搜档网
当前位置:搜档网 › 火力发电厂废水零排放技术方案

火力发电厂废水零排放技术方案

火力发电厂废水零排放技术方案
火力发电厂废水零排放技术方案

火力发电厂废水零排放技术方案

为实现火力发电厂废水零排放的目标,对脱硫废水预处理工艺、脱硫废水浓缩处理工艺以及末端浓盐水的蒸发结屏,处理工艺进行技术对比,选取适合电厂实际情况的技术方案。处理后的冷凝水可以作为工业水,使电厂水处理系统实现闭式循环,没有任何外排水,真正实现废水零排放。

1脱硫废水处理的意义

我国属于水资源严重短缺且分布不均衡的国家,只有全面综合利用才是解决缺水和排污对环境污染的有效途径。国家及社会对环保要求越来越高,同时也对火力发电厂提出了更高的要求,全厂废水必须做到零排放。

火力发电厂主要污水有生活污水、含油废水、含煤废水、工业废水、循环水冷却塔排污水以及脱硫废水,这些废水一般经过简单物化、生化处理后直接排放或部分回收利用。火力发电厂废水回收基本上是将各部分废水用于脱硫用水,所以脱硫废水处理是全厂废水零排放的关键。目前,国内对脱硫废水的处置方式主要是初步处理后排放。

一般是通过系列氧化还原反应将废水中的重金属污染物转化为胺化物,再通过絮凝反应沉淀除去重金属及悬浮物固体,最后调节pH值使其达到DL/T997-2006《火电厂石灰石一石膏湿法脱硫废水控制指标》的要求,但处理之后依然为高氯根、高含盐且含有微量重金属的废水。因此,电厂湿法脱硫废水回收利用是电厂实现零排放的最大难点和关键。

2脱硫废水预处理

脱硫废水中含有重金属、氟离子、化学需氧量(COD)等污染物,产生的污泥需要进行专业处理。为减少污泥处理量,并保证后续装置运行的稳定性,脱硫废水经现有脱硫废水处理系统处理后,再进入高盐废水浓缩处理系统。脱硫废水总硬度达到100~200mmol/L,需要进行软化处理,以避免后续浓缩处理系统以及蒸发设备结垢。脱硫废水软化处理主要有以下2种方案。

(1)方案1:石灰一碳酸钠软化一沉淀池一过滤器处理工艺。

首先,化学加药使Ca2+,Mg2+以及硅产生沉降,然后用沉淀池做固液分离,沉淀池的上清液自流至重力滤池进行过滤除浊,出水作为高含盐废水浓缩处理系统进水。

(2)方案2:石灰一碳酸钠软化一管式微滤膜(TMF)处理工艺。

首先,化学加药使Ca2+,Mg2+及硅产生沉降,然后采用错流式管式微滤工艺代替传统的澄清工艺,利用微孔膜对废水中的沉淀物进行分离,达到较好的出水水质,出水进入高含盐废水浓缩处理系统进一步处理。2种脱硫废水预处理方案的技术对比见表1。

表1 2种脱硫废水预处理方案技术对比

方案1己在广东河源电厂得到成功应用,系统运行稳定;浙江浙能技术研究院有限公司在浙江浙能兰溪发电有限公司脱硫废水处理以及北京热电厂脱硫废水的中试试验中均采用了方案2,由于脱硫废水有机物含量高,造成微滤膜污堵(浙江浙能兰溪发电有限公司脱硫废水ρCOD=390mg/L,华能北京热电厂脱硫废水ρCOD=480mg/L),微滤膜膜通量衰减严重,系统运行稳定性较差。

3脱硫废水浓缩处理

3.1方案1

方案1采用高盐废水浓缩处理系统,处理系统工艺如图1所示(图中:EDR为电渗析;RO为反渗透。)

图1高盐废水浓缩处理系统工艺(方案1)

方案1包括以下内容。

(1)脱硫废水来水(15m3/h)进入软化处理单元,加石灰调节pH 值,并加碳酸钠去除钙硬和镁硬。

(2)软化处理单元产水(14m3/h)以及循环水排污水回用处理系统RO浓排水(30m3/h)经过精密过滤器过滤后,进入EDR装置,系统设计回收率为55%,脱盐率为75%,产水(24m3/h)作为脱硫工艺用水,浓水(20m3/h)进入蒸发结晶系统。

(3)反应池和沉淀池污泥主要成分为碳酸钙,作为脱硫系统制浆用水。

3.2方案2

方案2采用纳滤一海水反渗透(NF-SWRO)工艺,通过纳滤去除废水中的有机物和部分盐分,纳滤产水进高压反渗透,浓水进蒸发结晶,处理系统工艺如图2所示(图中:SWRO为海水反渗透;NF为纳滤)。

图2纳滤一海水反渗透处理系统工艺(方案2)

混合后的末端废水中ρCOD、含盐量、氯离子质量浓度、硬度等均很高,这些物质在浓缩过程中易造成反渗透膜结垢及微生物污堵等故障,故必须先进行去除或降低这些物质含量。通过两级软化可以将硬度离子去除,但混凝澄清对有机物的去除率只有30%左右,混合后的末端废水ρCOD较高,只有进一步降低ρCOD,才能有效减缓反渗透膜污堵。由于NF装置对COD有较高的耐受性和去除率,因此在软化工艺后增加NF处理。

纳滤膜孔径约为1nm,能有效截留二价及高价离子、分子量高于200的有机分子,使大部分一价盐透过。纳滤膜相对截留分子量介于反渗透膜和超滤膜之间,对无机盐有一定的脱除率;对单价离子截留率低,对二价和多价离子截留率达到90%以上;对疏水型胶体、油、蛋白质和其他有机物有较强的抗污染性。相比于反渗透工艺,纳滤具有操作压力低、水通量大的特点,纳滤膜操作压力一般低于1MPa,操作压力低使得分离过程动力消耗低,对于降低设备的投资费用和运行费用是有利的。

方案2包括以下内容。

(1)脱硫废水(15m3/h)进入软化处理单元,加石灰调节pH值,并加碳酸钠去硬度。

(2)软化处理单元产水(14m3/h)以及循环水排污水回用处理系统RO浓排水(30m3/h)混合后,经过砂率过滤进入NF装置,NF装置回收率设计为75%}NF产水(33m3/h)到SWRO装置,NF浓水(11m3/h)进入高压反渗透装置,回收率为50%5.5m3/h的浓水进入蒸发结晶站2。NF浓水中含有大量的高价离子(主要是硫酸盐),同时含有部分一价离子,为了使产品盐达到二级工业盐的要求,需要利用硫酸钠和氯化钠结晶温度的不同来实现盐的分离。

(3)SWRO装置设计回收率为75%,脱盐率为98%,SWRO淡水(24m3/h)作为冷却塔补水,SWRO浓水(9m3/h)进入高压反渗透装置,回收率为50%,4.5m3/h的浓水进入蒸发结晶站1。由于NF装置将90%以上的高价离子截留,所以SWRO装置进水中的高价离子含量很低。SWRO浓水中的主要离子为氯化钠,蒸发结晶站1的产品盐可以达到二级工业盐的要求,结晶2主要是硫酸钠盐,分别设置2个结晶器实现盐的资源化利用。2种高含盐废水浓缩处理方案对比见表2。

表2 2种高盐废水浓缩处理方案对比4末端浓盐水最终处理

在经过节水(用水流程优化)及深度节水(高盐废水浓缩)后,末端废水还有(4.5+5.5)m3/h,这部分废水受水质影响,不能继续回用,必须进行进一步处理后才能真正实现全厂废水零排放。

4.1末端废水可选择的处置方式

(1)灰场喷洒。将减量后的末端废水输送至灰场,采用雾化喷洒技术,利用灰场环境温度进行自然蒸发。灰场喷洒需要需考虑当地环保政策,考察对周边环境造成的影响。

(2)烟道喷雾干燥。将末端废水雾化喷淋至烟道内,或将部分烟气引出后在单独的喷雾干燥器中实现废水的干燥,利用烟温对末端废水进行蒸发。烟道喷雾干燥需根据烟气流量、热量计算烟道喷雾量,并根据喷头的性能试验数据,结合烟道内流场变化特点,优化布置喷头。末端废水的烟道喷雾干燥应用很少,具有不确定性,存在一定风险。己有案例显示,末端废水喷入烟道造成严重的结垢和烟道部分堵塞。此外,喷入烟道的末端废水可能使烟气和烟尘的性质发生变化,对除尘器运行有一定影响。因此,末端废水喷入烟道,必须解决废水蒸发干燥后的盐分固体随烟气流动在烟道内沉

降、积聚的问题,还需解决喷雾系统的结垢等问题,应通过可行性研究,确定合理的喷雾干燥方式及参数。

(3)蒸发结晶。在高温条件下对废水进行蒸发,除结晶水外所有水分均以蒸气形式排出系统,经冷凝后形成非常纯净的蒸馏水,而污染物质以固体的形式经脱水后排出系统。蒸发结晶系统主要包括两部分:前半部分为热浓缩器,将废水进行蒸发浓缩,95%的废水可转化为高纯度蒸馏水,可用作锅炉补水、冷却塔补水、其他工业用水等;后半部分为结晶器,主要是将剩余的5%高质量浓度浆液在结晶器或喷雾干燥器内处理成固体颗粒,固体废弃物根据其成分可回收利用或掩埋。目前,欧洲、北美地区蒸发结晶处理工艺己成功应用于脱硫废水处理,实现了废水零排放,如美国拉斯维加斯的木兰电厂、美国密苏里州的亚坦电厂、意大利Enel电厂等。国内火电厂对末端废水采用蒸发结晶深度处理工艺的较少,目前广东河源电厂对脱硫废水进行蒸发结晶处理,采用“预处理+蒸发+结晶”处理工艺,是国内第1家实现了废水零排放的火电厂。

综上所述,末端废水采用灰场喷洒以及蒸发塘蒸发处理方式会对周边环境造成影响,还存在污染地下水的风险。烟道喷雾干燥技术目前尚不成熟,末端废水导致的烟道结垢和堵塞等问题还处于研究阶段,没有良好的解决措施。末端废水蒸发结晶处理工艺在国内外己经有大量成功案例。

4.2蒸发结晶处理工艺

目前,蒸发结晶成熟应用的技术主要有多效蒸发(MED),蒸汽机械再压缩(MVR)和自然蒸发(NED)。

4.2.1MED技术

单效蒸发时,单位加热蒸汽消耗量大于1,即蒸发1kg水需消耗1kg以上的加热蒸汽。因此,蒸发量很大时,如果采用单效操作必然消耗大量的加热蒸汽,这在经济上是不合理的,工业上多采用多效蒸发。多效蒸发中效数的排序是以生蒸汽进入的那一效作为第1效,第1效出来的二次蒸汽作为加热蒸汽进入第2效,依次类推。

在多效蒸发中,为了保证每一效都有一定的传热推动力,各效的操作压强必须依次降低,各效的沸点和二次蒸汽压强也相应依次降低。因此,只有当提供的新鲜加热蒸汽的压强较高和末效采用真空时,才能使多效蒸发得以实现。多效蒸发技术将蒸汽热能进行循环并多次重复利用,以减少热能消耗,降低运行成本。通过多效蒸发后达到结晶程度的盐水进入结晶器产生晶体,通过分离器实现固液分离,淡水回收利用,固体盐外售。

4.2.2MVR技术

MVR技术是目前世界上处理高盐分废水可靠、有效的解决方案之一。采用机械压缩再循环蒸发技术处理废水时,除了初次启动需要外部蒸汽外,正常运行时,蒸发废水所需的热能主要由蒸汽冷凝和冷凝水冷却时释放或交换的热能提供,运行过程中没有潜热流失。运行过程中消耗的仅是驱动蒸发器内废水、蒸汽、冷凝水循环和流动的水泵、蒸汽压缩机和控制系统所消耗的电能。利用蒸汽作为热能时,蒸发1kg水需消耗热能2319kJ。采用机械压缩蒸发技术时,蒸发1kg水仅需117kJ或更少的热能。即单一的机械压缩蒸发器的效率,理论上相当于20效的多效蒸发系统。采用多效蒸发技术,可提高效率,但是多效蒸发增加了设备投资和操作的复杂性。

4.2.3NED技术

NED技术在一密闭环境内模拟自然降雨的现象:当气体在设备内循环时,气流在蒸发室内加热并吸收水分,然后在冷凝室内凝结成纯水。废水首先经过换热器被加热至一定温度(40一800C),然后进入蒸发室,从蒸发室顶部喷洒而下,液滴表面的水分被蒸发形成水蒸气,在风的作用下被移至冷凝系统,含有饱和水蒸气的热空气与冷凝系统内从顶部喷洒下来的冷水相遇,重新凝结成水滴,产生净水送至系统外。经蒸发后废水质量浓度不断升高并达到饱和,盐从溶液中析出形成固体颗粒,并通过固液分离器实现最终分离。该技术采用热泵压缩机组,在制备冷凝系统所需冷水的同时,将水中的热量转移用来加热原废水,实现了系统内部能量的循环利用。

NED设备不需要将水加热至沸腾(沸腾可能会损坏某些物质或热交换器,还可能导致结垢等问题),不需要加压室或真空室,也不需要高压过滤。此技术是废水处理技术的一种创新模式,运行能耗低。

4.3蒸发结晶工艺比选

MED,MVR与NED工艺的技术对比见表3。

表3MED,MVR与NED工艺的技术对比

MED和MVR技术在国内火电厂均有成功案例(见下文的2个案例):MED蒸发过程需要消耗大量的蒸汽,对于4效蒸发,1t水需要消耗0.3一0.5t的蒸汽,并且末效产生的二次蒸汽还需要冷凝水冷凝,系统运行费用高;MVR系统将二次蒸汽经压缩机压缩,提高压力和饱和温度,再送入蒸发器作为热源,替代新鲜蒸汽循环利用,同时还省去了二次蒸汽冷却系统,运行费用相对较低,在国外火电厂脱硫废水蒸发结晶处理系统中应用较广。

NED技术采用低温常压蒸发方式,同时采用压缩机系统实现系统内部蒸发吸热和冷凝放热的能量循环利用,从而降低了系统的运行费用。NED设备体积大,采用模块化设计,可根据场地条件立体、多层安装。目前,NED系统在火电厂废水处理中尚未有应用案例。

MVR技术成熟,在国内外电厂均有成功案例,特别是在美国、意大利等国家的火电厂应用广泛,运行费用相对较低。5国内应用案例介绍5.1广东河源电厂废水零排放项目。

广东河源电厂机组容量为2x600MW,是国内第1家真正意义上实现废水零排放的电厂。零排放系统设计处理水量为22m3/h,其中脱硫废水18m3/h其他废水4m3/h。预处理系统包括混凝沉淀系统、水质软化系统和污泥处理系统,技术方案和设备调试均由西安热工院有限公司提供,预处理系统设备投资2000万元;蒸发结晶处理采用4效强制循环蒸发结晶工艺,系统投资约7000万元。预处理出水依次进入1~4效蒸发结晶罐进行蒸发结晶,系统产生的结晶盐达到了工业盐要求。2009年12月系统正式投入生产,系统流程如图3所示,运行情况如下。

图3广东河源电厂零排放系统流程

(1)预处理软化系统配碳酸钠溶液,仍需要外接工业水。

(2)运行期间,脱硫系统吸收塔氯离子质量浓度控制在8000一15000mg/L。

(3)2012年处理水量约5.6万t,折合平均水量约10m3/h。

(4)4效蒸发系统能耗较高,处理1亩废水,消耗蒸汽300kg,耗电30kW.h。

(5)工业盐产量3一4t/d,售价60一80元/t。

(6)预处理系统每天产生约50t泥饼。

(7)实际蒸发温度为70一1100C,其中1效最低,为70一

800C,4效最高,为100一1100C。

5三水恒益火力发电厂有限公司零排放项目

三水恒益火力发电厂有限公司机组容量为2x600MW。零排放系统由佛山德嘉公司提供成套设备,投资为4600万元(不含土建、安装费用),技术来自美国J&Y公司,采用两级卧式MVR工艺,未设置预处理系统,主要处理树脂再生酸、碱废水和脱硫废水。废水零排放系统包含两级卧式喷淋薄膜机械蒸汽压缩蒸发浓缩系统、两级卧式喷淋薄膜蒸发结晶系统、结晶物分离干燥系统等,系统流程如图4所示。

图4三水恒益火力发电厂有限公司

零排放系统流程系统设计处理水量为20m3/h,脱硫废水未采用软化处理,水中结垢因素Ca2+,Mg2+,SO42-,F-,硅等质量浓度很高,属于易结垢水质,运行情况如下。

(1)采用卧式薄膜蒸发器+机械蒸汽压缩循环工艺,能耗相对较低。处理1耐废水,耗电20~25kW.h,消耗蒸汽50一60kg。

(2)未设置脱硫废水预处理系统,其产品为复杂混合盐,作为危险固体废弃物送专业固体废弃物处理中心处理,处理成本800元

/t。

(3)由于蒸发系统进水未经充分软化,结垢倾向严重,日常运行时需要每周进行1次小型酸碱清洗除垢,每月进行1次大型酸碱清洗除垢。

(4)根据现场实际情况,机械蒸汽压缩机入口和出口温升可达到180C,高于预期的8一100C,原设计的2台蒸汽压缩机串联的方式过于保守,目前正在改造为并联运行。

6结束语

脱硫废水深度处理系统水质变化较大,系统投资较高、运行费用较高。脱硫废水深度处理系统目前存在多种处理方式,有些案例己经应用于实践,并取得了较好的效果。

某金属表面处理有限公司废水零排放方案

常州市金属表面处理有限公司电镀废水零排放回用方案

、工程概述 常州震金属表面处理有限公司是常林股份有限公司,小松常林公司,江苏多棱多数控制机床有限公司,苏州长风机械厂,韩国现代等单位定点镀硬铬加工企业。同时生产镀白锌、镀金、镀彩锌、镀镍、镀锡二极管等产品。因发展需要,企业准备搬迁至新厂区,需新建废水处理站。新厂投产后,废水量将达到吨天。水质情况与旧厂基本相同。 、设计依据: 1.企业提供的基础资料:原水水量、水质 2.《城镇污水处理厂污染无排放标准》() 3.《给排水设计手册》(第二、四、六、九分册) 4.《三废处理工程技术手册》 5.《水处理工程师手册》 6.各厂家设备选型样本 7.相关电气、土建设计手册 、设计原则 1.贯彻执行国家关于环境保护的政策,符合国家的有关法律、法规、规范 及标准。 2.根据设计进出水质要求,所选污水处理工艺力求技术先进成熟、处理效 果好、运行稳妥可靠、高效节能、经济合理,确保污水处理效果,减少工程投资及日常运行费用。 3.妥善处理处置污水处理过程中产生的污泥,避免造成二次污染。 4.为确保工程的可靠性及有效性,提高自动化水平,降低运行费用,减少 日常维护检修工作量,改善工人操作条件,本工程中所选用的设备为优良名牌设备。 5.为保证污水处理系统正常运转,供电系统需有较高的可靠性,且污水站 运行设备有足够的备用率。 6.站区总平面布置力求在便于施工、安装和维修的前提下,使各处理构筑 物尽量集中,节约用地。使厂区环境和周围环境协调一致。 7.站区建筑风格力求统一,简洁明快、美观大方,并与其周围景观相协 调。

、废水来源及污染物成分 废水的来源 根据该厂提供相关资料,废水日均排放量为吨,按每天工作运行个小时计算,平均水量为吨小时。 原水污染因子及设计水量 根据厂方提供的有关资料及我们对同类废水的了解,按处理的方式将该厂生产废水分为以下几大类: 1.含氰废水:水量约(即),=,[]≤,[]≤; 2.含铬废水:水量约(即),=~,[]≤; 3.含铜、镍酸碱综合废水::水量约(即),~,[]≤,[]≤; 、设计范围 1.废水处理站废水处理工艺流程、工艺设备选型、工艺设备布置; 2.废水处理站的工艺管线; 3.废水处理站从调节池后的处理工艺参数的制定。 、工艺流程设计 设计指导思想 1.根据废水分类要求,本设计围绕以下几点进行设计: 2.由于含氰废水的特殊性,本设计对含氰废水进行单独破氰预处理,鉴于无 机化学反应的不可逆性,为节省投资,简化管理,破氰完后的废水并入混合废水一起进行后续沉淀处理。 3.为降低工程造价和综合运行费用,将含铬废水单独收集,还原后的废水并 入混合废水一起进行后续沉淀处理 4.为防止间歇性排放的高浓度的电镀废液和退镀废液,对污水处理系统造成 冲击,调节池容积,宜尽可能大,有足够的蓄水调节能力。 5.设置适当的在线监控设备,达到降低劳动强度、稳定处理、达标排放的目 的。 废水分类 根据电镀废水的处理技术可行性和电镀行业生产、管理现状,我们建议对各种废水进行如下分类: 1.含氰废水由于毒性较大,而其他混合废水的值较低,一般呈酸性,如果废

燃煤电厂废水零排放技术

燃煤电厂废水零排放技术

燃煤电厂废水零排放技术 莱特莱德专业从事无废水处理及回用,拥有诸多成功案例,其中1600m3/h 矿井水脱盐及回用项目设计的膜处理系统采用大错流高循环设计,结合Neterfo 极限分离系统,提高系统耐受性的同时,可相对降低膜系统清洗频率。降低清洗频率,充分恢复膜系统性能,保证系统处理效果的同时,提高系统的使用寿命,从而实现系统的长期、稳定运行。工艺选择及系统设计考虑余量问题,有较大的灵活性及调节余地,以适应短期水质、水量的波动。 项目水质情况 系统处理后回用水水质满足《生活饮用水卫生标准》(GB5749-2006)。外排水达到《山东省流域水污染物综合排放标准》(DB37/3416.1-2018)的要求。无水硫酸钠品质达到“GBT 6009-2014 工业无水硫酸钠”标准中的I类一等品标准要求(同时满足业主技术资料中对部分指标的限值)。 项目核心工艺 Neterfo极限分离系统是莱特莱德专门针对高溶解性固体、高硬、高COD废水和中高浓度物料研发的一套深度处理膜系统,系统搭载了错流PON耐污染技术、POM宽流道高架桥旁路技术等多项莱特莱德技术,实现了超高回收率和极低能耗,是废水回用、零排放减量、物料浓缩分离等领域的不二选择。 PON耐污染技术:

膜片一次成型,增加机械强度 膜表面更细腻,大幅降低污染的倾向 POM宽流道高架桥旁路技术: 平行宽流道,阻力更小,能耗更低 更高的分子交联架桥,呈现弱极性 更高的孔隙率,降低污染物接触附着的 项目工艺流程 来水→高密度澄清池→自清洗过滤器→超滤装置→超滤水池→反渗透装置→产水池→回用 来水经过高密度澄清池(PON,POM),再经过自清洗过滤器到超滤装置和超滤水池,再到反渗透装置和产水池,最后回用。 反渗透装置 根据排水及回用水要求,系统一级处理采用反渗透装置,其产水可满足回用标准,且剩余部分与其他部分进行混合排放,反渗透装置高回收率设计使大部分的水满足排放要求,减低后续处理水量,整体将盐分进行高度浓缩。 序号项目原水反渗透系统 1 膜元件类型抗污染膜元件 2 系统回收率80% 3 系统设计通量22.1

火电厂节水措施

电厂节水措施 火力发电厂作为用水大户,需要大量水资源。当在缺水地区选定火力发电厂厂址时,许多发电厂的选择原则都是以水定点。根据可获取水量的多少,来决定发电厂的建设规模。同时,火力发电厂是排水大户,大量污废水外排不利于水环境的保护,和可持续发展。由此来看火力发电厂的节水工作就显得越来越重要,它不仅对其周围生存环境的保护有重要的意义,而且还对发电厂的安全经济、持续发展有着重要的意义。 1、火力发电厂的节水措施 节约用水和减少外排废水是电厂水务管理的核心,进行火电厂的废污水治理,减少新鲜水用量,提高水的重复利用率,实现节约用水,已成为火电厂生存和发展的关键。供水设计中可采用的节水措施有以下方式: (1)电厂辅机系统冷却用水采用热交换器闭式循环系统。 (2)生产废水经废水处理站处理达到排放标准后排入工业废水管道,经收集后重复用于道路绿化、灰加湿等。 (3)生活污水由管道汇集后流至生活污水处理场,处理达到排放标准后回收到至复用水池,重复利用于煤场喷洒。进深度处理合格也可作为循环冷却水的补充水。 (4)输煤栈桥冲冼水经处理后重复使用,煤场喷洒、尘采用重复水池中的复用水。 (5)集中制冷站冷却用水、环水泵房冷却用水等分散点的大用户均设置冷却和升压泵,循环使用,增加水循环利用率。 (6)除灰系统采用干除灰。 (7)在严重缺水地区,经过经济技术比较后可采用空冷技术。 2开发应用节水新技术 2.1废水回收利用 循环冷却系统是电厂用水、耗水最大的环节,回收利用冷却塔排污水,处理回收其他工业废水或生活污水做冷却塔循环水的补充水,取得了明显的节水效果,是电厂耗水定额指标下降的主要原因。冷却塔排污水用于脱硫补水、冲灰、冲洗和喷洒,可以减少低污染水直接排放损失,提高水的回用率,是较为传统并被广泛

电厂废水零排放技术介绍(5t)

烟气干燥法脱硫废水零排放技术的介绍 二零一五年八月

目录 一、概述 (2) 二、设计参数 (2) 三、喷雾干燥技术原理 (3) 3.1 喷雾干燥原理 (3) 3.2 装置描述 (3) 3.3 技术特点 (4) 四、喷雾干燥废水处理工艺 (4) 4.1 石灰浆液制备与输送系统 (4) 4.2 烟气系统 (4) 4.3 喷雾干燥塔系统 (5) 五、喷雾干燥废水处理工艺的主要技术参数 (5) 六、废水处理工艺主要设备 (7) 6.1利用空气预热器前的热烟气系统 (7) 6.2利用除尘器后的热烟气系统 ................................................ 错误!未定义书签。 6.3工艺设备清单 (9)

烟气干燥法脱硫废水零排放技术的介绍 一、概述 随着废水排放标准的要求日益严格及用水、排水收费制度的建立,火电厂作为用水、排水大户,无论从环境保护还是从经济运行角度来看,节约用水和减少外排废水已变得十分必要,已要求电厂实现脱硫废水零排放。 火电厂湿法脱硫废水的杂质来自烟气和脱硫用的石灰石,主要包括悬浮物、过饱和的亚硫酸盐、硫酸盐以及重金属:其中很多是国家环保标准中要求控制的第一类污染物。由于水质的特殊性,脱硫废水处理难度较大;同时,由于各种重金属离子对环境有很强的污染性,因此,必须对脱硫废水进行单独处理。 目前,国内有电厂采用蒸发结晶工艺对脱硫废水进行深度处理来达到零排放的要求,但该工艺的建设投资和运行费用均较高。 本文参考喷雾干燥技术,将喷雾干燥方法应用于处理脱硫废水,即将脱硫废水经过旋转雾化盘雾化后,利用锅炉热烟气作为热源(锅炉热烟气按照连接位置分两种情况:1)锅炉脱硝后进空气预热器前的热烟气;2)除尘器后脱硫前的锅炉热烟气。),在喷雾干燥塔内将废水蒸发,水分进入烟气中,废水中的盐类干燥后被收集下来。这种工艺充分利用锅炉热烟气的热量,不需额外的蒸汽源,是一种低能耗的技术。二、设计参数 处理废水量:5t/h; 热烟气参数: 脱硝后空气预热器前的烟气(假设值) 烟气温度:300℃; 烟气中SO2浓度:2200mg/Nm3。 SO3含量:100 mg/Nm3 HCL含量:40 mg/Nm3 HF含量:20 mg/Nm3

工业废水零排放工程设计方案

工业废水零排放工程设计方案 第一章概述 一、工程概况 中铝瑞闽铝板带有限公司是中国铝业公司控股的一家以生产优质铝板带材为主的现代化铝加工企业,按中铝集团节能减排的目标与要求,要求所属企业2008年全部实现工业废水零排放,实现工业废水的零排放,对公司内的生产废水和生产污水进行集中处理,达到回用水标准后作为景观用水、循环水补充水、道路清洗、绿化用水、车辆冲洗用水等杂用水或其他用水,为创建国家环保友好企业目标而努力。二、设计依据 1)《中华人民共和国环境保护法》(1989年12月) 2)《中华人民共和国水污染防治法》(1996年5月修正) 3)《给排水构筑物施工及验收规范》(GBJ125-1989) 4)《室外排水设计规范》(GBJ14-1987) 5)《给排水管道工程施工及验收规范》(GB50268-1997) 6)《给排水工程结构设计规范》(GBJ69-1984) 7)《给水排水标准规范实施手册》(GB17-1988) 8)《低压电器设计规范》(GB50054-1995) 9)《污水综合排放标准》(GB8978-1996) 10)《城市污水再生利用城市杂用水水质标准》GB/T18920-2002 11)《污水再生利用工程设计规范》GB/T18920-2002 12)中铝瑞闽铝板带有限公司提供的设计资料 三、设计范围 1、本方案设计范围从中水站拦污渠进水口起至回用水池止。 2、本方案设计内容包括处理工艺、设备选型、土建、电力、仪表及工程概算。 四、设计原则 1、采用先进可靠的处理工艺,确保处理出水的各项指标达到回用水水质标准。 2、中水处理设施力求占地面积小,工程投资省,运行能耗低,处理费用少,劳动强度低。 3、选用质量可靠、维修简便、能耗低的机电设备及性能优异、价格适宜的专用设备,

废水零排放实施方案

废水零排放实施方案 关键词:废水零排放工业废水处理生活污水处理回收利用 我厂坐落于常年干旱少雨的陕北黄土高原,缺水严重,而且电厂是用水大户,每天产生的废水量非常大,实现废水的零排放,不仅有较好的环境效益和社会效益,同时还具有较好的经济效益。因此,实现废水的零排放势在必行。 要实现废水的零排放,应主要从两个方面着手。一是废污水的处理和回收利用;二是从废水的来源尽量减少和合理排放。 我厂废水能够排至厂外的主要有灰水回用水池溢流、清水调节池溢流、生活污水调节池溢流、工业废水调节池溢流、煤废水调节池溢流、煤废水回用水池溢流。 各个专业在值长的调度下密切配合,加强联系才能在满足各用户的前提下确保不溢流,达到零排放。 一、灰水回用水池的来水为:辅机冷却水池排污,脱硫废水,化学中和水池排水,机组排水槽排水经化学废水处理装置处理后的回收水。用户有脱硫工艺水箱,灰库喷淋,灰场用水。因为用户较多且均存在间断性补水,所以对灰水灰用水泵的运行方式要求较为严格,且灰水回用水池的液位变化没有规律。因此需要各专业密切配合,才能满足各用户的需要和确保零排放。 1、化学值班人员加强调整灰水回用水池水位。首先保证灰库用水,如果脱硫工艺水箱少量补水(脱硫工艺水箱补水手动门开3—4档)和灰库同时用水,只需运行一台灰水回用水泵运行即可。若灰库、脱硫工艺水箱、灰场同时用水,运行两台灰水回用水泵。向灰库、灰场供水总门全开,调整灰水回用系统压力在0.4MPa左右。若压力高时,调整灰水回用水池再循环门开度,确保正常压力在0.4MPa左右。 2、灰水回用水池水位低时,可以启动机组排水贮存槽排水泵和最终排水泵将机组排水贮存槽内存水打至灰水回用水池。也启动#2或#3清水泵,开启灰水回用水泵和清水泵出水联络门,向灰水回用水系统打水。清水池、灰水回用水池水位低时,联系脱硫停止向灰场和脱硫工艺水箱补水,并联系脱硫将废水排至灰水回用水池。如灰水回用水池液位高时,及时联系脱硫向灰场和脱硫工艺水箱打

火电厂废水零排放技术及工艺案例

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 火电厂废水零排放技术及工艺案例火电厂废水零排放技术及案例分析 1/ 43

废水零排放案例案例1:河源电厂技术路线:处理22吨/小时脱硫废水,经预处理加氢氧化钙、碳酸钠、盐酸后沉淀脱泥,直接进入四效蒸发结晶器,出混盐烘干装袋。 具体路线及照片如下:曝气石灰、絮凝剂、助凝剂脱硫废水有机硫、碳酸钠、助凝剂缓冲池一级反应池一级澄清池中间水池二级反应池二级澄清池过滤器清水箱污泥脱水机脱盐水凝汽器污泥池四效蒸发器三效蒸发器二效蒸发器一效蒸发器动力蒸汽结晶盐烘干机脱水机污泥外运存在的问题:1、多效蒸发结晶器能耗高(1吨废水需0.4吨蒸汽)。 2、产生混盐,无法综合利用。 废水零排放技术及案例分析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 废水零排放案例案例1:河源电厂每1m3废水,消耗蒸汽约300kg,耗电约30kW.h进水原水池二级软化澄清清水箱蒸馏水换热器4效MED蒸发 +结晶实际~240~360m3/d约50吨泥饼/d结晶盐打包装置干燥系统压滤机工业盐约3~4t/d废水零排放技术及案例分析 3/ 43

废水零排放案例案例1:河源电厂? 河源电厂工艺系统2×600MW超超临界燃煤机组,系统出力15~16 t/h 深度预处理+四效蒸发MED+盐干燥系统经济指标总投资12000多万人民币整套装置占地约400m2(不包括预处理系统)结晶盐(NaCl)纯度92%~98% 处理蒸发器一年1~2 次化学清洗,清洗时间约为7天度高结晶器运行6~8周需化学清洗,清洗时间约为8小时吨水运行费用70~80元废水零排放技术及案例分析

制药废水零排放设计方案

广东永明制药有限公司环境污染废水治理工程 设 计 方 案 东莞市永明环保科技有限公司二零一五年零七月

目录 第一章工程概况 (3) 1.1项目概况 (3) 1.2 设计依据、原则和范围 (3) 1.3回用水质标准 (5) 第二章水量水质 (5) 2.1水量水质 (5) 2.2设计回用水质 (5) 第三章工艺设计 (6) 3.1 工艺确定的原则 (6) 3.2治理工艺流程 (6) 3.3工艺说明 (7) 3.4 工艺流程特点 (7) 3.5MBR工艺特点 (8) 3.6二氧化氯发生器原理 (9) 3.7回用率计算 (11) 3.8主要构筑物和附属设备材料 (11) 第四章电气自动控制系统设计 (18) 第五章土建设计 (19) 第六章总平面布置及其他公用工程 (21) 第七章环境保护与安全 (22) 第八章节约能源 (23) 第九章工程进度计划及运行成本 (24) 第十章投资概算 ......................................................... 错误!未定义书签。第十章售后服务及质量保证 (25)

第一章工程概况 1.1项目概况 广东永明制药有限公司座落于广东省广州增城市石滩镇元美石榴基村,主要从事氯化钠注射液、葡萄糖注射液及氯化钠与葡萄混合注射液的生产和销售。在产品加工生产过程中会产生少量的生产性废水,水中污染物主要有COD、SS;若该类废水不经治理直接排放会对周围环境及土壤造成一定的影响,贵公司各层人员具有积极的环境保护意识,自觉遵守“三同时”原则,遵守国家和地方的环境保护法律法规,在厂区建设的同时着手环境污染治理项目的建设,项目所产生的废水经治理后全部作杂水回用。受贵司委托,我公司提供一套废水处理设计方案,供贵司参考。 1.2 设计依据、原则和范围 1.2.1 设计依据 本污水处理项目的设计,施工与安装严格执行国家的专业技术规范与标准 (1)《中华人民共和国环境保护法》 (2)《中华人民共和国水污染防治法》 (3)《地表水环境质量标准》(GB 3838-2002) (4)《水污染物排放标准》(DB44/26-2001) (5)《室外给排水设计规范》GBJ14-87 (6)《给水排水工程结构设计规范》(GBJ69-84) (8《建筑给水排水设计规范》(GBJ15-88) (9)《地下工程防水技术规范》(GBJ108-87) (10)《给水排水构筑物施工及验收规范》(GBJ141-90) (11)《钢筋混凝土工程施工及验收规范》(BGJ204-83) (12)《电气装置施工及验收规范》(GBJ232-82) (13)《建筑安装工程质量检验评定标准》(TJ307-74) (14)《机械设备安装工程施工及验收规范》(TJ231-75) (15)《现场设备、工业管道焊接工程施工及验收规范》(GBJ236-82)

燃煤电厂脱硫废水零排放处理工艺 尹建

燃煤电厂脱硫废水零排放处理工艺尹建 发表时间:2019-07-16T13:53:17.733Z 来源:《电力设备》2019年第6期作者:尹建 [导读] 摘要:燃煤电厂是我国现代化经济建设中的支柱型产业,能够最大程度上满足社会群体的日常生活用电供应需求,在拉动国民经济增长上发挥着重要的作用。 (山东鲁泰热电有限公司山东济宁 272300) 摘要:燃煤电厂是我国现代化经济建设中的支柱型产业,能够最大程度上满足社会群体的日常生活用电供应需求,在拉动国民经济增长上发挥着重要的作用。在可持续发展理念下,节能政策不断推广,社会群体的环保意识也不断提升,政府部门高度重视燃煤电厂的脱硫废水排放问题,为进一步加强生态环境保护,应当积极优化燃煤电厂脱硫废水零排放处理工艺,全面提高燃煤电厂的生态效益和经济效益。 关键词:燃煤电厂;脱硫废水;零排放处理 燃煤电厂的发展和施工对于我国经济的长远进步也有着重要的促进作用。但是随着我国环保政策推广,燃煤电厂中的水污染情况得到了我国政府的高度重视,政府在这一工作中力求提高水资源的利用率,以此促进经济的快速增长。由此可见,燃煤电厂中脱硫废水零排放处理工艺显得尤为重要。 一、脱硫废水主要特性 1.水质不稳定脱硫废水水质与石灰石纯度、煤种类、脱硫氧化风量、吸收塔内Cl一质量浓度和吸收塔内的浓缩倍率等因素有关,因而即使相同脱硫装备在不同时段,水质也存在较大差别。 2.悬浮物含量高脱硫废水中的悬浮物质量浓度主要受煤种的变化和脱硫运行工况的影响,一般在6 000 10 000mg/L,大部分电厂的脱硫废水可在2~3h内自然澄清,少量废水长时间难以自然澄清。 3.含盐量高脱硫废水中的含盐量很高,一般在10 000~40000mg/L之间。其中含量最高的阴阳离子分别为Cl一和M92+,其质量浓度通常在4 000 12 000 mg/L和5 000~15 000mg/L之间;其次为硫酸盐和Ca2+,其质量浓度分别在2 000~6 000mg/L和800~2000mg/L之间;另外,还含有一类污染物Cd、Hg、Cr、As、Pb、Ni等重金属离子和二类污染物Cu、Zn、氟化物、硫化物等。 二、燃煤电厂脱硫废水 1.来源。就当前我国燃煤电厂运行的实际情况来看,石灰石-石膏湿法脱硫技术是常用的脱硫工艺,实际应用效率较高,适应性较强。通常情况下,燃煤电厂脱硫废水大多来源于脱硫塔排放废水,在湿法脱硫条件下,煤的燃烧以及石灰石的溶解过程中产生大量的烟气、悬浮物和杂质,严重污染水资源。石灰石-石膏湿法脱硫技术能够有效去除烟气中的二氧化硫等,有效控制浆液中的灰尘颗粒浓度,保证脱硫设备中物质平衡,此种情况下,必须排放一定废水以促进飞灰排出。脱硫废水中包含一定量的亚硫酸盐、硫酸盐及重金属等,属于国家环保标准中的第一类污染物,严重污染生态环境,此种情况下,应当积极优化燃煤电厂脱硫废水零排放处理工艺,以维护生态环境的稳定持续发展。 2.特点。一是成分多,水质变化大。就燃煤电厂脱硫废水的实际排放情况来看,在煤燃烧和烟气吸收后,脱硫废水的成分发生明显变化,尤其是钠离子、钙离子、硫酸离子和重金属离子的成分较多,并且随着电厂各项设备的不断运行,脱硫废水的水质发生明显变化,此种情况下对水资源造成严重污染。二是燃煤电厂脱硫废水的盐含量过高。燃煤电厂生产实际表明,脱硫废水中含有大量的盐,其与燃煤电厂实际供电需求存在密切的联系,随着燃煤电厂电力供求的不断增大,脱硫废水的含盐量也随之提高。三是脱硫废水中的悬浮物含量较大。当前燃煤电厂脱硫废水处理过程中,主要采用石灰石-石膏湿法脱硫技术,但在燃煤电厂实际运行过程中,脱硫废水中实际所含的悬浮物数量较多,严重制约着燃煤电厂的安全稳定运行。四是腐蚀性较强。由于脱硫废水的成分较复杂,含有较多酸性物质,具有较强腐蚀性,因此,在发电过程中,会对机械设备、管道等造成了严重腐蚀,是燃煤电厂目前急需解决的重要问题。五是硬度强,易结垢在运用石灰石和石膏进行脱硫处理以后,废水中会含有大量的镁离子、钙离子等,并且硫酸钙基本呈现饱和状态,一旦温度升高,脱硫废水很容易结构,具有较强硬度,使设备的使用寿命受到严重影响。 三、燃煤电厂脱硫废水处理方式 1.中和处理。根据我国脱硫废水处理相关规定和燃煤电厂的实际发电情况,进行中和处理,首先要将废水进人混合池,采用石灰石或其他碱性化学试剂,进行脱硫废水的PH值调整;然后进行中和处理的酸碱中和反应,除去相关离子物质。 2.重金属分离。在进行脱硫废水的中和处理时,会有重金属氢氧化物生成,当PH值达到9以上,会生成更多难溶氢氧化物,同时有难溶酸性物质生成。为了将金属离子都分离开,再向剩余脱硫废水加人有机硫化物,可以生成相应的难溶硫化物质,从而达到除去重金属离子的目的。 3.絮凝处理。在完成上述两个处理工序以后,还需要对脱硫废水进行絮凝处理,将废水中的胶体和其他物质除去。一般加人的絮凝剂有氯化铁,并且在出口地方加人相应的助凝剂,可以使胶体和其他物质形成的絮状物更易沉淀,同时加速其它氢氧化物和硫化物的沉淀,使脱硫废水中的悬浮物都得到相应处理,便于进行最后的综合处理。 4.沉淀处理。经过上述处理以后,需要将剩余废水转移到其它设备,观察废水的处理情况,一般底部的污泥都由絮凝物沉积而成,经过厢式压滤机压滤之后,进行沉淀物的固液分离操作。在按照脱硫废水处理工艺的工序进行沉淀处理时,上部分的净水必须经过PH值检测和悬浮物含量检测达标后,才可以由净水泵向外排出,否则将按照混凝沉淀到综合处理的工序进行重新净化,以达到提高水资源利用率的目的。 四、燃煤电厂脱硫废水零排放处理工艺 就燃煤电厂脱硫废水处理的实际情况来看,大多以混凝沉淀和总额和处理方式对脱硫废水进行处理,但其仅仅能够除去排放标准中的相关物质,其钙离子和钠离子等仍留存于废水中,实际处理工序复杂,且处理效果并不十分理想。此种情况下,应当积极优化燃煤电厂脱硫废水处理工艺,切实提高处理技术水平,这就要求相关工作人员积极借鉴相关资料和以往技术经验,优化燃煤电厂脱硫废水零排放处理工艺,通过预处理和深处理,对燃煤电厂脱硫废水进行混凝沉淀处理,真正促进燃煤电厂脱硫废水处理零排放的顺利实现,实现水资源的优化利用,降低水污染程度,并合理控制燃煤电厂脱硫废水处理的成本,延长处理设备使用寿命,切实提高燃煤电厂脱硫废水排放的有效性。常规废水零排放处理方法即为常规的多效蒸发结晶工艺。蒸发系统分为4个单元:热输入单元、热回收单元、结晶单元、附属系统单

高效反渗透废水处理工艺在电厂废水零排放中的应用_胡小武

1概述我国是个水资源短缺的国家,人均水资源量约 为2200m 3,约为世界平均水平的四分之一。而且水资源供需矛盾突出,据统计全国600多个城市半数以上缺水,其中108个城市严重缺水。随着经济的发 展,用水量持续增长,用水结构也在不断调整,节约用水、高效用水是缓解水资源供需矛盾的根本途径。 在全国总取水量中,农业约占70%,工业约占20%,生活约占10%。而我国火力发电厂取水量约占总工业取水量的50%。因而发电企业实施节水及高效用 水战略, 不仅是电力行业的一个经济问题,更是关系到电力工业持续发展和保证经济和社会快速健康发展的重大社会问题。 本文分析了反渗透系统运行的特点,对制约反渗透系统回收率提高的因素进行了分析,并结合神华亿利煤矸石电厂高效反渗透废水处理工艺系统的应用实例,充分阐述了高效反渗透废水处理工艺系统在工业废水处理中的有效应用。 2项目简介 神华亿利煤矸石电厂位于内蒙古鄂尔多斯市达 拉特旗,该厂安装有4×200MW 空冷发电机组。采用 循环流化床脱硫工艺,由于没有下游用户,电厂各种废水难以处置。为减少全厂外排废水量, 降低单位发电量取水量,电厂实施了废水零排放工程,将各种废水经深度处理后进行回用。 神华亿利煤矸石电厂4×200MW 电厂废水 “零排放”工程项目于2009年9月正式开工,2010年6月开始进入调试阶段,2010年9月正式移交生产。 3工业废水处理工艺的选择 神华亿利煤矸石电厂高效反渗透废水处理工艺 系统主要采用“石灰软化+过滤+离子交换+反渗 透”的处理工艺,主要包括废水收集和输送系统、预处理系统、离子交换系统、反渗透系统、RO 浓水回用 系统、加药系统、压缩空气系统。3.1 神华亿利煤矸石电厂工业废水种类及特点电厂所排工业废水主要有四类,一类是含油的废水,主要是油库区的含油废水,这部分水水量小,为非连续性工业废水;一类为使用后盐份浓缩的废 水,主要是循环水排污水和化学车间的废水;一类为使用后悬浮物增加的水,包括主厂房地面冲洗水和无阀滤池反洗排水;一类为温度较高的锅炉排污水 和疏放水。这四类工业废水目前在电厂管系系统为合流制,也就是目前电厂所有的工业废水都通过总排口排放。 3.1.1含油废水 油库区的含油废水由于油的含量较高,处理水 量较小,平均仅有1m 3/h,工业废水处理系统将这部分水从工业废水管网中分流出来,单独改造含油废水排放管道系统,将这部分废水就近排放到煤场随 煤一起燃烧处理。3.1.2 循环水排污水 厂区内的循环水是混凝澄清处理后的黄河水经机械通风冷却塔自然浓缩至1.5~2.5倍后的水,且水中添加了一定量的缓蚀阻垢剂和杀菌剂,连续排 放,排污量45m 3/h,部分送至输煤系统和煤场进行冲洗、喷洒、抑尘,剩余部分排至厂区内的工业废水管网。冷却塔排污水水质见表1。 高效反渗透废水处理工艺在电厂废水零排放中的应用 胡小武 (神华亿利能源有限责任公司,内蒙古鄂尔多斯,014300) 摘要:工业废水处理工艺系统越来越广泛应用于企业的废水处理中。神华亿利煤矸石电厂利用高效反渗透废水处理工艺系统,对电厂中的各种工业废水进行处理,从而达到废水再循环利用,实现了废水零排放。 关键词:零排放废水处理火电厂灰水循环冷却水工业废水中图分类号:X773 文献标识码:A 文章编号:1674-8492(2011)05-092-05 第9卷第5期VOL.9NO.52011年10月 Oct.2011

废水零排放技术RCC

废水零排放技术RCC 一、零排放的定义 所谓零排放,是指无限地减少污染物和能源排放直至到零的活动。零排放,就其内容而言,一是要控制生产过程中不得已产生的能源和资源排放,将其减少到零;另一含义是将那些不得已排放出的能源、资源充分利用,最终消灭不可再生资源和能源的存在。 废水“零排放”是指工业水经过重复使用后,将这部分含盐量和污染物高浓缩成废水全部(99%以上)回收再利用,无任何废液排出工厂。水中的盐类和污染物经过浓缩结晶以固体形式排出厂送垃圾处理厂填埋或将其回收作为有用的化工原料。 二、国内现有实现废水“零排放”的手段 目前国内广泛使用的工业废水处理技术主要包括RO(反渗透膜双膜法)和EDR技术他们的主要材料是纳米级的反渗透膜,而这种技术的作用对象是离子(重金属离子)和分子量在几百以上的有机物。其工作原理是在一定压力条件下,H2o可以通过RO渗透膜,而溶解在水中的无机物,重金属离子,大分子有机物,胶体,细菌和病毒则无法通过渗透膜。从而可以将渗透的纯水与含有高浓度有害物质的废水分离开来。但是使用这种技术我们只能得到60%左右的纯水,而剩余的含高浓度有害物质的废水最终避免不了排放到环境的结局,而这些高浓度的重金属离子和无机物对我们的环境是极其有害的。 三、RCC技术 CC技术,能真正达到工业废水“零排放”,RCC的核心技术为“机械蒸汽再压缩循环蒸发技术”及“晶种法技术”、“混合盐结晶技术” (一)机械蒸汽再压缩循环蒸发技术 1、机械蒸汽再压缩循环蒸发技术的基本原理 所谓的机械蒸汽再压缩循环蒸发技术,是根据物理学的原理,等量的物质,从液态转变为气态的过程中,需要吸收定量的热能。当物质再由气态转为液态时,会放出等量的热能。根据这种原理,用这种蒸发器处理废水时,蒸发废水所需的热能,再蒸汽冷凝和冷凝水冷却时释放热能所提供。在运作过程中,没有潜热的流失。运作过程中所消耗的,仅是驱动蒸发器内废水、蒸汽、和冷凝水循环和流动的水泵、蒸汽泵和控制系统所消耗的电能。为了抵抗废水对蒸发器的腐蚀,保证设备的使用寿命蒸发器的主体和内部的换热管,通常用高级钛合金制造。其使用寿命30年或以上。 蒸发器单机废水处理量由27吨/天起至3800吨/天。如果需要处理的废水量大于单机最大处理量,可以按装多台蒸发器处理。蒸发器在用晶种法技术运行时,也称为卤水浓缩器(Brine Concentrator)。 2、卤水浓缩器构造及工艺流程 (1)待处理卤水进入贮存箱,在箱里把卤水的PH值调整到5.5-6.0之间,为除气和除碳作准备。卤水进入换热器把温度升至沸点。 (2)加热后的卤水经过除气器,清除水里的不溶所体,如氧所和二氧化碳。(3)新进卤水进入深缩器底槽,与在浓缩器内部循环的卤水混合,然后被泵到换热器管束顶部水箱。

工业废水零排放系统 煤矿生活污水零排放 技术方案

工业废水零排放系统煤矿生活污水零排放 技术方案

社会经济的快速发展加剧了环境的污染程度,废水处理跟不上发展,所以会造成严重的污染,破坏生存环境。利用专业的废水处理零排放设备,可以有效地处理工业污水废水,避免污水和污染物直接流入水域,对提高生态环境,改善城市品味具有重要的意义。 优势 Wastout微波多效过滤系统是集反应、澄清、浓缩及污泥回流为一体的新型高效预处理系统,分为絮凝反应区、预沉浓缩区、斜管分离区;系统设备具备表面负荷高、占地面积小、排泥浓度高、对原水水质波动不敏感和出水悬浮物含量低等优点; HRLE极限分离系统是本套工艺的核心部分,本系统使用了错流PON耐污染技术、POM宽流道高架桥旁路技术等多种技术手段,同时借助高浓盐水回用领域前沿的酶制剂的加持,进一步降低浓水侧的结垢倾向,突破了浓水回用回收率只能达到50%的技术瓶颈。 核心原理 Neterfo极限分离系统是莱特莱德专门针三高废水研发的一套膜法深度处理回用系统。系统搭载了错流PON耐污染技术、POM宽流道高架桥旁路技术等多项莱特莱德技术,实现了超高回收率和极低能耗,是废水回用、零排放减量、物料浓缩分离等领域的选择。

零排放设备应用领域 化学工业水化学反应冷却、化学试剂、化妆品制造工艺水系统。莱特莱德公司售后服务

1、保证系统前期投运期间,质保期内我方技术人员每月至少一次去贵司现场进行水处理系统的查看工作,并及时对业主培训人员关于操作过程中遇到的问题进行解决和再培训,后期的配合使用操作延续培训,可以更好的让业主受培训人员了解以及掌握系统的操作与处理问题的能力。 2、我公司免费和指导膜元件的化学清洗,指导和传授清洗膜元件的要点和核心注意事项,让贵司的操作人员熟练掌握膜元件的化学清洗。 3、我们随时提供技术咨询,并免费为业主培训操作人员。

火力发电厂废水零排放技术方案

火力发电厂废水零排放技术方案 为实现火力发电厂废水零排放的目标,对脱硫废水预处理工艺、脱硫废水浓缩处理工艺以及末端浓盐水的蒸发结屏,处理工艺进行技术对比,选取适合电厂实际情况的技术方案。处理后的冷凝水可以作为工业水,使电厂水处理系统实现闭式循环,没有任何外排水,真正实现废水零排放。 1脱硫废水处理的意义 我国属于水资源严重短缺且分布不均衡的国家,只有全面综合利用才是解决缺水和排污对环境污染的有效途径。国家及社会对环保要求越来越高,同时也对火力发电厂提出了更高的要求,全厂废水必须做到零排放。 火力发电厂主要污水有生活污水、含油废水、含煤废水、工业废水、循环水冷却塔排污水以及脱硫废水,这些废水一般经过简单物化、生化处理后直接排放或部分回收利用。火力发电厂废水回收基本上是将各部分废水用于脱硫用水,所以脱硫废水处理是全厂废水零排放的关键。目前,国内对脱硫废水的处置方式主要是初步处理后排放。 一般是通过系列氧化还原反应将废水中的重金属污染物转化为胺化物,再通过絮凝反应沉淀除去重金属及悬浮物固体,最后调节pH值使其达到DL/T997-2006《火电厂石灰石一石膏湿法脱硫废水控制指标》的要求,但处理之后依然为高氯根、高含盐且含有微量重金属的废水。因此,电厂湿法脱硫废水回收利用是电厂实现零排放的最大难点和关键。 2脱硫废水预处理

脱硫废水中含有重金属、氟离子、化学需氧量(COD)等污染物,产生的污泥需要进行专业处理。为减少污泥处理量,并保证后续装置运行的稳定性,脱硫废水经现有脱硫废水处理系统处理后,再进入高盐废水浓缩处理系统。脱硫废水总硬度达到100~200mmol/L,需要进行软化处理,以避免后续浓缩处理系统以及蒸发设备结垢。脱硫废水软化处理主要有以下2种方案。 (1)方案1:石灰一碳酸钠软化一沉淀池一过滤器处理工艺。 首先,化学加药使Ca2+,Mg2+以及硅产生沉降,然后用沉淀池做固液分离,沉淀池的上清液自流至重力滤池进行过滤除浊,出水作为高含盐废水浓缩处理系统进水。 (2)方案2:石灰一碳酸钠软化一管式微滤膜(TMF)处理工艺。 首先,化学加药使Ca2+,Mg2+及硅产生沉降,然后采用错流式管式微滤工艺代替传统的澄清工艺,利用微孔膜对废水中的沉淀物进行分离,达到较好的出水水质,出水进入高含盐废水浓缩处理系统进一步处理。2种脱硫废水预处理方案的技术对比见表1。

脱硫废水零排放工艺-废水零排放

脱硫废水零排放工艺 1脱硫废水概述 1.1脱硫废水的水质特点及常规处理工艺 典型热电厂脱硫废水中一般含有大量的盐分、硫酸根离子、重金属离子及氯化物,并含有难处理的COD等,pH值一般在5~6之间,水质呈弱酸性。处理时需要在水中加入Ca(OH)2,将pH值调节到8.5~9.0之间,使得重金属离子(如铜、铁、镍、铬和铅)生成氢氧化物沉淀;同时反应过程中还会生成CaCl2、CaF2、CaSO3、CaSO4沉淀物,以分离氯根离子、氟化物、亚硝酸盐、硫酸盐等盐类物质;对于汞、铜等重金属,目前普遍采用15%TMT溶液替代Na2S 来将其沉淀出来。 1.2脱硫废水处理难点 从脱硫废水常规处理工艺中可以看出: 预处理工艺中添加了大量的熟石灰,会导致水中硬度离子含量较高,且水中残留有高浓度的SO42-、Cl-,属于典型的高含盐废水。水中硬度离子含量高会导致处理设备结垢污堵,Cl-离子含量高会对设备、管道产生严重腐蚀。其次,脱硫废水水质成分复杂,污染物超标严重,水中镉、汞、硫化物、氟化物含量高。另外,脱硫废水受燃煤品种、脱硫工艺、吸收剂等多种因素影响,水质变化较大。 1.3脱硫废水排放标准滞后与现实环保要求 脱硫废水水质控制的行业标准:DL/T997-2006《火电厂石灰石-石膏湿法脱硫废水水质控制指标》,其对脱硫废水中总汞、总铬、总镉、总铅、总镍、悬浮物等指标进行了限制,但是总体标准偏低,如汞的最高排放限值为0.05mg/L,同时也没有对Cl-的排放浓度进行限制。而目前火电厂的废水排放是按照GB8978-1996《污水综合排放标准》进行控制的,但该标准规定的控制项目和指标也不能完全适用于脱硫废水。 2015年4月16日,国务院发布《水污染防治行动计划》,强调将强化对各类水污染的治理力度,脱硫废水因成分复杂、含有重金属引起业界关注。目前行业内工程案例基本上都是:利用浓缩工艺对脱硫废水减量化处理,产水回用循环水系统,浓缩水进入蒸发器结晶生成固态盐。从而实现脱硫废水“零排放”的目标。 2、脱硫废水“零排放”常规处理工艺介绍 2.1预处理工艺系统 经三联箱处理后的脱硫废水中硬度离子含量很高,若不加处理会对后续设备及管道造成严重的污堵,所以在预处理时常会采用“pH调节+混凝+沉淀”的处理工艺降低水中钙镁离子的含量。 首先在pH调节池中将进水调整至9.0~10.0,将Mg硬度转换为钙硬度。然后在混凝池中分别加入碳酸钠药剂,可以有效的将水中的硬度离子降低至1~2mmol/L。再投加PAM药剂,通过絮凝、沉淀工艺将无机泥排出。处理后的水进入浓缩工艺段进一步处理。 2.2浓缩减量工艺系统 零排放工艺的最终目标是将水送至蒸发器中结晶,但由于蒸发器造价高昂,且运行费用高,所以最大限度的将废水减量是本工艺段的主要目标。 (1)反渗透工艺(预浓缩工艺—不分盐) 反渗透工艺是利用半透膜的原理,通过在高浓度侧施加压力将水和盐分离出来。系统回收率通常可以设计在70%~80%之间,产出的干净水由于离子含量低,可以回用到工业系统中。而反渗透膜截留下的有机物、胶体和无机盐由浓水侧排至浓水收集水箱,后续进入高效浓缩工艺单元进一步处理。 反渗透法制取除盐水是一个物理过程,所以比离子交换法环保。同时处理过程简单,易操作,自动程度化高,人工干预量小,同时系统的管理与维护简单。 (2)纳滤工艺(预浓缩工艺-分盐)

成功案例 污水零排放处理方案

成功案例|废水零排放处理方案附工艺流程图 一、项目概述 XX公司主要生产水泥,为响应环保号召,进行最大可能的水资源综合利用,开展最大限度的污水回用,实现污水的零排放。 目前生产用水取自河水,经过竖流沉淀池和过滤处理后用于循环冷却水,同时,反渗透浓水、处理后的生活污水、雨水、矿渣废水和少量的生产废水也经过竖流沉淀池和过滤处理后用于循环冷却水。生产过程污水流向图见图1。根据现场取样的水质检测数据见表1。 由表1的水质数据可知,由于井水河水未经软化,冷却塔中的水在循环蒸发过程中不断浓缩,钙离子、镁离子、氯离子相应增加,排污水含盐量大,增加反渗透处理压力;反渗透浓水含盐量高,循环过程中加剧了冷却塔结垢;矿渣废水含有大量盐分、氯离子含量高,腐蚀管道。造成了循环水质越来越差,不能满足工艺生产的要求,且管道腐蚀严重。因此急需对原水、反渗透浓水、矿渣废水进行处理。 二、设计规模 根据业主提供资料,原水软化处理规模为1500m3/d,反渗透浓水处理规模为20m 3/d,矿渣废水处理规模为4m3/d。 三、设计要求 实现废水零排放,循环水水质满足工艺生产要求,矿渣废水处理后对管道完全无腐蚀影响。 四、工艺设计 本方案设计对原水进行石灰-纯碱软化法处理,对反渗透浓水和矿渣废水使用蒸发结晶的工艺进行处理(或将反渗透浓水和矿渣废水外运由专业单位处置)。该工艺技术先进、系统运行稳定、可靠,处理工艺流程见下图。 工艺设计流程概述 (一)石灰-纯碱软化 对于硬度高、碱度低的水采用石灰-纯碱软化法进行处理。石灰能去除水中

二氧化碳和碳酸盐硬度,纯碱能去除水中的非碳酸盐硬度。为避免投加生石灰(CaO)产生的灰尘污染,通常先将生石灰溶于水中,成为氢氧化钙(通常1kg 生石灰约需2-3kg水),这称为石灰的消化反应。石灰-纯碱法可加入混凝剂促进沉降。经过石灰-纯碱法处理后,原水(河水)的硬度大大降低,从源头降低硬度,避免冷却塔结垢、腐蚀。降低反渗透处理负荷。 石灰乳制备及投加:生石灰通过螺旋给料机进入石灰乳储罐制成石灰乳,生石灰与水混合反应产生Ca2+、OH-并形成氢氧化钙过饱和溶液,由此结晶出固相Ca(OH)2,水化反应产生的蒸汽把水加热至90-100℃,然后用这些热水将生石灰熟化成30%左右的熟石灰浆料,最后在石灰乳配置草稀释到5%左右的石灰乳液。由于石灰乳分散性较高,具有自发凝聚、结块的趋势,在贮存过程中必须不断搅拌,使之保持悬浮状。通过活塞式计量泵送至机械搅拌澄清池。搅拌箱流出的石灰乳中所含的杂质和细砂,可用捕砂器去除。 纯碱及混凝剂投加:将纯碱和混凝剂分别配成溶液,使用活塞式计量泵送至机械搅拌澄清池。 机械搅拌澄清池:属于泥渣循环型澄清池,其特点是利用机械搅拌的提升作用来完成泥渣回流和接触反应。加药混合后的原水进入第一反应室,与几倍于原水的循环泥渣在叶片的搅动下进行接触反应,然后经叶轮提升至第二反应室继续反应,以结成较大的絮粒,再通过导流室进入分离室进行沉淀分离。适用于石灰软化水的澄清。 无阀滤池:来水由进水管送入滤池,经过滤层自上而下进行过滤,滤后的清水从连通管进入清水箱进行贮存。水箱充满后,水从出水槽流入清水池。滤池运行中,滤层不断截留悬浮物,滤层阻力逐渐增加,促使虹吸上升管内的水位不断升高。当水位达到虹吸辅助管管口时,发生虹吸作用,则水箱中的水自下而上地通过滤层对滤料进行反冲洗。此时滤池仍在进水,反冲洗开始后,进水和冲洗排水同时经虹吸上升管、下降管排至排水并排出。最后,污泥进入污泥浓缩池降低含水率,再经过板框压滤机处理后外运。

燃煤电厂脱硫废水零排放技术研究进展

燃煤电厂脱硫废水零排放技术研究进展 发表时间:2018-05-15T09:43:31.130Z 来源:《电力设备》2017年第34期作者:张立超 [导读] 摘要:随着社会的发展,我国的用电量不断增加,燃煤电厂也越来越多。 (神华国能宁夏煤电有限公司宁夏灵武 751400) 摘要:随着社会的发展,我国的用电量不断增加,燃煤电厂也越来越多。目前,国内外燃煤电厂脱硫废水主要采用混凝沉淀处理工艺,水质达到《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T997-2006)要求后直接排放或者送往灰场、渣场用作喷淋水。电厂脱硫废水的排放关系到环境的可持续发展,废水零排放可以实现环境减排目标和污水回用,对治理水污染和缓解水资源短缺困境有重要意义。本文从技术与管理双重角度对零排放处理进行了分析。 关键词:脱硫废水;零排放;膜法浓缩;蒸发固化 2015年国务院颁布了《水污染防治行动计划》(水十条),对企业用水提出了新的要求=。燃煤电厂作为用水大户,应当积极响应国家政策的要求,开展节水提效工作,实现全厂水资源分级利用和水污染防治。脱硫废水因其具有高含盐量、成分复杂、腐蚀性和结垢性的特征,回用困难,成为制约燃煤电厂废水“零排放”实现的关键因素之一=。本文在分析脱硫废水特点基础上,总结国内正在使用的3种脱硫废水零排放技术,以期为燃煤电厂实现脱硫废水实现零排放提供技术借鉴。 1 脱硫废水处理现状 根据废水来源,燃煤电厂废水一般包括生活污水、循环水排污水、脱硫废水和各种再生废水等。燃煤电厂脱硫废水具有如下水质特性:1)呈酸性,pH在4.5~6.5之间;2)含盐量高,且浓度变化范围极广,一般在20~50g/L;3)硬度(钙镁离子浓度)高,结构风险高;4)悬浮物高,一般在20~60g/L;5)成分复杂,水质波动大;6)氯离子含量高,腐蚀性强且回用困难。脱硫废水因这些特性成为燃煤电厂最复杂和最难处理的一股废水,是实现燃煤电厂废水零排放的关键。传统脱硫废水处理方法包括灰场处置、煤场喷洒、灰渣闭式循环系统及三联箱法等。灰场处置、煤场喷洒、灰渣闭式循环系统所需水量较少,且会造成系统设备的腐蚀,对电厂的安全运行造成隐患;三联箱法经过简单中和、絮凝和沉淀澄清后,虽可有效去除悬浮固体、重金属离子和F-等污染物,但该工艺难以有效去除Na+、Cl-、SO42-、Ca2+和Mg2+等离子,出水含盐量仍很高,回用困难。脱硫废水水质复杂,要达到零排放的目的,就要根据不同污染物的特征,进行分段处理。脱硫废水零排放处理过程分为3段:预处理、浓缩减量和蒸发固化。 2 废水零排放处理技术 2.1预处理软化技术 根据脱硫废水水质,选择合适的处理工艺,去除Ca2+、Mg2+、Si等,避免后续处理系统的结垢。常用的预处理软化技术通过添加化学药剂去除Ca2+、Mg2+离子,有石灰-碳酸钠软化、氢氧化钠-碳酸钠软化等。 2.2脱硫废水的浓缩减量 2.2.1热浓缩 (1)MED MED是废水被蒸发系统余热预热后,依次进入一效或多效蒸发器进行蒸发浓缩;最末效浓盐水经增稠器和离心机进行固液分离,分离出的液体回到系统再循环处理。多效蒸发是前一级蒸发器产生的二次蒸汽作为后一级蒸发器的热源,将蒸汽热能多次利用,故而热能利用率较高。 (2)MVR MVR是将蒸发器排出的二次蒸汽通过压缩机经绝热压缩后送入蒸发器的加热室。MVR浓缩液总悬浮固体(TDS)可达250g/L,电耗高达20~46.34kWh/m3废水。MVR相较于MED,具有占地面积小、运行成本较低、效率高的优势,更适用于零排放蒸发器。 2.2.2膜浓缩 (1)RO RO过程能耗较低、适用性强、应用范围广,已广泛用于脱硫废水处理。然而,RO易发生膜污染与结垢。为防止RO膜污染与结垢,可采用超频震荡膜技术或高效RO工艺,但这需更强的预处理和更高pH,会提高运行成本;此外,即使采用震荡膜技术,经RO浓缩的浓水TDS只能达到90g/L,其TDS质量浓度远低于可实现结晶固化的250g/L水平,故单凭RO不能将盐水浓缩至可结晶固化水平。 (2)ED ED因耐受钙镁结垢能力较低,工程应用常用采用倒电极的方法减少ED的膜污染,该工艺称为倒极式电渗析(EDR)。与RO相比,ED和EDR所需预处理较少,且对含硅废水的耐受性较强。此外,ED和EDR能将盐水浓缩至120g/L以上,甚至达到200g/L的水平,通常电耗介于7~15kWh/m3废水。为避免浓差极化,如LOGANATHAN等报道EDR的淡水ρ(TDS)>10g/L,或使直接回用受限,但ED和EDR所产的淡水可以耦合其它方法加以回用。 (3)FO FO属自发过程,但是汲取液的再生需额外能量。浙江长兴某电厂2×600MW机组是首个采用正渗透方法处理脱硫废水的工程案例,系统处理水量为22m3/h,其中脱硫废水18m3/h,经FO浓缩后的TDS可高达220g/L以上;同时,将FO产水与汲取液回收系统相结合,再经RO进一步除盐后,最终产水可回用于锅炉补给水。但是,汲取液的再生复杂,整个工艺路线长,系统复杂,投资成本高。 (4)MD 非挥发溶质水溶液的MD,仅水蒸汽能透过膜。MD可以利用火力发电厂丰富的低品质废热,且能近100%地截留非挥发性溶质。溶质若易结晶,则能被浓缩至过饱和而产生结晶。MD能耗与操作方式息息相关,实际应用中,直接接触式膜蒸馏海水淡化的能耗可达40~45kWh/m3产水。但是,由于火力发电厂丰富的低品质热源,热驱动的MD不能与电驱动技术直接比较能耗。此外,目前尚缺少性能可靠,能够长时间稳定运行的商业化蒸馏膜。 2.3固化处理技术 2.3.1蒸发结晶 (1)多效蒸发结晶:多效蒸发结晶系统由相互串联的多个蒸发器组成,前一个蒸发器的二次蒸汽作为下一个蒸发器的加热蒸汽,下

相关主题