搜档网
当前位置:搜档网 › 太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性(精)
太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性

一、钢化玻璃

1. 加工原理

钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能电池组件对钢化玻璃的透光率要求很高,须大于91.6%,对大于1200nm 的红外光有较高的反射率。另外,厚度要求在3.2mm 。

1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。

2)化学钢化玻璃是通过改变玻璃表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃。

2. 钢化玻璃的主要优点:

1)强度比普通玻璃提高数倍,抗弯强度是普通玻璃的3-5倍,抗冲击强度是普通玻璃5-10倍,提高强度的同时亦提高了安全性。

2)使用安全,其承载能力增大,改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,极大地降低了对人体的伤害。钢化玻璃的耐急冷急热性比普通玻璃提高2-3倍,一般可承受150LC 以上的温差变化,对防止热炸裂有明显的效果。

钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。

3. 钢化玻璃的缺点:

1)钢化后的玻璃不能再进行切割或加工,只能在钢化前就对玻璃进行加工至需要形状,再进行钢化处理。

2)钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。(钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。)

4. 自爆现象:

1)玻璃质量缺陷的影响

A .玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。

结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数,

玻璃钢化后结石周围裂纹区域的应力集中成

倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态,伴随结石而存在的裂纹扩展极易发生。

B .玻璃中含有硫化镍结晶物

硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS ,其中X=0-0.07。只有NI1-XS 相是造成钢化玻璃自发炸碎的主要原因。

已知理论上的NIS 在379℃时有一相变过程,从高温状态的a-NIS 六方晶系转变为低温状态B-NI 三方晶系过程中,伴随出现2.38%的体积膨胀。这一结构在室温时保存下来。如果以后玻璃受热就可能迅速出现a-B 态转变。如果这些杂物在钢化玻璃受张应力的内部,则体积膨胀会引起自发炸裂。如果室温时存在a-NIS ,经过数年、数月也会慢慢转变到B 态,在这一相变过程中体积缓慢增大未必造成内部破裂。

C .玻璃表面因加工过程或操作不当造成有划痕、炸口、深爆边等缺陷,易造成应力集中或导致钢化玻璃自爆。

2)钢化玻璃中应力分布不均匀、偏移

玻璃在加热或冷却时沿玻璃厚度方向产生的温度梯度不均匀、不对称。使钢化制品有自爆的趋向,有的在激冷时就产生“风爆”。如果张应力区偏移到制品的某一边或者偏移到表面则钢化玻璃形成自爆。

3)钢化程度的影响,实验证明,当钢化程度提高到1级/㎝时,自爆数达20-25%。由此可见,应力越大钢化程度越高,自爆量也越大。

4)如何鉴别钢化玻璃的自爆

首先看起爆点(钢化玻璃裂纹呈放射状,均有起始点)是否在玻璃中间,如在玻璃边缘,一般是因为玻璃未经过倒角磨边处理或玻璃边缘有损伤,造成应力集中,裂纹逐渐发展造成的;如起爆点在玻璃中部,看起爆点是否有两小块多边形组成的类似两片蝴蝶翅膀似的图案(蝴蝶斑),如有仔细观察两小块多边形公用边(蝴蝶的躯干部分),应有肉眼可见的黑色小颗粒(硫化镍结石),则可判断是自爆的,否则就应是外力破坏的。玻璃自爆典型特征是蝴蝶斑。玻璃碎片呈放射状分布,放射中心有二块形似蝴蝶翅膀的玻璃块,俗称“蝴蝶斑”。NIS 结石位于二块" 蝴蝶斑" 的界面上。

钢化玻璃自爆机理理论探讨径向应力r ≥a 切向应力r ≥a 颗粒与玻璃之间界面的应力对于异质颗粒在玻璃基体中,降温过程温是负的,所以颗粒周边的径向应力

是压力,切向应力是拉力。玻璃中间层球形单质硅颗粒的扫描电镜图像和边缘挤压形貌,颗粒周边的径向应力是压力,切向应力是拉力,所以切向应力是裂纹启始的根源。

5. 钢化玻璃的作用

增强组件的抗冲击能力,良好的透光率可以提高组件的效率,密封组件。

6. 钢化玻璃的储存条件

玻璃应避光、避潮,平整堆放,用防尘布覆盖玻璃。

玻璃的最佳贮存条件:放在恒温、干燥的仓库内,其温度在25℃,相对湿度小于45%,玻璃要清洁无水汽、不得裸手接触玻璃与EVA 胶膜接触面,否则会影响EVA 胶膜和玻璃层间粘接力。

二、EVA 胶膜(以下简称EVA )

1. EVA的原理

1)EVA 的性能主要取决于分子量(用熔融指数MI 表示)和醋酸乙烯脂(以VA 表示)的含量。当MI 一定时,VA 的弹性,柔软性,粘结性,相溶性和透明性提高,VA 的含量降低,则接近聚乙烯的性能。当VA 含量一定时,MI 降低则软化点下降,而加工性和表面光泽改善,但是强度降低,分子量增大,可提高耐冲击性和应力开裂性。

2)不同的温度对EVA 的交联度有比较大的影响,EVA 的交联度直接影响到组件的性能以及使用寿命。在熔融状态下,EVA 与晶体硅太阳电池片,玻璃,TPT 太阳能背板(如杭州兆丰背板)产生粘合,在这过程中既有物理也有化学的键合。未经改性的EVA 透明,柔软,有热熔粘合性,熔融温度低,熔融流动性好。但是其耐热性较差,易延伸而低弹性,内聚强度低而抗蠕变性差,易产生热胀冷缩导致晶片碎裂,使得粘接脱层。EVA 交联度一般在70%-85%,与玻璃剥离强度35N ,与TPT 太阳能背板20N 。

3)通过采取化学交联的方式对EVA 进行改性,其方法就是在EVA 中添加有机过氧化物交联剂,当EVA 加热到一定温度时,交联剂分解产生自由基,引发EVA 分子之间的结合,形成三维网状结构,导致EVA 胶层交联固化,当交联度达到60%以上时能承受大气的变化,不再发生热胀冷缩。

2. EVA的作用

1)封装电池片,防止外界环境对电池片的电性能造成影响。

2)增强组件的透光性。

3)将电池片,钢化玻璃,TPT 太阳能背板很好地粘接在一起,具有一定的粘接强度。

注:EVA 虽然可以起到封装组件的作用,但EVA 同时具有吸水性。

3.EVA 的储存环境

EVA 胶膜应避光、避热、避潮运输,平整堆放。EVA 胶膜的最佳贮存条件:放在恒温、恒湿的仓库内,其温度在0-30℃之间,相对湿度小于60%。避免阳光直照,不得靠近有加热设备或有灰尘等污染的地方,并应注意防火。保质期一般为半年,但考虑到EVA 具有吸水性,在实际使用中其存放时间越短越好。

三、TPT 太阳能背板(以下简称TPT )

TPT 用于组件的背面,也是主要封装材料之一。

1.TPT 的结构

最具代表性的TPT 是由PVF (聚氟乙烯薄膜)-PET (聚脂薄膜)-PVF 三层薄膜构成的背膜,简称TPT ;TPT 有三层结构:外层保护层PVF 具有良好的抗环境侵蚀能力,中间层为聚脂薄膜具有良好的绝缘性能,内层PVF 经表面处理和EVA 具有良好的粘接性能。TPT 必须保持清洁,不得沾污或受潮,特别是内层不得用手指直接接触,以免影响和EVA 的粘接强度。

但目前市场上使用的太阳能背板种类繁多,有TPT 、TPE 结构的含氟背板,有多层PET 复合结构的不含氟背板,甚至还有适用于低端小组件PET+EVA两层结构的背板。大家在选用该材料之前一定要了解清楚其结构,不同结构的太阳能背板,其价格相差非常大。如杭州兆丰光伏材料有限公司的背板,就有TPT 、TPE 和PE 三种类型的背板,适用于不同要求的组件需求。

2.TPT 的特性

具有良好的耐候性、极佳的机械性能、延展性、耐老化、耐腐蚀、不透气,以及耐众多化学品、溶剂和着色剂的腐蚀。有出色的抗老化性能并在很宽的温度范围内保持了韧性和弯曲性。

3. TPT的作用

白色TPT 对阳光起反射作用,提高组件吸收光的能率。因此对组件的效率略有提高,并因其具有较高的红外发射率,还可降低组件的工作温度,也有利于提高组件的效率。

增强组件的抗渗水性。

对组件背部起到了很好密封保护作用,延长了组件的使用寿命

提高了组件的绝缘性能

4.TPT 的储存环境

TPT 太阳能背板应避光、避热、避潮。受潮的背板可能在组件层压时容易出现气泡的现象,因为潮气可能在层压高温时变成水蒸汽,但又被EAV 阻隔而无法及时排出。

背膜的最佳贮存条件:放在恒温、恒湿的仓库内,其温度在0-40℃之间,相对湿度小于。

运输时应平整堆放,避免碰伤。

光伏组件封装材料综述

光伏组件封装材料综述 摘要 光伏市场在过去五到七年间的快速增长带动了封装材料市场的强劲爆发,并导致供应链的暂时性短缺。与此同时,组件价格也出现显著下降,给生产成本和光伏组件原料成本带来巨大压力,促使封装材料市场朝着新型材料和创新供应商转变。由于封装材料对组件效率、稳定性和可靠性方面有着显著的影响,加之上述市场压力的推动,对封装技术和材料的选择便成为了组件设计过程中的一个关键步骤。本文对目前市场上的不同材料、光伏组件封装材料的整体需求以及这些材料与其它组件部件间的相互作用进行了综合介绍。 前言 光伏组件结构 晶体硅(c-Si)光伏组件通常由太阳能玻璃前盖、聚合物封装层、前后表面印刷有金属电极的单晶或多晶硅电池、连接单个电池的焊带以及聚合物(少数采用玻璃)背板组成。而薄膜光伏组件既可以通过在组件背面沉积半导体层的底衬工艺(substrateprocess)制造,也可以使用在组件前表面沉积半导体层的顶衬工艺(superstrateprocess)制造而成(如图一中(b)和(c)所示)。 为了确保组件的力学稳定性和对整个太阳能电池吸收光谱范围内的高透光率,并保护电池和金属电极不受外界环境侵蚀,必须在电池前表面使用太阳能玻璃。对于柔性太阳能电池技术,则选择聚合物作为前板,这层结构对材料阻挡特性要求非常高。背面材料同样要确保力学稳定性、电气安全性,使电池和组件其它部件不受外界影响。 生产工艺 一套标准的组件生产工艺由以下几个步骤组成:玻璃清洗和干燥;电池片串焊;组件层压,包括十字接头的焊接;固化;边缘密封和装框;安装接线盒;最后是功率测试。 有三种工艺可以将电池矩阵固定在这些材料中。其中最常用的是真空层压工艺,该工艺

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。目前,太阳能的利用主要集中在热能和发电两方面。利用太阳能发电目前有两种方法,一是利用热能产生蒸气驱动发电机发电,二是太阳能电池。太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。 为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的普通物理实验,联系科技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线 2. 测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF 3. 测量太阳能电池的短路电流SC I 、开路电压OC U 与相对光强0J J 的关系,求出它们的近似函数关系。 【实验仪器】 光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱

【实验原理】 太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为 ??? ? ??-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。(可令nKT q =β) 由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。C E 为半导体导电带,V E 为半导体价电带。 当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。 电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。 光电流示意图 太阳能电池的基本技术参数除短路电流SC I 和开路电压OC U 外, 还有最大输出功率max P 和填充因子FF 。最大输出功率max P 也就是IU 的最大值。填充因子FF 定义为 OC SC U I P FF m ax = (2) FF 是代表太阳能电池性能优劣的一个重要参数。FF 值越大,说明太阳能电池对光的利用率越高。

太阳能电池组件封装工艺大全

太阳能电池组件封装工艺大全 一、太阳能电池组件封装简介 组件线又叫封装线,封装是太阳能电池板生产中的关键步骤,没有良好的封装工艺,多好的电池片也做不出好的组件板。良好的电池封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装工艺至关重要。 太阳能电池组件封装工艺流程图如下: 太阳能电池组件封装结构图 如何保证太阳能电池组件的高效和高寿命? 1、高转换效率、高质量的电池片

下图是电池的结构示意图: (1)金属电极主栅线;(2)金属上电极细栅线;(3)金属底电极;(4)减反射膜;(5)顶区层(扩散层);(6)体区层(基区层); 2、高质量的封装材料 高耐候性、低水蒸汽透过率、良好电绝缘性等性能优异的太阳能电池背板; 交联度高、耐黄变性能好、热稳定性好、粘接力强等性能优异的EVA胶膜; 高粘结强度、密封性好的封装剂(中性硅酮树脂胶); 高透光率、高强度的钢化玻璃等

3、严谨的工作态度 由于太阳电池组件属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应戴手套而不戴、应均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 二、太阳能电池组件组装工艺介绍 1、电池分选 由于电池片制作条件的随机性,生产出来的电池片性能不尽相同,所以为了有效的将性能一致或相近的电池片组合在一起,应根据其性能参数进行分类;电池测试即通过测试电池片的输出参数(电流和电压)的大小对其进行分类。以提高电池片的利用率,做出质量合格的太阳能电池组件。 2、单焊 是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,焊带的长度约为电池片边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连(如下图)。 3、串焊 背面焊接是将N张片电池串接在一起形成一个组件串,电池的定位主要靠一个膜具板,操作者使用电烙铁和焊锡丝将单片焊接好的电池的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将N张电池片串接在一起并在组件串的正负极焊接出引线。 4、叠层 背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、太阳能电池背板按照一定的层次敷设好,准备层压。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池处、EVA、玻璃纤维、背板)。 5、组件层压 将敷设好的电池组件放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA 熔化将电池、玻璃和太阳能电池背板粘接在一起;最后冷却取出组件。层压工艺是太阳能电池组件生产的关键一步,层压温度和层压时间根据EVA的性质决定。我们使用普通的EVA 时,层压循环时间约为21分钟,固化温度为138-140℃。 6、修边 层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。 7、装框 类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

太阳能电池组件主要封装材料的特性(精)

太阳能电池组件主要封装材料的特性 一、钢化玻璃 1. 加工原理 钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能电池组件对钢化玻璃的透光率要求很高,须大于91.6%,对大于1200nm 的红外光有较高的反射率。另外,厚度要求在3.2mm 。 1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。 2)化学钢化玻璃是通过改变玻璃表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃。 2. 钢化玻璃的主要优点: 1)强度比普通玻璃提高数倍,抗弯强度是普通玻璃的3-5倍,抗冲击强度是普通玻璃5-10倍,提高强度的同时亦提高了安全性。 2)使用安全,其承载能力增大,改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,极大地降低了对人体的伤害。钢化玻璃的耐急冷急热性比普通玻璃提高2-3倍,一般可承受150LC 以上的温差变化,对防止热炸裂有明显的效果。

钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。 3. 钢化玻璃的缺点: 1)钢化后的玻璃不能再进行切割或加工,只能在钢化前就对玻璃进行加工至需要形状,再进行钢化处理。 2)钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。(钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。) 4. 自爆现象: 1)玻璃质量缺陷的影响 A .玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。 结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数, 玻璃钢化后结石周围裂纹区域的应力集中成 倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态,伴随结石而存在的裂纹扩展极易发生。 B .玻璃中含有硫化镍结晶物 硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS ,其中X=0-0.07。只有NI1-XS 相是造成钢化玻璃自发炸碎的主要原因。

太阳能光伏组件的几种主要封装材料的特性

几种主要材料的特性 一、钢化玻璃 1. 加工原理钢化玻璃是平板玻璃的二次加工产品,钢化玻璃的加工可分为物理钢化法和化学钢化法。太阳能光伏组件对钢化玻璃的透光率要求很高,要大于91.6%,对大于1200nm的红外光有较高的反射率。厚度在3.2mm。 1)物理钢化玻璃又称为淬火钢化玻璃(将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却)。这种玻璃处于内部受拉,外部受压的应力状态,一旦局部发生破损,便会发生应力释放,玻璃被破碎成无数小块,这些小的碎片没有尖锐棱角,不易伤人。 2)化学钢化玻璃是通过改变玻璃的表面的化学组成来提高玻璃的强度,一般是应用离子交换法进行钢化。其效果类似于物理钢化玻璃 2. 钢化玻璃的主要优点: 第一是强度较之普通玻璃提高数倍,抗弯强度是普通玻璃的3~5倍,抗冲击强度是普通玻璃5~10倍,提高强度的同时亦提高了安全性。 第二是使用安全,其承载能力增大改善了易碎性质,即使钢化玻璃破坏也呈无锐角的小碎片,对人体的伤害极大地降低了. 钢化玻璃的耐急冷急热性质较之普通玻璃有2~3倍的提高,一般可承受150LC以上的温差变化,对防止热炸裂有明显的效果。钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受200℃的温差变化。 3. 钢化玻璃的缺点: 第一钢化后的玻璃不能再进行切割,和加工,只能在钢化前就对玻璃进行加工至需要

形状,再进行钢化处理。 第二钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃在温差变化大时有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆 4.自爆现象: ①玻璃质量缺陷的影响 A.玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。特别 结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。结石存在于玻璃中,与玻璃体有着不同的膨胀系数。玻璃钢化后结石周围裂纹区域的应力集中成倍地增加。当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态。伴随结石而存在的裂纹扩展极易发生。 B.玻璃中含有硫化镍结晶物 硫化镍夹杂物一般以结晶的小球体存在,直径在0.1-2㎜。外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI-XS,其中X=0-0.07。只有NI1-XS相是造成钢化玻璃自发炸碎的主要原因。 已知理论上的NIS在379。C时有一相变过程,从高温状态的a-NIS六方晶系转变为低温状态B-NI三方晶系过程中,伴随出现2.38%的体积膨胀。这一结构在室温时保存下来。如果以后玻璃受热就可能迅速出现a-B态转变。如果这些杂物在钢化玻璃受张应力的内部,则体积膨胀会引起自发炸裂。如果室温时存在a-NIS,经过数年、数月也会慢慢转变到B态,在这一相变过程中体积缓慢增大未必造成内部破裂。 C.玻璃表面因加工过程或操作不当造成有划痕、炸口、深爆边等缺陷,易造成应力集中或导致钢化玻璃自爆。

太阳能电池基本特性实验讲义

太阳能电池基本特性测定 目前人类所消耗的能源的70%来自煤、石油、天然气等化石燃料,在现有技术条件下,化石能源的大量使用给地球环境造成了严重危害,使人类生存空间受到了极大的威胁。科学家预言,尽管化石燃料能源未来仍将占有相当大比重,但其一统天下的局面将逐渐结束(地球上2亿年形成的化石燃料,大体只够人类使用300余年),可再生的清洁能源可望撑起未来世界能源供给的半壁江山。 太阳能的利用和研究是21世纪新型能源开发的重点课题之一。太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已应用于许多民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。太阳能是一种清洁、“绿色”能源。因此,世界各国十分重视对太阳能电池的研究和利用。 一、实验目的 1、学习掌握硅光电池的工作原理。 2、学习掌握硅光电池的基本特性及其测试方法。 3、了解硅光电池的基本应用。 二、实验仪器 1.光功率计 2.测试仪 3.光源 4.光电二极管(用专用连接线与光功率计相连接) 5.样品架(用于放置光电二极管传感器,以及待测太阳能电池样品,含遮光罩) 6. 导轨 7.单晶硅样品 7.多晶硅样品 图1 太阳能电池特性测试仪

1、太阳能电池:单晶硅和多晶硅各1块:60×60mm 2,有效面积50×45mm 2 ,开路电压不低于4V ,闭路电流不小于15mA ;2、光功率计:三位半数显,量程200uw 、2mw 和20mW 三档,数字按键档位切换;光功率计传感器采用高灵敏度光电二极管;3、精密电阻负载:0~99999.9Ω;4、测试仪:电压表:2.000V 和20.00V 两档;电流表:2.000mA 和200.0mA 两档;0-5V 可调直流电源,带限流输出功能;5、光源功率:100W ;6、导轨:长75cm ; 三、实验原理 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1(-=U o e I I β (1) (1)式中,I为通过二极管的电流,o I 和β是常数,o I 为反向饱和电流。 由半导体理论,二极管主要是由能隙为E C -E V 的半导体构成,如图2所示。E C 为半导体电带,E V 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻R Sh 与一个电阻R S 所组成,如图3所示。 图3中,I Ph 为太阳能电池在光照时该等效电源输出电流,I d 为光照时,通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0)(=---+sh d ph s R I I I U IR (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I R R I --=+ )1( (3)

太阳能电池板的生产工艺流程

太阳能电池板的生产工艺流程 太阳能电池板的生产工艺流程 封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的太阳能电池板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以太阳能电池板的封装质量非常重要。 (1)流程 电池检测——正面焊接——检验——背面串接——检验——敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——层压——去毛边(去边、清洗)——装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——焊接接线盒——高压测试——组件测试——外观检验——包装入库。 (2)组件高效和高寿命的保证措施高转换效率、高质量的电池片;高质量的 原材料,例如,高的交联度的 EVA高黏结强度的封装剂(中性硅酮树脂胶)、高透光率高强度的钢化玻璃等; 合理的封装工艺,严谨的工作作风, 由于太阳电池属于高科技产品,生产过程中一些细节问题,如应该戴手套而不戴、应该均匀地涂刷试剂却潦草完事等都会严重地影响产品质量,所以除了制定合理的工艺外,员工的认真和严谨是非常重要的。 (3)太阳能电池组装工艺简介 ①电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效地将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的太阳能电池组件。如果把一片或者几片低功率的电池片装在太阳电池单体中,将会使整个组件的输出功率降低。因此,为了最大限度地降低电池串并联的损失,必须将性能相近的单体电池组合成组件。 ②焊接:一般将6?12个太阳能电池串联起来形成太阳能电池串。传统 上,一般采用银扁线构成电池的接头,然后利用点焊或焊接(用红外灯,利用红外线的热效应)等方法连接起来。现在一般使用60%的Sn、38%的Pb、2%的Ag 电镀后的铜扁丝(厚度约为100?200卩m)。接头需要经过火烧、红外、热风、激光处理。由于铅有毒,因此现在越来越多地采用 96.5 %的铜和 3.5 %的银合金。但是

太阳能光伏组件工作原理及主要封装材料介绍

太阳能光伏组件 1)、组件的工作原理: 太阳能电池是由P 型半导体和N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子,当P 型和N 型半导体结合时在结合处会形成电势当芯片在受光过程中,带正电的空穴往P 型区移动,带负电子的电子往N 型区移动,在接上连线和负载后,就形成电流. 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是较少受地域限制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短的优点。 光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术 2)太阳能光伏组件由八大材料组成, 1、钢化白玻璃 2、EVA 3、背板 4、硅电池片 5、涂锡带 6、罗曼胶带(硅胶) 7、铝边框 8、接线盒 太阳能电池组件部分主要材料介绍 (1)钢化玻璃 低铁钢化玻璃(又称白玻璃),厚度3.2毫米,在太阳电池光谱响应的波长范围内(320-1100NM)透光率达90%以上,对于1200NM的红外光有较高的反射率。 此玻璃同时耐紫外光线的辐照,透光率不下降。 钢化性能符合国标GB9963-88或者封装后的组件抗冲击性能达到国标GB9535-88地面用硅太阳能电池环境试验方法中规定的性能指标。 (2)EVA EV A是一种热融胶粘剂,厚度在0.4毫米-0.6毫米之间,表面平整,厚度均匀,内含交联剂。常温下无黏性且具抗黏性,经过一定调价热压便

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

太阳能电池组件的封装(精华)

太阳能电池组件的封装(精华) 导读:单件电池片由于输出功率太小,难以满足常规用电需求,因此需要将其封装为组件以提高其输出功率。封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,再好的电池也生产不出好的组件。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得客户满意的关键,所以组件的封装质量非常重要。 具有外部封装及内部连接、能单独提供直流电输出的最小不可分割的太阳能电池组合装置,叫太阳能电池组件,即多个单体太阳能电池互联封装后成为组件。太阳能电池组件是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。 1.防止太阳能电池破损。晶体硅太阳能电池易破损的原因:晶体硅呈脆性;硅太阳能电池面积大;硅太阳能电池厚度小。 2.防止太阳能电池被腐蚀失效。太阳能电池的自然抗性差:太阳电池长期暴露在空气中会出现效率的衰减;太阳电池对紫外线的抵抗能力较差;太阳电池不能抵御冰雹等外力引起的过度机械应力所造成的破坏;太阳电池表面的金属化层容易受到腐蚀;太阳电池表面堆积灰尘后难以清除。 3.满足负载要求,串联或并联成一个能够独立作为电源使用的最小单元。由于单件太阳电池输出功率难以满足常规用电需求,需要将它们串联或者并联后接入用电器进行供电。 太阳能电池组件的种类较多,根据太阳能电池片的类型不同可分为晶体硅(单、多晶硅)太阳能电池组件、非晶硅薄膜太阳能电池组件及砷化镓电池组件等;按照封装材料和工艺的不同可分为环氧树脂封装电池板和层压封装电池组件;按照用途的不同可分为普通型太阳能电池组件和建材型

太阳能电池组件。其中建材型太阳能电池组件又分为单面玻璃透光型电池组件、双面夹胶玻璃电池组件和双面中空玻璃电池组件。由于用晶体硅太阳能电池片制作的电池组件应用占到市场份额的85%以上,在此就主要介绍用晶体硅太阳能电池片制作的电池组件。 单晶硅组件 多晶硅组件 非晶硅组件 第一代室温硫化硅橡胶封装 第二代聚乙烯醇缩丁醛 (PVB )封装 第三代乙烯-醋酸乙烯共聚物(EVA )封

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶 硅 5 8.75 0.57 10.5 0.6 6 265*265*25 APM36M5W27x27单晶 硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶 硅 5 8.75 0.57 10.5 0.6 6 265*265*25 APM36P5W27x27多晶 硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶 硅 8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶 硅 8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶 硅 10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶 硅 10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶 硅 15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶15 17.5 0.86 21.5 0.97 356*426*28

APM36M20W63x28单晶 硅 20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶 硅 20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶 硅 25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶 硅 25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶 硅 30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶 硅 30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶 硅 35 17.5 2.00 21.5 2.26 537*617*40 APM36P35W82x36多晶 硅 35 17.5 2.00 21.5 2.26 356*816*28 APM36M40W62x54单晶 硅 40 17.5 2.29 21.5 2.58 537*617*40 APM36P40W67x58多晶 硅 40 17.5 2.29 21.5 2.58 576*670*40 APM36M45W76x54单晶 硅 45 17.5 2.57 21.5 2.91 537*758*40 APM36P45W67x58多晶 硅 45 17.5 2.57 21.5 2.91 576*670*40 APM36M50W76x54单晶 硅 50 17.5 2.86 21.5 3.23 537*758*40 APM36P50W88x51多晶 硅 50 17.5 2.86 21.5 3.23 510*880*40 APM36M55W76x54单晶 硅 55 17.5 3.14 21.5 3.55 537*758*40 APM36P55W88x51多晶 硅 55 17.5 3.14 21.5 3.55 510*880*40 APM36M60W90x54单晶 硅 60 17.5 3.43 21.5 3.88 537*899*40 APM36P60W82x67多晶 硅 60 17.5 3.43 21.5 3.88 670*816*40 APM36M65W90x54单晶65 17.5 3.71 21.5 4.20 537*899*40

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

太阳能电池组件技术示范

太阳电池组件成品技术规范 编写: 校对: 审核: 会签:、 、 、 、

、 、 批准: 太阳电池组件技术总规范 1目的 通过制定太阳电池组件技术总规范,使公司所生产的太阳能电池组件的生产及质量处于规范、可控的状态。保证产品质量,满足客户要求。 2适用范围 2.1本技术规范规定了太阳电池组件的技术要求、外观质量及性能要求。 2.2本技术规范适用于本公司生产的太阳能电池组件(客户另有要求除外)。 2.3本技术规范不能取代本公司与客户签订的技术协议。 3职责权限 3.1技术开发部制定太阳能电池组件成品技术总规范; 3.2公司各相关部门在电池组件生产、检验等环节依据本规范执行。 4引用文件 4.1 GB/T 9535 地面用晶体硅光伏组件——设计鉴定和定型(IEC 61215-2005,

IDT); 4.2 GB/T 20047.1-2006 光伏(PV)组件安全鉴定第1部分:结构要求(IEC 61730-1:2004); 4.3 GB/T 20047.2-2006光伏(PV)组件安全鉴定第2部分:试验要求(IEC 61730-2:2004); 4.4 QEH-2011-RD-I139A太阳电池组件用晶硅电池片技术规范V1.0; 4.5 QEH-2011- RD-I115A太阳电池组件用钢化玻璃技术规范V2; 4.6 QEH-2011- RD-I121A太阳电池组件用EVA技术规范V2; 4.7 QEH-2011- RD-I122A太阳电池组件用背板材料技术规范V2; 4.8 QEH-2011- RD-I114A太阳电池组件用焊带技术规范V1.2; 4.9 QEH-2011- RD-I123A太阳电池组件用接线盒技术规范V2.0; 4.10 QEH-2010-RD-I118A太阳电池组件用铝合金边框技术规范; 4.11 QEH-2011-RD-I119A 太阳电池组件用透明胶带技术规范V1.0; 4.12 QEH-2011-RD-I124太阳能电池组件制造工艺过程卡汇总V4.0; 4.13 IEC 60364-2005 Electrical installations of buildings-Part 5-51 Selection and erection of electrical equipment-Common rules. 5定义 5.1 组件:具有封装及内部连接的、能单独提供直流电输出的、不可分割的最小太阳能电池组合装置。 6内容 6.1 关键材料要求 用于制造晶硅太阳电池的所有材料应根据客户要求,考虑强度、耐用性、化学物

太阳能电池组件的封装

太阳能电池组件的封装

太阳能电池组件的封装 (二)组件的封装结构 (三)组件的封装材料 1上盖板2黏结剂3底板4边框(四)组件封装的工艺流程 不同结构的组件有不同的封装工艺。平板式硅太阳能电池组件的封装工艺流程,如图17所示。可将这一工艺流程概述为:组件的中间是通过金属导电带焊接在一起的单体电池,电池上卞两侧均为EVA膜,最上面是低铁钢化白玻璃,背面是PVF复合膜。将各层材料按顺序叠好后,放人真空层压机内进行热压封装。最上层的玻璃为低铁钢化白玻璃,透光率高,而且经紫外线长期照射也不会变色。EVA膜中加有抗紫外剂和固化剂,在热压处理过程中固化形成具有一定弹性的保护层,并保证电池与钢化玻璃紧密接触。PVF复合膜具有良好的耐光、防潮、防腐蚀性能。经层压封装后,再于四周加上密封条,装上经过阳极氧化的铝合金边框以及接线盒,即成为成品组件。最后,要对成品组件进行检验测试,测试内容主要包括开路电压、短路电流、填充因

子以及最大输出功率等。 硅片划片切割工艺概况 1用激光来划片切割硅片是目前最为先进的,它使用精度高、而且重复精度也高、工作稳定、速度快、操作简单、维修方便。 2激光最大输出≧50W(可调)、激光波长为1.064μm、 切割厚度≦1.2mm、光源是用Nd:YAG晶体组成激光器、是单氪灯连续泵浦、声光调Q、并用计算机控制二维工作台可预先设定的图形轨迹作各种精确运动。 ± 部件分析: 1操作可分为外控与内控。 2计算机操作系统-有专用软件设立工作台划片步骤实现划片目标。 3电源控制盒-供应激光电源、Q电源驱动、水冷系统的输入电源进行分配及自控,当循环水冷系统出现故障时,自动断开激光电源及Q电源驱动盒的供电。 4激光电源盒-点燃氪灯的自动引燃恒流电源。 5 Q电源驱动盒-产生射频信号并施加到Q开

EVA太阳能电池封装膜的介绍[1]

EVA太阳能电池封装膜的介绍和封装工艺简介 1. EVA太阳能电池封装膜的介绍、太阳能电池的工作原理简介和封装工艺简介 1.1EVA太阳能电池胶膜产品简介 太阳能电池胶膜是用EVA(乙烯-醋酸乙烯共聚物)为主要原料,添加各种助剂后,经加热挤出成型的产品。该胶膜在常温时无粘性,便于裁切分割操作。目前,本胶膜主要用于太阳能电池板的封装。在封装时,先裁切所需尺寸的胶膜,按玻璃-胶膜-电池板-胶膜-TPT叠合于铝合金框内;然后,放入层压机内加热、加压、并抽真空;最后,放入设定温度的固化炉中恒温所需时间即可。 EVA 胶膜特点描述 1:高透光率,提高组件的光电转化效率。 2:合理的交联度,保证组件良好的稳定性和可使用寿命。 3:卓越的耐紫外老化性能和优秀的耐湿热老化行能,保证组件在户外长达25 年的使用寿命。 4:极低的收缩伸长率,保证您的组件尺寸稳定性和一致性。 5:对各种背板和玻璃较强的粘接性能,保证组件安全高效的运行。 1.2太阳能电池简单介绍 1.2.1什么是太阳能电池

太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.2.2太阳能电池的原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。 (2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的. 1.2.3太阳能电池的分类 太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形 (a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌(Zn 3 p 2 )等。 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 (2)多元化合物薄膜太阳能电池 多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。 (3)聚合物多层修饰电极型太阳能电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本底等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材

太阳能电池(组件)生产工艺

太阳能电池(组件)生产工艺 组件线又叫封装线,封装是太阳能电池生产中的关键步骤,没有良好的封装工艺,多好的电池也生产不出好的组件板。电池的封装不仅可以使电池的寿命得到保证,而且还增强了电池的抗击强度。产品的高质量和高寿命是赢得可客户满意的关键,所以组件板的封装质量非常重要。 流程: 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库 组件高效和高寿命如何保证: 1、高转换效率、高质量的电池片; 2、高质量的原材料,例如:高的交联度的EVA、高粘结强度的封装剂(中性硅酮树脂 胶)、高透光率高强度的钢化玻璃等;

3、合理的封装工艺; 4、员工严谨的工作作风; 由于太阳电池属于高科技产品,生产过程中一些细节问题,一些不起眼问题如应该戴手套而不戴、应该均匀的涂刷试剂而潦草完事等都是影响产品质量的大敌,所以除了制定合理的制作工艺外,员工的认真和严谨是非常重要的。 太阳电池组装工艺简介: 工艺简介:在这里只简单的介绍一下工艺的作用,给大家一个感性的认识。 1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 2、正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。

相关主题