搜档网
当前位置:搜档网 › 弹塑性力学 第02章应力状态理论

弹塑性力学 第02章应力状态理论

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

应力状态及强度理论

图8-1 第 8章 应力状态及强度理论 例8-1 已知应力状态如图7-1所示,试计算截 面m-m 上的正应力m σ与切应力m τ 。 解:由图可知,x 与y 截面的应力分别为 MPa x 100-=σ MPa x 60-=τ MPa y 50=σ 而截面m-m 的方位角则为 α= -30o 将上述数据分别代入式(7-1)与(7-2), 于是得 ()()()()MPa m 5.11460sin 6060cos 250100250100-=?-?+?---++-=σ()()()MPa m 0.3560cos 6060sin 2 50100=?-?-?---=τ 例8-2 试用图解法解例8-1(图8-2a )。 (a) (b) 图8-2 解:首先,在τσ-平面内,按选定的比例尺,由坐标(-100,-60)与(50,60)分别确定A 和B 点图7-2b )。然后,以AB 为直径画圆,即得相应的应力圆。 为了确定截面m-m 上的应力,将半径CA 沿顺时针方向旋转α2=60o至CD 处,所得D 点即为截面m-m 的对应点。 按选定的比例尺,量得OE =115MPa (压应力),ED =35MPa ,由此得截面 m-m 的正应力与切应力分别为

MPa m 115-=σ MPa m 35=τ 例 8-3 从构件中切取一微体,各截面的应力如图8-3a 所示,试用解析法与图解法确定主应力的大小及方位。 (a) (b) 图8-3 解:1.解析法 x 和y 截面的应力分别为 MPa x 70-=σ,MPa x 50=τ,0=y σ 将其代入式 (7-3)与 (7-5),得 }{MPa MPa 2696502070207022max min -=+?? ? ??--±+-=σσ ?-=??? ??--=?? ? ??-- =5.6202650arctan arctan max y x o σστα 由此可见, MPa 261=σ,02=σ,MPa 963-=σ 而正应力1σ 的方位角 o α则为-62.5o(图8-3a )。 2.图解法 按选定的在τσ-平面内,按选定的比例尺,由坐标(-70,50)与(0,-50)分别确定D 和E 点(图8-3b )。然后,以DE 为直径画圆即得相应的应力圆。 应力圆与坐标轴σ相交于A 和B 点,按选定的比例尺,量得OA =26MPa ,

应力状态——材料力学

土体应力计算 补充一、力学基础知识 材料力学研究物体受力后的内在表现,即变形规律和破坏特征。 一、材料力学的研究对象 材料力学以“梁、杆”为主要研究对象。

二、材料力学的任务 材料力学的任务:在满足强度、刚度、稳定性的要求下,以最经济的代价,为构件确定合理的形状和尺寸,选择适宜的材料,而提供必要的理论基础和计算方法。 强度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。刚度:杆件在外载作用下,抵抗弹性变形的能力。 稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。 如:自行车结构也有强度、刚度和稳定问题; 大型桥梁的强度、刚度、稳定问题 强度、刚度、稳定性

三、基本假设 1、连续性假设:物质密实地充满物体所在空间,毫无空隙。(可用微积分数学工具) 2、均匀性假设:物体内,各处的力学性质完全相同。 3、各向同性假设:组成物体的材料沿各方向的力学性质完全相同。(这样的材料称为各项同性材料;沿各方向的力学性质不同的材料称为各项异性材料。) 4、小变形假设:材料力学所研究的构件在载荷作用下的变形与原始尺寸相比甚小,故对构件进行受力分析时可忽略其变形。 假设

四、杆件变形的基本形式

五、内力?截面法?轴力 1、内力 指由外力作用所引起的、物体内相邻部分之间分布内力系的合成(附加内力)。 2、截面法 内力的计算是分析构件强度、刚度、稳定性等问题的基础。求内力的一般方法是截面法。

(1)截面法的基本步骤: ①截开:在所求内力的截面处,假想地用截面将杆件一分为二。 ②代替:任取一部分,其弃去部分对留下部分的作用,用作用在截开面上相应的内力(力或力偶)代替。 ③平衡:对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面上的未知内力(此时截开面上的内力对所留部分而言是外力) 截面法

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

第7章应力状态和强度理论(答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应 变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+Q V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο 60 方向上的正应变4 60101.4-?=ο ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN ο

第二章应力状态 弹塑性力学基本理论及应用_刘土光

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为n σ和n τ。 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负号规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正,反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均 图2.1 应力矢量

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

材料力学习题册答案-第7章+应力状态

第 七 章 应力状态 强度理论 一、 判断题 1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。 (√) 2、单元体中正应力为最大值的截面上,剪应力必定为零。 (√) 3、单元体中剪应力为最大值的截面上,正应力必定为零。 (×) 原因:正应力一般不为零。 4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。 (×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。三向等拉或等压倒是为一个点。 5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上 6、材料在静载作用下的失效形式主要有断裂和屈服两种。 (√) 7、砖,石等脆性材料式样压缩时沿横截面断裂。 (×) 8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。 (×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论 9、纯剪应力状态的单元体既在体积改变,又有形状改变。(×) 原因:只形状改变,体积不变 10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管内的冰不会被破坏,只是因为冰的强度比铸铁的强度高。(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态 二、 选择题 1、危险截面是( C )所在的截面。 A 最大面积 B 最小面积 C 最大应力 D 最大内力 2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。 A 单元体的形状可以是任意的 B 单元体的形状不是任意的,只能是六面体微元 C 不一定是六面体,五面体也可以,其他形状则不行 D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件内任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B ) A 单向应力状态 B 二向应力状态 C 三向应力状态 D 各向等应力状态 5、分析处于平面应力状态的一点,说法正确的是( B )。 A a σ=0时,必有a τ=max τ或a τ=min τ B a τ=0时,必有a σ=max σ或a σ=min σ C a σ+90a σ+及|a τ|+|90a τ+|为常量 D 1230σσσ≥≥≥

知识点应力状态理论和强度理论

知识点9:应力状态理论和强度理论 一、应力状态理论 (一)应力状态的概念 1.一般情况下,受力构件内各点的应力是不同的,且同一点的不同方位截面上应力也不相同。过构件内某一点不同方位上总的应力情况,称为该点的应力状态。 2.研究一点的应力状态,通常是围绕该点截取一个微小的正六面体(即单元体)来考虑。单元体各面上的应力假设是均匀分布的,并且每对互相平行截面上的应力,其大小和性质完全相同,三对平面上的应力代表通过该点互相垂直的三个截面上的应力。当单元体三个互相垂直截面上的应力已知时,可通过截面法确定该点任一截面上的应力。截取单元体时,应尽可能使其三个互相垂直截面的应力为已知。 3.单元体上切应力等于零的截面称为主平面,主平面上的正应力称为主应力。过受力构件内任一点,一定可以找到一个由三个相互垂直主平面组成的单元 体,称为主单元体。它的三个主应力通常用σ 1,σ 2 和σ 3 来表示,它们按代数值 大小顺序排列,即σ 1>σ 2 >σ 3 。 4.一点的应力状态常用该点的三个主应力来表示,根据三个主应力的情况可分为三类:只有一个主应力不等于零时,称为单向应力状态;有两个主应力不等于零时,称为二向应力状态(或平面应力状态);三个主应力都不等于零时,称为三向应力状态。其中二向和三向应力状态称为复杂应力状态,单向应力状态称为简单应力状态。 5.研究一点的应力状态是对构件进行强度计算的基础。 (二)平面应力状态的分析 1.分析一点的平面应力状态有解析法和图解法两种方法,应用两种方法时都必须已知过该点任意一对相互垂直截面上的应力值,从而求得任一斜截面上的应力。

2.应力圆和单元体相互对应,应力圆上的一个点对应于单元体的一个面,应力圆上点的走向和单元体上截面转向一致。应力圆一点的坐标为单元体相应截面上的应力值;单元体两截面夹角为α,应力圆上两对应点中心角为2α;应力圆与σ轴两个交点的坐标为单元体的两个主应力值;应力圆的半径为单元体的最大切应力值。 3.在平面应力状态中,过一点的所有截面中,必有一对主平面,也必有一对与主平面夹角为45?的最大(最小)切应力截面。 4.在平面应力状态中,任意两个相互垂直截面上的正应力之和等于常数。 图9-1(a )所示单元体为平面应力状态的一般情况。单元体上,与x 轴垂直的平面称为x 平面,其上有正应力σx 和切应力τxy ;与y 轴垂直的平面称为y 平面,其上有正应力σy 和切应力τyx ;与z 轴垂直的z 平面上应力等于零,该平面是主平面,其上主应力为零。平面应力状态也可用图9-1(b )所示单元体的平面图来表示。设正应力以拉应力为正,切应力以截面外法线顺时针转90?所得的方向为正,反之为负。 (a ) (b ) (c ) 图9-1 图9-1(c )所示斜截面的外法线与x 轴之间的夹角为α。规定α角从x 轴逆时针向转到截面外法线n 方向时为正。α斜截面上的正应力和切应力为: ??? ??? ? +-=--++=ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy y x xy y x y x 最大正应力和最小正应力 2 2 min max 22xy y x y x τσσσσσσ+??? ? ? ?-±+=

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

弹塑性力学总结读书报告

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学)

材料力学应力状态

材料力学应力状态

关键词:单元体的取法,莫尔应力圆的前提 有那么一个单元体后(单元体其中的一对截面上主应力=0(平面)或平衡(空间),也就是单元体的一对截面为主平面),才有这么 一个隔离体,才有那么一个莫尔应力圆和表达式 也就是:取的单元体不同,则单元体的应力特点不一样,从而用截面法求任意截面上的应力取隔离体列平衡方程时,隔离体的受力特点不同,从而球出来的表达式也不同,只有这种表达式才适合 莫尔应力圆。 因此拿到一个单元体后,不要急着应用莫尔应力圆,要先看它的特点适合不适合莫尔应力圆,也就是σα和τα的表达式球出来以后还是 不是下面的这个公式。

σy的形式。比如,面的外法线之间的夹角,这样公式中才是σx— 当α表示的是斜截面的外法线与σ1所在平面的夹角,那么公式就是σ1—σ2的形式;不论是谁减谁,应力圆的性状都不变; 1.首先,先有主平面和主应力的概念,剪应力为0的平面为主平面,主平面上的正应力为主应力; 2.然后,由于构件受力情况的不同,各点的应力状态也不一样,可以按三个主应力中有几个不等于零而将一点处的应力状态划分为三类: ?单向应力状态:只有一个主应力不等于零,如受轴向拉伸和压缩的直杆及纯弯曲的直杆内各点的应力状态。 ?二向应力状态(平面应力状态):有两个主应力不等于零,如受扭的圆轴,低压容器器壁各点的应力状态。 ?三向应力状态:三个主应力都不等于零,如高压容器器壁内各点的应力状态。 3.然后,根据受力宏观判断是单轴应力状态还是平面应力状态还是三轴应力状态,取单元体关键,单元体取的不同,单元体上的应力也不同,做莫尔圆的繁简程度也不同,对于平面应力状态,当然要用主应力=0的那个截面参与单元体截取;

弹塑性力学 应力和应变之间的关系

我所认识的应力和应变之间的关系 在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。 所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。这类线性弹性体独立的唐兴常数只有两个。 各向同性体本构关系特点:1.主应力与主应变方向重合。2.体积应力与体积应变成比例。 3.应力强度与应变强度成比例。 4.应力偏量与应变偏量成比例。工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ???=-+=???????=-+=???????=-+=???? ,式中分别为弹性模量、泊松比和剪切模量。在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为() 21E G μ=+。 屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。对于加载过程如图1 OA: 比例阶段;线性弹性阶段 AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段 EF : 颈缩阶段;应变弱化,软化阶段 s σσ≥ C 点为初始屈服点具有唯一性。在应力超过屈服应力后,如果在曲线上任意一点D 处卸 载,应力和应变之间将不再遵循原有的加载曲线规 律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变e ε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。若在卸载后重新加载,则曲线基本上仍沿直线O ’D 变化,直至超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化现象。为了与初始屈服相区别,我们把机箱发生新的塑性变形时的材料的再次屈服称为后

应力状态和强度理论习题及答案

应力状态和强度理论 一、判断题 1.若单元体某一截面上的剪应力为零,则该截面称为主平面。() 2.主平面上的剪应力称为主应力。() 3.当单元体上只有一个主应力不为零时,称作二向应力状态。() 5.图2所示单元体最大剪应力为25Mpa。() 6.图3所示单元体为单向应力状态。() 图2图3图4 7. 向应力状态如图4所示,其最大主应力σ1=3σ()。 8. 任一单元体,在最大正应力作用面上,剪应力为零。() 9. 主应力是指剪力为零的截面上的正应力。() 10.力圆上任一点的横坐标值对应单元体某一截面上的正应力。() 二、选择题 1.图1所示应力圆对应的单元体为图()。

图5 三、选择题 1.若一点的应力状态为平面应力状态,那么该点的主应力不可能为:()。 A 、σ1> 0 σ2=σ3=0 B、σ1> 0 σ2 =0 σ3 < 0 C、σ1>σ2>0 σ3=0 D、σ1>σ2>σ3>0 2.已知单元体各面上的应力如图,则其主平面方位为()。 A、B、 C、D、 四、填空题 1.图示为一平面应力状态的单元体及其应力圆,试在应力圆上表示0-1,0-2,0-3平面的位置。 图6

2.试验表明,材料受力后的破坏主要有两种形式,一种是,是由于或所引起;另一种是,是由于所引起的。 3.一单元体如图所示,则单元体的主应力为__________ ,为 __________ ,为__________ ,最大主应力与x 轴的夹角为__________ 。 五、简单计算 1.单元体上的应力如图7所示,试求其它应力和最大剪应力。 2.图8所示单元体,试求图示斜截面上的正应力和剪应力。 图7图8 3.试求图示单元体o斜截面应力。已知:。 图9

第10章应力状态与强度理论及其工程应用

第10章 应力状态与强度理论 及其工程应用 10.1 概述 10.1.1 应力状态的基本概念 轴向拉伸或压缩杆: 横截面 1 P F A σ= 1A 横截面面积 斜截面 2 cos sin 22 x x θθσσθστθ? =??= ?? 即用不同方位的截面截取,任意点A 的应力是不同的。 受扭圆轴:

横截面 x P M I τρ= 斜截面 s i n2 α στα =-c o s2 α ττα = 即, A点的应力大小和方向随截面的方位不同而不同。 应力状态:构件受力后,通过一个点的所有截面上的应力情况的总体,称为该点的应力状态。 对于受力构件有必要研究其一点的应力状态。 研究应力状态的目的:找出一点处沿不同方向应力的变化规律,确定出最大应力,从而全面考虑构件破坏的原因,建立适当的强度条件。 10.1.2 应力状态分析的基本方法 研究一点的应力状态时,往往围绕所考察的点取一微小正六面体------

单元体。 单元体:微小的立方体, dx dy dz 、、为无限小,其侧面上的应力可 看作是均匀分布的,立方体的两相对侧面的应力可看成是大小相等,方向相反。 在单元体各面上标上应力——应力单元体。 根据一点的应力状态中各应力在空间的不同位置,可以将 ?? ? 空间应力状态 应力状态平面应力状态 空间应力状态:所有面上均有应力作用的应力状态。 平面应力状态:所有应力作用线都处于同一平面内的应力状态(有一对面上总是没有应力)。

?? ? 单向应力状态 平面应力状态纯剪切应力状态 单向应力状态:只受一个方向的正应力作用的应力状态。 纯剪切应力状态:只受剪应力作用的应力状态。 对于平面应力状态,由于单元体有一对面上没有应力作用,所以三维单元体可以用一平面微元表示。

第九章应力状态与强度理论.

第九章应力状态与强度理论 教学目标:了解一点的应力状态;掌握一点应力状态主应力及主平面的计算。 重点、难点:一点应力状态主应力及主平面的计算。 学时分配:4学时。 (一) 一点的应力状态 通过受力构件内一点的所有截面上的应力情况称为一点的应力状态。 (二) 一点的应力状态的表示法一一单元体 围绕所研究的点,截取一个边长为无穷小的正六面体, 用各面上的应力分量表示周围材料对 其作用。称为应力单元体。 特点: 1单元体的尺寸无限小,每个面上的应力为均匀分布。 2?单元体表示一点处的应力,故相互平行截面上的应力相同。 (三) 主平面、主应力、主单元体 主平面单元体中剪应力等于零的平面。 主应力 主平面上的正应力。 可以证明:受力构件内任一点,均存在三个互相垂直的主平面。三个主应力用 厂、(T 2 和(T 3表示,且按代数值排列即 (T l > (T 2> b 3。 主单元体 用三对互相垂直的主平面取出的单元体。 (四)应力状态的分类 根据主单元体上三个主应力中有几个是非零的数值,可将应力状态分为三类: 只有一个主应力不等于零。 有两个主应力不等于零。 三个主应力都不等于零。 1 .单向应力状态 2 .二向应力状态 3 .三向应力状态

单向应力状态又称为简单应力状态,二向和三向应力状态统称为复杂应力状态。单向及二向应力状态又称为平面应力状态。

(三)平面应力状态分析法 平面应力状态通常用单元体中主应力为零的那个主平面的正投影表示如图所示。 (四)任意斜截面成 a 的应力 (T x 、(T y 、(T xy ,则与I 轴成。角的斜截面上的应力分量为 ~ 2 _ T Ky sin2vt + r xv cos2a 式中 正应力T 以拉应力为正;剪应力 T 以对单元体产生顺时针力矩者为正, 时针转向为正。 (五)主平面 主应力 主平面的方位角 a 0 主应力 考虑到单元体零应力面上的主应力为零,因此若已知一平面应力状态 a 角以逆

jlu塑性力学复习题

塑性力学复习题 一、填空题 1.塑性变形不仅与当前的应力状态有关,还和(加载历史)有关。 2.对一般金属,体积应变完全是()的,静水压力不产生()。它对屈服极限的影响()。 3.下图是低碳钢作简单拉伸试验得到的应力—应变曲线。 (1)图中P点的纵坐标称为(),记作()。Q点的纵坐标称为(),记作()。对应于R点的应力称为(),对应于SA的应力称为()。一般把()称为屈服极限,以()表示。 σ阶段,服从()。 (2)在σ≤ s (3)σ—ε曲线的ABF段称为()。 (4)卸载时卸掉的应力σ'与恢复的应变ε'之间也应当服从()。 (5)经过一次塑性变形以后再重新加载的试件,其弹性段增大了,屈服极限提高了。这种现象称为()。 (6)σ—ε曲线至F点后开始下降,这是由于在F点处试件已开始出现()现象。 ε=(), 4.八面体面上的正应变为 8 γ()。 剪应变为= 8 σ=()。 5.用主应力表示的等效应力(或应力强度)为: i 用六个应力分量表示的等效应力(或应力强度)为: σ=()。 i 6.用主应力表示的等效剪应力(或剪应力强度)为:T = ()。 用六个应力分量表示的等效剪应力(或剪应力强度)为: T = ()。 μ=()。 7.应力状态的Lode参数为: σ ε=()。 8.用主应变表示的等效应变(或应变强度)为: i 用六个应变分量表示的等效应变(或应变强度)为: ε= ()。 i 9.用主应变表示的等效剪应变(或剪应变强度)为:Γ=()。 用六个应变分量表示的等效剪应变(或剪应变强度)为:

Γ=( )。 10.表示应变状态特征的Lode 参数为:εμ=( )。 11.第一应力不变量为:1I =( )=( )。 第二应力不变量为:2I =( )=( )。 第三应力不变量为:3I =( )=( )。 12.第一应变不变量为:1I '=( )=( )。 第二应变不变量为:2I '=( )=( )。 第三应变不变量为:='3I ( )=( )。 13.应力偏张量的第一不变量为:=1J ( )。 应力偏张量的第二不变量为:2J =( ) =( )。 应力偏张量的第三不变量为:3J =( )=( )。 14.应变偏张量的第一不变量为:='1J ( )。 应变偏张量的第二不变量为:='2 J ( ) =( )。 应变偏张量的第三不变量为:3J '=( )=( )。 15.在应力空间中,靠近坐标原点且包括原点在内,有一个弹性区(在这个区内的点所表示的应力状态处于弹性阶段),而在其外则为塑性区(其中各点所表示的应力状态已进入塑性阶段)。这两个区的分界叫做( )。 16.主应力按大小顺序排列时的Tresca 屈服条件为( )。 17.主应力不按大小顺序排列时的Tresca 屈服条件为 ( )。 18.用应力偏张量的第二,第三不变量表示的Tresca 屈服条件为: ( )。 19.Mises 屈服条件为( ) 或( )。 二、判断题(如果题中的说法正确,就在后面的括号里填“√”反之填“×”) 1.塑性应变和应力之间具有一一对应的关系。( ) 2.进入塑性状态后,应力与应变之间呈非线性关系。( )。 3.一个已知应力状态(σ1,σ2,σ3)对应π平面上唯一的点S 。反之,π平面上的一点S 也唯一地确定它所代表的原始应力状态。( ) 4.如果以单向拉伸得到的σ为基础,则Mises 屈服条件和Tresca 屈服条件在单向拉压应力状态下完全一致,( )在纯剪切时二者差异最大,约为15%。( ) 三、选择题(只能选一个答案) 1.如果规定σ1≥σ2≥σ3,则最大剪应力为( ): a .22 1max σστ-=; b .231max σστ-=; c .2 32max σστ-=。 2.单向拉伸(0,0321==>σσσ)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 3.纯剪切(312,0σσσ-==)时应力状态的Lode 参数为( )。 a .σμ=-1; b .σμ=0; c .σμ=1。 4.单向压缩(0,0321<==σσσ)时应力状态的Lode 参数为( )。

相关主题