作用时处于平衡状态的条件。 注意几点: ①作用在一个物体上的多个共点力的合力等于零时,它们在水平方向上的分力的合力等于零,在竖直方向上的分力的合力也等于零。

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法 1. 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2. 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法,根据正弦定理、余弦定理或相似三角形等数学知识可求得未知力。 矢量三角形作图分析法,优点是直观、简便,但它仅适于处理三力平衡问题。 3. 相似三角形法:相似三角形法,通常寻找的是一个矢量三角形与三个结构(几何)三角形相似,这一方法也仅能处理三力平衡问题。 4. 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 5. 三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。 6. 正交分解法:将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,多用干三个以上共点力作用下的物体的平衡,值得注意的是,对“x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。不宜分解待求力。 7. 动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。 三. 重难点分析: 1. 怎样根据物体平衡条件,确定共点力问题中未知力的方向? 在大量的三力体(杆)物体的平衡问题中,最常见的是已知两个力,求第三个未知力。解决这类问题时,首先作两个已知力的示意图,让这两个力的作用线或它的反向延长线相交,则该物体所受的第三个力(即未知力)的作用线必定通过上述两个已知力的作用线的交点,然后根据几何关系确定该力的方向(夹角),最后可采用力的合成、力的分解、拉密定理、正交分解等数学方法求解。 2. 一个物体受到n个共点力作用处于平衡,其中任意一个力与其余(n-1)个力的合力有什么关系? 根据二力平衡条件,一个物体受n个力平衡可看作是任意一个力和其余(n-1)个力的合力应满足平衡条件,即任意一个力和其余(n-1)个力的合力满足大小相等、方向相反、作用在同一直线上。 3. 怎样分析物体的平衡问题 物体的平衡问题是力的基本概念及平行四边形定则的直接应用,也是进一步学习力和运动关系的基础。 (1)明确分析思路和解题步骤 解决物理问题必须有明确的分析思路.而分析思路应从物理问题所遵循的物理规律本身去探求。物体的平衡遵循的物理规律是共点力作用下物体的平衡条件:,要用该规律去分析平衡问题,首先应明确物体所受该力在何处“共点”,即明确研究对象.在分析出各个力的大小和方向后,还要正确选定研究方法,即合成法或分解法,利用平行四边形定则建立各力之间的联系,借助平衡条件和数学方法,确定结果.由上述分析思路知,解决平衡问题的基本解题步骤为: ①明确研究对象。 在平衡问题中,研究对象常有三种情况: <1> 单个物体,若物体能看成质点,则物体受到的各个力的作用点全都画到物体的几何中心上;若物体不能看成质点,则各个力的作用点不能随便移动,应画在实际作用位置上。 <2> 物体的组合,遇到这种问题时,应采用隔离法,将物体逐个隔离出去单独分析,其关键是找物体之间的联系,相互作用力是它们相互联系的纽带。 <3> 几个物体的的结点,几根绳、绳和棒之间的结点常常是平衡问题的研究对象。 ②分析研究对象的受力情况 分析研究对象的受力情况需要做好两件事:

《共点力的平衡及其应用》教学反思

教学反思 本次教学内容为沪科版物理必修一第四章第三节《共点力的平衡及其应用》,本节内容是在之前所学的内容力的合成、力的分解、二力平衡的基础上对力的进一步学习和应用。回顾整个课堂过程,我对本节课进行如下反思。 1. 设计思路: 本节课的主要内容有两个,分别是(1)平衡状态,(2)共点力的平衡条件和应用。针对每一部分内容,采用我校大力推行的三一六高效课堂教学模式进行教学活动。 (1)平衡状态。①导:通过杂技表演者在高空中走钢丝的视频,引出学习内容——平衡。②思:给学生5分钟时间自学平衡状态的内容,完成导学案基础知识梳理。③议:通过小组合作讨论教师给出两个有价值的问题,进一步理解平衡状态的概念。④展:学生展示基础知识的梳理和问题讨论的结果。⑤评:其他学生进行补充和纠正,教师进行总结点评。⑥检:通过PPT多媒体展示练习题,进行当堂训练,检测自学效果。 (2)共点力的平衡条件。①导:通过对二力平衡的快速回顾引出三个共点力平衡应该满足何种条件。②思:学生自学教材相关内容,学习实验操作方法,为接下来的实验做好准备。③议:该环节包括两个合作讨论过程,一个是实验探究,另一个是理论分析。实验探究:学生进行小组实验,合作完成三个共点力平衡条件的探究。理论分析:小组讨论,从理论上分析三个共点力平衡满足的条件。 ④展:学生展示实验结果和实验结论,并从理论上分享共点力平衡的条件。⑤评:一方面,教师对学生的实验操作进行评价,对实验误差进行分析。另一方面,对学生的理论分析进行点评,帮助学生进一步理解平衡条件。⑥检:本节课主要学习的方法是合成法,因此给出对应的习题,学生进行求解。最后,师生对应用合成法解决平衡问题的一般方法和步骤进行总结。 2. 成功之处: 由于应用了我校三一六高效课堂教学模式,重点突出了学生的自主学习和讨论,本节课整体效果较好。从本节课的实际效果来看,有以下亮点。 (1)引课所用的高空走钢丝视频充分调动了学生的注意力,并且使学生联

典型共点力平衡问题例题汇总

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少?

(3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得 T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。

共点力平衡专题

共点力平衡专题 【典型例题】 题型一:三力平衡 例1、如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是( ) A .mgcos α B .mgtan α C.mg/cos α D .mg 解法一:(正交分解法):对小球受力分析如图甲所示,小球静止, 处于平衡状态,沿水平和竖直方向建立坐标系,将FN2正交分解,列平衡方程为F N1=F N2sin α mg =F N2cos α 可得:球对挡板的压力F N1′=F N1=mgtan α,所以B 正确. 解法二:(力的合成法):如图乙所示,小球处于平衡状态,合力为零.F N1与F N2的合力一定与mg 平衡,即等大反向.解三角形可得:F N1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α. 解法三:(效果分解法):小球所受的重力产生垂直板方向挤压竖直板的效果和垂直斜面方向挤压斜面的效果,将重力G 按效果分解为如上图 丙中所示的两分力G 1和G 2,解三角形可得:F N1=G 1=mgtan α,所以,球对挡板的压力F N1′=F N1=mgtan α.所以B 正确. 解法四:(三角形法则):如右图所示,小球处于平衡状态,合力为零,所受三个力经平移首尾顺次相接,一定能构成封闭三角形.由三角形解得:F N1=mgtan α,故挡板受压力F N1′=F N1=mgtan α.所以B 正确. 题型二:动态平衡问题 例2、如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A ,

A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球 B ,整个装置处于静止状态。设墙壁对B 的压力为F1,A 对B 的压力为F2,则若把A 向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是( ) A .F1减小 B .F1增大 C .F2增大 D .F2减小 方法一 解析法:以球B 为研究对象,受力分析如图甲所示,根据 合成法,可得出F1=Gtan θ,F2=Gcos θ,当A 向右移动少许后,θ减小,则F1减小,F2减小。故选项A 、D 正确。 方法二 图解法:先根据平衡条件和平行四边形定则画出如图乙所示的矢量三角形,在θ角减小的过程中,从图中可直观地看出,F1、F2都会减小。故选项A 、D 正确。 【拓展延伸】在【典例2】中若把A 向右移动少许后,它们仍处于静止状态,则地面对A 的摩擦力变化情况是( ) A .减小 B .增大C .不变 D .先变小后变大 方法一 隔离法:隔离A 为研究对象,地面对A 的摩擦力F f =F 2sin θ,当F 2和θ减小时,摩擦力减小,故选项A 正确。 方法二 整体法:选A 、B 整体为研究对象,A 、B 整体受到总重力、地面的支持力、墙壁的压力和地面的摩擦力,所以摩擦力F f =F 1,当把A 向右移动少许后,随着F 1的减小,摩擦力也减小。故选项A 正确。 [相似三角形法] 例3、如图所示,小圆环A 吊着一个质量为m2的物块并套在另一个竖 2 sin 22 sin 22112αα== m m R g m R g m 解得:

《共点力的平衡及其应用》教学设计

共点力的平衡及其应用 高新完全中学高一年级郭忠孝 【课标分析】 知道什么是物体处于平衡状态。知道在共点力作用下物体的平衡条件,即合力为零。会分析生活中的共点力平衡的实例。 【教材分析】 初中阶段学生对平衡问题有了初步的了解,但只限于二力平衡。高中阶段要在此基础上延伸,在平行四边形定则的基础上探讨多个共点力平衡的问题,其中三个共点力的平衡是重点,动态平衡是难点。 【教法分析】 师生共同归纳总结本节基础知识点、解题方法和解题步骤,学生合作探究并分组展示,小组互评,教师点评。【学法分析】 学生要思考物体受共点力的作用处于平衡状态时,这些共点力满足什么条件。注意物体受三力平衡时的分析和研究,动态平衡题目的分析与研究,加深物体平衡与生活实例的结合。 【教学目标】 一、知识与技能 1.能用共点力的平衡条件,解决有关力的平衡问题; 2.进一步学习受力分析,正交分解等方法。

二、过程与方法 1.通过案例分析,培养学生分析和解决问题能力以及应用数学方法解决物理问题的能力; 2.通过案例分析,培养学生处理平衡问题时一题多解的能力。 三、情感态度与价值观 渗透“学以致用”的思想,有将物理知识应用于生产和生活实践的意识。 【教学重点】 共点力平衡条件的综合应用。 【教学难点】 受力分析、正交分解、动态平衡。 【教学方法】 归纳法、分组探究展示法、小组互评加教师点评法【教学用具】 PPT、小黑板、三角板 【教学过程】 一、导入新课 1.温故知新:PPT展示本节基础知识点、共点力平衡解题的常用方法、基本步骤。 2.学生回答问题后,教师进行评价和纠正。 3.引入:本节课我们来运用共点力的平衡条件解决一些实际问题,将理论应用于实践。 二、新课展示

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

共点力动态平衡专题及详解

共点力动态平衡专题及详解 1.用绳将重球挂在光滑的墙上,设绳子的拉力为T ,墙对球的弹力为N ,如图所示,如果将绳的长度加长,则 A .T 、N 均减小 B .T 、N 均增加 C .T 增加,N 减小 D .T 减小,N 增加 【答案】A 【解析】 试题分析:设绳子和墙面夹角为θ,对小球进行受析: 把绳子的拉力T 和墙对球的弹力为N 合成F ,由于物体是处于静止的,所以物体受力平衡, 所以物体的重力等于合成F ,即F=G ,根据几何关系得出: cos mg T θ =,N=mgtan θ.先找到其中的定值,就是小球的重力mg ,mg 角θ减小,则cos θ增大, cos mg θ 减小;tan θ减小,mgtang θ减小;所以T 减小,N 减小. 故选A 考点:共点力动态平衡 点评:动态平衡是指平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,所以叫动态平衡,这是力平衡问题中的一类难题.解决这类问题的一般思路是:用不变化的力表示变化的力. 2.2008年1月以来,中国南方大部分地区和西北地区东部出现了建国以来罕见的持续大范围低温、雨雪和冰冻的极端天气。南方是雨雪交加,不仅雪霜结冰,而且下雨时边刮风边结冰,结果造成输电线路和杆塔上面的冰层越裹越厚,高压电线覆冰后有成人大

腿般粗,电力线路很难覆冰,而致使输配电线路被拉断或频频跳闸。现转化为如下物理模型:长为125m的输电线的两端分别系于竖立在地面上相距为100m的两杆塔的顶端A、B。导线上悬挂一个光滑的轻质挂钩,其下连着一个重为300N的物体,不计摩擦,平衡时,导线中的张力T1,现使A点缓慢下移一小段,导线中的张力为T2,则下列说法正确的是() A.T1>T2 B.T1

《共点力的平衡及其应用》教学设计

《共点力的平衡及其应用》教学设计 渭南瑞泉中学徐利平 【教材版本】 上海科技教育出版社高中物理(必修一)第四章第三节 【设计理念】 1.“兴趣是最好的老师”,而要引发学生的学习兴趣,就要创建一定的教学情景。课堂中通过多媒体的应用、演示实验、学生动手探究实验、学生讨论及展示等课堂景观,激发学生的学习激情及学习自主性。 2.不少同学感到物理难,就难在物理规律的应用上。本节课创造性的引导学生,将原本是平衡条件的推导与应用的结论,让学生自己通过实验探究、总结,将有利于学生对规律的理解与应用。根据科学探究的基本模式:提出问题→猜想假设→实验验证→得出结论。在教学设计中,首先复习物体的平衡状态,接着利用几个同学拉绳子的小实验,引导学生通过观察实验现象,然后提出问题:请同学们设计一个实验来研究物体的平衡条件,激发学生的探究兴趣。接着在教师的引导下让学生设计实验,充分发挥学生的自主学习、应用的激情,对设计中碰到的问题,让同学们互相交流共同解决,培养学生交流与合作精神。最后,通过实验交流,得出结论。整个过程培养了学生的科学探究精神和物理实验能力。 【教材分析】 本节学习共点力的平衡及其应用,内容包括物体的平衡状态、平衡条件和力的平衡。共点力平衡问题是高中物理的重要内容之一,它涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面物理知识和能力的综合性问题,是高一物理的难点,同时是解决高中力学问题的基础。另外,平衡问题中,涉及到的各种物理模型,在今后物理学习中会经常见到,对高一学生来讲,这些都是一些基本的模型素材。因此,学好本节课对今后力学学习意义重大。但刚开始学习时,力的平衡理论并不难掌握,只是后续应用较为困难。由此确定:本节课的教学重点是平衡的概念及其条件,难点是实验探究共点力的平衡条件并加以简单应用。【学情分析】 学生在初中学习过牛顿第一定律,理解共点力作用下物体的平衡状态会比较容易;利用前面学过的知识分析推出共点力作用下物体的平衡条件,学生也不会有太大困难,教师只需适当点拨即可;但学生在设计实验并通过实验探究共点力作用下物体的平衡条件时会感到比较困难,教师要给予及时的引导,并可通过学生相互讨论共同解决。 【教学目标】

共点力的平衡及应用

图1 图2 图3 专题2 共点力的平衡及应用 导学目标 1.掌握共点力的平衡条件及推论.2.掌握整体法及隔离法的应用.3.会分析动态平衡问题及极值问题. 一、共点力的平衡 [基础导引] 1.如图1所示,一个人站在自动扶梯的水平台阶上随扶梯匀速上 升,它受到的力有 ( ) A .重力、支持力 B .重力、支持力、摩擦力 C .重力、支持力、摩擦力、斜向上的拉力 D .重力、支持力、压力、摩擦力 2.在图2中,灯重G =20 N ,AO 与天花板间夹角α=30 °,试求AO 、 BO 两绳受到的拉力多大? [知识梳理] 物体受到的________为零,即F 合=____或{ ΣF x = F y =0 思考:物体的速度为零和物体处于静止状态是一回事吗? 二、平衡条件的推论 [基础导引] 1.如图3所示,斜面上放一物体m 处于静止状态,试求斜面对物体的 作用力的合力的大小和方向. 2.光滑水平面上有一质量为5 kg 的物体,在互成一定角度的五个水平力作用下做匀速运动,这五个力矢量首尾连接后组成一个什么样图形?若其中一个向南方向的5 N 的力转动90°角向西,物体将做什么运动? [知识梳理] 1.二力平衡 如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小________、方向________,为一对____________.

图4 图5 图6 2.三力平衡 如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的________一定与第三个力大小________、方向________. 3.多力平衡 如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的________大小________、方向________. 考点一 处理平衡问题常用的几种方法 考点解读 1.力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等、方向相反;“力的合成法”是解决三力平衡问题的基本方法. 2.正交分解法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x 合=0,F y 合 =0.为方便计算,建立直角坐标系时以尽可能多的力落在坐标轴上为原则. 3.三角形法 对受三力作用而平衡的物体,将力的矢量平移使三力组成一个首尾依次相接的封闭三角形,进而处理物体平衡问题的方法叫三角形法;三角形法在处理动态平衡问题时方便、直观,容易判断. 4.对称法 研究对象所受力若具有对称性,则求解时可把较复杂的运算转化为较简单的运算,或者将复杂的图形转化为直观而简单的图形.所以在分析问题时,首先应明确物体受力是否具有对称性. 典例剖析 例1 如图4所示,不计滑轮摩擦,A 、B 两物体均处于静止状态.现 加一水平力F 作用在B 上使B 缓慢右移,试分析B 所受力F 的变 化情况. 例2 如图5所示,重为G 的均匀链条挂在等高的两钩上,链条悬挂 处与水平方向成θ角,试求: (1)链条两端的张力大小; (2)链条最低处的张力大小. 例3 如图6所示,在倾角为α的斜面上,放一质量为m 的小球,小 球被竖直的木板挡住,不计摩擦,则球对挡板的压力是 ( ) A .mg cos α B .mg tan α C.mg cos α D .mg

共点力动态平衡分类及解题方法总结

共点力动态平衡问题分类及解题方法 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、其他特殊类型 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 联立,解得:θsin 2N mg F =,θtan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住 不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规 律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右,而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平地面的夹角为θ,如图所示,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则 A .F 先减小后增大 B .F 一直增大 C .F 一直减小 D .F 先增大后减小 解法一:解析法——画受力分析图,正交分解列方程,解出F 随夹角θ变化的函数,然后由函数讨论; 【解析】木箱受力如图,由平衡条件,有 F N F mg F f θ F N2 mg F F N1 F mg θ

共点力平衡的七大题型Word版含解析(2020年10月整理).pdf

专题 共点力平衡的七大题型 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二 三个力互相不垂直,但夹角(方向)已知 。 (3) 热点题型三 三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四 矢量三角形法类 (6) 热点题型五 相似三角形法类 (9) 热点题型六 单位圆或正弦定理发类型 (10) 热点题型七 衣钩、滑环模型 (12) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法②力的正交分解法③正弦定理法④相似三角形法⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。设滑块所受支持力为N F 。OF 与水平方向的夹角为θ。下列关系正确的是( ) A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 解法一 力的合成法滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ,F N =mg sin θ 。

解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ,联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】 T =f +mg sin θ,f =μN ,N =mg cosθ,带入数据解得:m =150kg ,故A 选项符合题意。 【变式2】(2019·新课标全国Ⅲ卷)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平 直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2则( ) A .12F F , B .12F F , C .121==22F mg F , D .121==22 F F mg , 【答案】D 【解析】对圆筒进行受力分析知圆筒处于三力平衡状态,受力分析如图,由几何关系可知,1cos30F mg '=?, 2sin 30F mg '=?。解得12F mg '=,212F mg '= 由牛顿第三定律知121,22 F mg F mg ==,故D 正确

动态平衡问题常见解法

动态平衡问题 苗贺铭 动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。 所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。 一、图解法 方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形的边长,各力的大小及变化就一目了然了。 例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始 缓慢地转到水平位置.不计摩擦,在此过切程中( ) A.F N1始终减小 B. F N2始终减小 C. F N1先增大后减小 D. F N2先减小后增大 解析:以小球为研究对象,分析受力情况:重力G、 墙面的支持力和木板的支持力,如图所示:由矢量三 角形可知:始终减小,始终减小。 归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 二、解析法 方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。 例题2.1倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是() A. F N变 大,F f变大 B. F N变小,F f变小 C. F N变大,F f变小 D. F N变小,F f变大 解析:设木板倾角为θ 根据平衡条件:F N=mgcosθ F f=mgsinθ 可见θ减小,则F N变大,F f变小;

高一物理力学专题-共点力的平衡专题

图3 图1 图2 专题2 共点力的平衡及应用 导学目标 1.掌握共点力的平衡条件及推论.2.掌握整体法及隔离法的应用.3.会分析动态平衡问题及极值问题. 一、共点力的平衡[基础导引]1.如图1所示,一个人站在自动扶梯的水平台阶上随扶梯匀速上升,它受到的力有 ( ) A .重力、支持力 B .重力、支持力、摩擦力 C .重力、支持力、摩擦力、斜向上的拉力 D .重力、支持力、压力、摩擦力 2.在图2中,灯重G =20 N ,AO 与天花板间夹角α=30 °,试求AO 、 BO 两绳受到的拉力多大? [知识梳理]共点力的平衡 共点力 力的作用点在物体上的____________或力的____________交于一 点的几个力叫做共点力.能简化成质点的物体受到的力可以视为 共点力 平衡状态 物体处于________状态或____________状态,叫做平衡状态.(该 状态下物体的加速度为零) 平衡条件 物体受到的________为零,即F 合=____或{ ΣF x = ΣF y =0 思考:物体的速度为零和物体处于静止状态是一回事吗? 二、平衡条件的推论 [基础导引] 1.如图3所示,斜面上放一物体m 处于静止状态,试求斜面对物体的 作用力的合力的大小和方向. 2.光滑水平面上有一质量为5 kg 的物体,在互成一定角度的五个水平力作用下做匀速运动,这五个力矢量首尾连接后组成一个什么样图形?若其中一个向南方向的 5 N 的力转动90°角向西,物体将做什么运动? [知识梳理]1.二力平衡 如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小________、方向________,为一对____________. 2.三力平衡如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的________一定与第三个力大小________、方向________.

解共点力平衡问题的 常见方法

解共点力平衡问题的常见方法 解答共点力平衡问题,是高中物理学习的基础环节,这一知识掌握得好坏,将直接影到整个高中阶段物理的学习.下面就共点力的平衡问题,介绍几种常用的解题方法. 一、力的合成与分解法 对于三力平衡,一般根据任意两个力的合力与第三个力等大反向关系,或将一个力分解到另外两力的反方向上,得到的这两个分力与另外两个力等大、反向. 例作用于0点的三力平衡,设其中一个力大小为F1,沿轴正方向;力F2大小未知。与轴负方向夹角为,如图1所示.下列关于第三个力的判断中正确的是( ) (A)力F3只能在第四象限 (B)力F3与F2夹角越小,则F2和的合力越小 (C)F 的最小值为F1 cos0 (D)力F3可能在第一象限的任意区域 解析由共点力的平衡条件可知,F3与 F1和F2的合力等值、反向,所以F3的范围应 在Fl、F2的反向延长线的区域内,不包括F1、 F2的反向延长线方向,所以F3既可以在第四 象限,也可以在第一象限.由于与F2的合 力与F1的大小相等、相反,而F1大小方向确 定,故力F3与F2的夹角变小,F2与F3的合力 也不变.由于力F2大小未知,方向一定,可作 图求出F3的最小值为F】cos0.综上所述本题 正确答案为(C). 二、正交分解法 所谓正交分解法就是把力沿着两个经选定的互相垂直的方向分解,将矢量运算转化为直线上的代数运算.由F厶=0推出=0、Z =0的关系. 例图2所示为一遵从胡克定律的弹性轻绳,其一端固定在天花板上的0点。另一端与静止在动摩擦因数恒定的水平地面上的滑块A相连.当绳子沿竖直位置时,滑块A对地面有压力作用.B为紧挨绳的一光滑水平小钉,它到天花板的距离BO等于弹性绳的自然 长度.现用一水平力F作用于A。使它向右做匀速直线运动.问在运动过程中,作用于A 的摩擦力( ) 图2 (A)逐渐增大(B)逐渐减少 (C)保持不变(D)条件不足,无法判断 三、整体与隔离法 整体法和隔离法既互相对立又互相统一,在具体解题中,常常需交互运用,发挥各自特点,从而优化解题的思路和方法,使解题简捷、明了. 例将均匀长方形木块锯成如图4所示的三部分,其中B、C两部分完全对称,现将三 部分拼在一起放在粗糙水平面上,当用与木块 左侧垂直的水平向右的力F作用在木块上时。 木块恰向右匀速运动,且A与B、A与C均无相 对滑动,图中所示的角及F为已知,求A与B 之间压力为多少? 解析先取整体为研究对象,由木块受力

相关主题