搜档网
当前位置:搜档网 › 焦磷酸测序技术的原理

焦磷酸测序技术的原理

焦磷酸测序技术的原理
焦磷酸测序技术的原理

Pyrosequencing技术的原理

Pyrosequencing是一项全新的DNA测序技术,可以快速、准确地测定一段较短的目标片段。其基本原理如下:

第1步:1个特异性的测序引物和单链DNA模板结合,然后加入酶混合物(包括DNA Polymerase、ATP Sulfurylase、Luciferase和Apyrase)和底物混合物(包括APS和Luciferin)。

第2步:向反应体系中加入1种dNTP,如果它刚好能和DNA模板的下一个碱基配对,则会在DNA 聚合酶的作用下,添加到测序引物的3‘末端,同时释放出一个分子的焦磷酸(PPi)。

第2步图示(图片来自互联网)

第3步:在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP;在荧光素酶的催化下,生成的ATP又可以和荧光素结合形成氧化荧光素,同时产生可见光。通过CCD光学系统即可获得一个特异的检测峰,峰值的高低则和相匹配的碱基数成正比。

第3步图示(图片来自互联网)

第4步:反应体系中剩余的dNTP和残留的少量ATP在Apyrase的作用下发生降解。

第4步图示(图片来自互联网)

第5步:加入另一种dNTP,使第2-4步反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

第4步图示(图片来自互联网)

Pyrosequecing技术操作简单,结果准确可靠,可应用于SNP位点检测、等位基因频率测定、细菌和病毒分型等领域。

→如果您认为本词条还有待完善,请编辑词条

上一篇SNP(单核苷酸多态性)下一篇阅读质粒图谱

具体事例

【摘要】建立了一种将序列标记反转录聚合酶链反应(PCR)与焦磷酸测序技术结合的相对基因表达量测定法(简称“SRPP”)。先用来源特异性引物对不同来源的同一基因通过反转录标记上特异性标签,PCR后用焦磷酸测序法对扩增产物进行序列解码,使得测序结果中的序列代表基因的来源,峰高代表基因在不同来源中的相对表达量。用实时荧光定量PCR法对本方法的准确性进行了验证,结果表明,SRPP可以同时准确测定同一基因在3个不同来源中的表达量,并实际测定了Egr1基因在糖尿病、肥胖和正常小鼠肝中的表达量差异。

【关键词】序列标记反转录, 聚合物链反应,焦磷酸测序,基因表达

1 引言

差异表达基因与疾病密切相关,深入研究可在基因水平揭示疾病的发病机制。目前,用于检测基因表达水平的技术主要有SAGE法[1]、实时荧光定量PCR法[2,3]和基因芯片法[4]等。但这些方法存在仪器设备昂贵、定量性能差以及同时测定基因表达量的来源数目受限等缺点。

焦磷酸测序技术是新近发展起来的一种基于酶催化化学反应的测序技术[5~8],不需要使用荧光标记,定量性能好。目前,焦磷酸测序技术多用于单核苷酸多态性(SNP)分析、微生物分型和基因甲基化分析等。本研究将焦磷酸测序技术用于基因表达量差异的比较分析,考察了其可行性和准确性,并将其应用于检测Egr1基因在糖尿病、肥胖症和正常小鼠中的差异表达。

2 实验部分

仪器、试剂与材料

21R型台式高速冷冻离心机(美国Beckman公司);Gene SpeⅢ微量核酸蛋白测定仪(日本Naka Instrument公司);PTC225 PCR扩增仪、Opticon实时荧光PCR仪(美国MJ Research 公司)。焦磷酸测序装置由本实验室自行组装[9,10]。此装置主要由焦磷酸测序反应模块、荧光信号放大和数据采集3部分组成。反应模块由位于中间的反应池通过毛细管与四周的dNTP储液池相连组成。通过注射器施压使4种dNTP循环加入反应池完成测序反应。荧光信号通过R6335光电倍增管(日本Hamamatsu Photonics .公司)放大后,经BPCL微弱发光测量仪(北京中国科学院生物物理研究所)采集数据。

Hotstar Taq DNA聚合酶、Omniscript RT kit反转录试剂盒(德国Qiagen公

司);Trizol(上海Inviotrogen公司);荧光素、荧光素酶、三磷酸腺苷硫酸化酶、三磷酸腺苷双磷酸酶和5′磷酸化硫酸腺苷(美国Sigma公司); Dynabeads M280链霉亲和素磁珠(挪威Dynal AS公司); Klenow DNA 聚合酶(美国Promega公司);所有引物均由上海Invitrogen公司合成。

实验中用到的糖尿病、肥胖和正常小鼠的肝组织由南京师范大学生命科学学院提供。

RNA的提取

用Trizol试剂盒抽提RNA,用紫外分光光度法测定RNA浓度及纯度。

反转录合成cDNA第一链

取等量的不同来源的总RNA,分别以来源特异性反转录引物反转录。即取总RNA ~μg 至Nuclease free的小管中,加DEPC H2O至12 μL;65 ℃反应5 min后,置冰上至少1 min;在上述各小管中加入10×第一链合成缓冲液2 μL, mmol/L dNTP混合物,10 U RNase 抑制剂,200 U Omniscript Reverse Transcriptase,1 μmol/L反转录引物,加DEPC H2O 至总体积为20 μL。反转录条件为:37 ℃反应1 h, 93 ℃反应5 min,然后中止反应。

基因特异性PCR

不同来源的cDNA等比例混合,以共用引物CP(5′CCA TCT GTT CCC TCC CTG TC3′)和生物素标记的基因特异性引物(GSP)进行扩增反应。PCR体系为: cDNA等比例混合液1 μL,μmol/L CP和GSP, mmol/L Mg2+, mmol/L dNTP 混合物,10×PCR 缓冲液 5 μL,5×Q 溶液10 μL , 1 U HotStar Taq DNA聚合酶,并加入灭菌蒸馏水至50 μL。PCR反应程序为: 94 ℃变性 15 min,热循环35次(94 ℃, 40 s; 60 ℃, 40 s; 72 ℃, 1 min ),72 ℃延伸10 min, 4 ℃保存。基因特异性引物的序列见表1。表1 实验用引物

焦磷酸测序固相单链模板的制备

取5 μL戴诺磁珠(Dynabeads),用磁铁吸弃上清液。磁珠以100 μL B&W Buffer(10 mmol/L Tris HCl, pH , 1 mmol/L EDTA, mol/L NaCl)洗涤两遍,最终悬浮于50 μL B&W 缓冲液中;加入50 μL PCR产物,37 ℃反应30 min;用磁铁吸弃上清液,磁珠以180 μL H2O 洗涤两遍,加入 mol/L NaOH溶液20 μL,混匀室温放置5 min使PCR产物变性;磁铁吸弃上清液,磁珠以100 μL B&W 缓冲液洗涤两遍,100 μL 1×退火缓冲液洗一遍,最终溶于

8 μL 1×退火缓冲液中;加入1 μL 10 μmol/L测序引物,93 ℃混匀30 s,55 ℃退火3 min,4 ℃保存,待测序用。

焦磷酸测序反应

焦磷酸测序标准混合液的组成为: mol/L Tris Ac缓冲液(pH ,2 mmol/L EDTA,10 mmol/L Mg(Ac)2,% BSA,1 mmol/L 二硫苏糖醇(DTT),3 μmol/L 5′磷酸化硫酸腺苷(adenosine5′phosphosulfate,APS),μg/L PVP, mmol/L D虫荧光素,2×10-4 U/L 三磷酸腺苷硫酸化酶,2×10-3 U/L 三磷酸腺苷双磷酸酶,18×10-3 U/L无外切酶活性的Klenow DNA聚合酶, mg/L荧光素酶。

3 结果与讨论

方法原理

焦测序技术是一种基于化学发光反应定量测定引物延伸副产物焦磷酸盐(PPi)的测序技术。其原理是:引物与模板DNA退火后, 在DNA 聚合酶(polymerase)、三磷酸腺苷硫酸化酶(ATP sulfurylase)、荧光素酶(luciferase) 和三磷酸腺苷双磷酸酶(apyrase)的协同作用下完成循环测序反应。当加入的dNTP与模板互补时,DNA模板与互补的dNTP聚合可以产生等摩尔PPi;在三磷酸腺苷硫酸化酶的催化下,PPi与5′磷酸化硫酸腺苷(APS)反应生成等量的ATP;在荧光素酶催化作用下,ATP与虫荧光素(luciferin)反应发出荧光。产生的荧光信号强度与聚合的测序模板量和碱基数成正比,根据加入的dNTP类型和测得的荧光信号强度就可实时记录模板DNA 的核苷酸序列。反应方程式如下:

(DNA)n+dNTPpolymerase(DNA)n+l+PPi(1)

PPi+APSATP sulfurylaseATP+SO2-4(2)

ATP+Luciferin+O2luciferaseAMP+PPi+Oxyluciferin+CO2+hv(3)

dNTPApyrasedNDP+PiApyrasedNMP+Pi(4)

ATPApyraseADP+PiApyraseAMP+Pi(5)

为了定量测定基因表达量差异,本研究将碱基序列标记法与焦磷酸测序解码技术相结合,其关键点在于:在不同来源的同一基因中标记上区别样品来源的特异性标签;对标记序列进行解码和定量测定。采用反转录引物将来源特异性碱基标记到各来源待测基因,然后用焦磷酸测序定量测定标记序列。

具体测定过程如图1所示:(1) 用来源特异性反转录引物对不同来源的RNA进行反转录。引物由4部分组成:5′端为共用序列;位于引物中间的4个碱基为人为设计的来源特异性标签,在图1中以深浅不同的4个小圆点表示;3′端为oligo(dT)n和用于固定oligo(dT)n

位置的两个兼并碱基。来源特异性反转录引物的碱基组成和数目都相同,只是位于中间的来源特异性碱基的排列位置有所差异;(2) 不同来源的cDNA稀释后等比例混合;(3) 用生物素标记的基因特异性引物和共用引物扩增上述混合物,通过改变基因特异性引物就可以进行任

何基因的表达量差异分析;(4) 用磁性微球技术将PCR产物制备成单链,根据来源特异性反转录引物中来源标签序列进行焦磷酸测序。测序结果中,各来源特异性碱基的相对峰高即代表相对基因表达量差异。本方法称之为SRPP法(Sequence tagged reverse transcription PCR with pyrosequencing)。

图1 碱基序列标记法结合焦磷酸测序解码技术测定基因表达量差异的原理图

Principle of comparative gene expression analysis by coupling sequence tagged reverse transcription polymerase chain reaction(PCR) with pyrosequencing (SRPP)由于不同来源的同一基因在单管中只用一对引物进行PCR,并且扩增产物的碱基组成和含量完全一样,仅4个碱基的排列顺序不一样,具有相同的保留时间。所以来源不同,表达量不同的同一基因在单管中能实现等比例扩增。SRPP测定峰高比值也即能代表起始基因的相对表达量。

焦磷酸测序的定量特性

在同一焦磷酸测序反应体系中,产生的荧光信号强度与ATP的量成正比,而ATP的量与聚合的dNTP 个数成正比,所以可以根据图谱中测得的信号强度推测出模板DNA相对含量。为了验证焦磷酸测序的定量特性,人为设计了一条测序单链(5′GG TT CC AA G T C A CCCCGCCCGC3′ )和一条测序引物(5′GCGGGCGGGG3′),使测序单链的3′端与测序引物单链的5′端完全互补。两条单链退火后按dTTP→dGTP→dATPαS→dCT P的顺序循环递加dNTP进行测序反应。结果显示,待测模板上测序引物的延伸序列为“T G A C TT GG AA CC”12个碱基,其信号强度跟同质区的相同碱基个数成正比。这一结果表明,峰强度与被引物延伸模板的量成正比,可通过测定各峰的峰高之比确定对应的模板的相对含量。本研究利用焦磷酸测序技术的定量特性,通过测序图谱中的峰高比值分析不同来源的基因相对表达量。

来源特异性基因的标记及标记模板的等比例扩增

SRPP法定量的关键在于能否在单管中等比例扩增经标记的不同来源的同一基因。为了验证SRPP法是否具有此特性,人工模拟了一系列Actb基因的3个不同来源(分别命名为“来源G”,“来源T”和“来源C”)进行测定。具体方法为取同一来源的RNA样品分成3等份,分别用来源特异性反转录引物RT G(5′CCA TCT GTT CCC TCC CTG TC gatc ttt ttt ttt ttt ttt VN3′), RT T(5′CCA TCT GTT CCC TCC CTG TC tacg ttt ttt ttt ttt ttt VN3′)和RT C (5′CCA TCT GTT CCC TCC CTG TC catg ttt ttt ttt ttt ttt VN3′)进行反转录反应,使反转录产物分别被标记上“来源G”、“来源T”和“来源C”的特异性标签(上述序列中的带下划线的斜体部分)。然后将上述经标记的cDNA模板,分别以1∶1∶1, 5∶1∶1, 1∶5∶1和1∶1∶5(来源G∶来源T∶来源C)的体积比混合,作为系列人工模拟模板分别进行PCR扩增,测定结果如图2所示,序列中的第一个碱基“G”代表“来源G” 的模板;第二个碱基“T”代表“来源T”的模板;第三个碱基“C”代表“来源C” 的模板。3个碱基信号峰的相对强度代表着Actb基因在3个不同来源中的相对表达量。通过计算峰高的比值即可得到所测基因在不同来源中的表达差异。

由于dNTP不稳定,存在少量的分解产物PPi,在焦磷酸测序中可能会出现背景峰,影响结果的准确性。为此,焦磷酸测序中每种dNTP都连续加入两次,所以图2中每次焦磷酸测序都出现6个峰。其中第1次得到的峰为信号峰,第2次为dNTP背景峰,计算结果时要在信号强度中扣除背景。3种来源模板等量混合(1∶1∶1)的测序结果如图2A所示,测得的峰高比为∶∶ (来源G∶来源T∶来源C),此测定值与模板理论比例1∶1∶1十分相近;如图2(B~D)所示,图2 Actb基因在不同人工模拟3种来源中的表达量差异测序图谱,3种来源的理论表达量比为1∶1∶1(A), 5∶1∶1(B), 1∶5∶1(C)和1∶1∶5(D)(每种dNTP都连续加入两次以扣除其背景吸收)

Pyrograms of simulated templates prepared by pooling three source specific cDNAs at the ratios of 1∶1∶1 (A), 5∶1∶1 (B), 1∶5∶1 (C), and 1∶1∶5 (D), respectively. PCR was performed by using the common primer and the Actb

gene specific primer. Each deoxyribonucleoside triphosphate(dNTP) was dispensed twice for detecting the background due to pyrophosphoric acid(PPi) impurity in dNTP solution模板比例为5∶1∶1, 1∶5∶1 和1∶1∶5 的SRPP测定结果分别为:∶∶1,∶∶1和∶∶1。结果表明,不同比例的各标记模板(各模板的差别仅是4个碱基的排列序列不同)得到了等比例扩增,没有序列歧视性,即通过测定扩增产物的比例就可以间接得到不同来源中基因的表达量差异。

准确性实验

为进一步验证本方法的准确性,将本方法的测定结果与实时荧光定量PCR法进行比较。采用本方法平行测定2次,Actb基因在小鼠肾、心和脑中的相对表达量之比分别为∶∶和∶∶。平均值为∶∶。同时采用实时荧光定量 PCR测得Actb基因在肾、心和脑中的相对表达量比值为∶∶。与两种方法测定结果一致, 说明SRPP可以用于准确测定同一基因在不同来源中的表达量差异。 Egr1基因在糖尿病小鼠、肥胖小鼠和正常小鼠肝中的表达量差异的测定

最近研究表明,胰岛素是一种抗炎激素,抑制几种促炎转录因子如 Egr1的基因表述[11]。因此产生胰岛素抗性或者胰岛素作用不正常的糖尿病人,体内促炎转录因子被激活,相应基因的表达量增加。另外肥胖是人体的一个炎症状态[12],炎症参与胰岛素信号传导的干预,产生胰岛素抗性,也会激活这些促炎转录因子,增加相应基因的表达。

本实验将SRPP法应用于模型小鼠Egr1基因表达量差异的研究。研究了3组(a, b, c)共9只小鼠,每组中分别有糖尿病、肥胖和正常小鼠各1只。提取上述小鼠的肝组织的RNA,取等量的RNA反转录,反转录引物为RT G, RT C和RT T,使其产物被人为地标记为“糖尿病G”、“肥胖T”和“正常C”。再将反转录产物等比例混合,以公用引物CP和基因特异性引物bio Egr1GSP进行PCR扩增,焦磷酸测序。为了去除不同来源RNA产量、质量以及逆转录效率上可能存在的差别,选择看家基因Actb作为内参基因进行校正。3组小鼠均按上述方法进行SRPP测定。结果如图3所示(典型焦磷酸测序图谱)。以归一化法计算Egr1和Actb基因在糖尿病、肥胖和正常小鼠肝中的表达量,3组小鼠肝中Egr1基因经看家基因

Actb校正后的相对表达量分别为:∶∶, ∶∶和∶∶。同时采用实时荧光定量 PCR对Egr1和Actb基因在上述小鼠肝中的拷贝数进行了定量测定,按相同方法进行数据处理,测得的经Actb校正后的Egr1基因相对表达量分别为∶∶, ∶∶和∶∶。结果见表2。此例说明SRPP 方法可以有效地用于研究不同来源的基因表达量。表2 SRPP和实时荧光PCR测定结果

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

焦磷酸测序实验步骤

焦磷酸测序实验步骤 Control oligo稀释配置,需要二次稀释到0.04um: 第一次稀释:体积浓度 Control oligo 5ul 20um 1×Dilution buffer 45ul 第一次所得溶液50ul 2um 第二次稀释: 第一次所得溶液3ul 2um 1×Dilution buffer 147ul 第二次所得溶液 150ul 0.04um 1.微珠固定PCR产物 将生物素标记的PCR 产物固定到链霉亲和素包被的琼脂糖微珠(Streptavidin Sepharose High Performance,GE Healthcare)上。 1.1 轻摇包被链霉亲和素的琼脂糖微珠,直至获得均质溶液。 1.2 在一个试管中混合链霉亲和素包被的琼脂糖微珠总量(2 μl / 样品)(新的琼脂糖微珠浓度比原来的提高了一倍,只需加1ul)与结合缓冲液(40 μl / 样品)。添加高纯度水至80 μl / 孔的总体积—包括第1.4 步中添加的PCR产物,纯水量取决于所用PCR 产物的量。例如:如果使用15 μl PCR 产物、2 μl 微珠和40 μl 结合缓冲液,则必须添加23 μl 高纯度水。 1.3 将第1.2 步中制备的溶液添加至24 孔PCR 孔板或联排管中。 1.4 根据孔板设置,添加5–20 μl 优化好的生物素标记的PCR 产物至PCR 孔板(或联排管)的每个孔槽。(注意:每个孔槽的总体积应当是80 μl。) 1.5 使用孔板条盖密封PCR 孔板(或联排管)。确保孔槽之间没有泄漏。 1.6 使用振荡混合器(1400 rpm)不断振荡PCR 孔板(或联排管)至少5–10 分钟。(注意:微珠沉淀快速,因此停止震荡后必须在一分钟内立即使用,即立刻捕获琼脂糖微珠。) 2. 真空工作站准备工作 2.1 准备以下试剂:(1)大约50ml乙醇(70%);(2)大约40ml变性溶液;(3)大约50ml 1×洗涤缓冲液;(4)大约50ml超纯水;(5)大约70ml超纯水。 1×洗涤缓冲液稀释配置; 体积 wash buffer 5ml 高纯水 45ml 1×洗涤缓冲液 50ml

Roche_454(GS_FLX_Titanium_System)超高通量测序技术原理

Roche 454(GS FLX Titanium System)超高通量测序技术原理 2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序(sequencing-by-synthesis)的先河。之后,454公司被罗氏诊断公司以1.55亿美元收购。2007年,他们又推出了性能更优的第二代基因组测序系统—— Genome Sequencer FLX System (GS FLX)。2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。 想当年,GS 20的出现,揭开了测序历史上崭新的一页。Jonathan Rothberg博士就是大规模并行测序的发明者,同时也是454的创始人。上世纪90年代,很多学者也都想到了大规模并行测序,他们试图将Sanger测序移到芯片上,但都以失败告终,因为这项技术没有可扩展性。1999年,Rothberg的儿子出世,他放了两个星期的陪产假。小家伙出生后被送入婴儿特护病房,Rothberg非常担心,甚至想获取儿子的基因组信息。这段担惊受怕的经历给了他灵感,他突然意识到焦磷酸测序(pyrosequencing)不仅简单,而且具有可扩展性。两个星期之后,Rothberg就开始设计芯片和流动室,让测序在更小的反应室中进行,并同时进行几百万个反应。 硬件的设计和制造也只是成功的一半,在样品制备上还有同样漫长的路要走。Rothberg摒弃了传统的细菌克隆与挑选,将DNA打断成随机片段,并寻找一种方法来克隆每个片段。受到其他学者乳液实验的启发,他也想将DNA放入油包水的乳液中,这样就省去了反应管。一个好汉三个帮。在Joel Bader等人的帮助下,Rothberg验证了这些想法的可行性,并利用了炸药中的表面活性剂来维持乳液的热稳定性。就这样,乳液PCR终于诞生了。 对细菌的16S rDNA的V6/V3可变区进行测序分析,不需进行克隆筛选,测序的通量高,获得的数据量大,周期短,能更加全面的反映微生物群体的物种组成,真实的物种分布及丰度信息。 GS FLX 测序原理 GS FLX系统的测序原理和GS 20一样,也是一种依靠生物发光进行DNA序列分析的新技术;在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP 的聚合与一次荧光信号释放偶联起来(图 1)。通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。 Roche GS FLX System是一种基于焦磷酸测序原理而建立起来的高通量基因组测序系统。在测序时,使用了一种叫做“Pico TiterPlate”(PTP)的平板,它含有160多万个由光纤组成的孔,孔中载有化学发光反应所需的各种酶和底物。测序开始时,放置在四个单独的试剂瓶里的四种碱基,依照T、A、C、G的顺序依次循环进入PTP板,每次只进入一个碱基。如果发生碱基配对,就会释放一个焦磷酸。这个焦磷酸在各种酶的作用下,经过一个合成反应和一个化学发光反应,最终将荧光素氧化成氧化荧光素,同时释放出光信号。此反应释放出的光信号实时被仪器配置的高灵敏度CCD捕获到。有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列。

焦磷酸测序技术的原理

Pyrosequencing技术的原理 Pyrosequencing是一项全新的DNA测序技术,可以快速、准确地测定一段较短的目标片段。其基本原理如下: 第1步:1个特异性的测序引物和单链DNA模板结合,然后加入酶混合物(包括DNA Polymerase、ATP Sulfurylase、Luciferase和Apyrase)和底物混合物(包括APS和Luciferin)。 第2步:向反应体系中加入1种dNTP,如果它刚好能和DNA模板的下一个碱基配对,则会在DNA 聚合酶的作用下,添加到测序引物的3‘末端,同时释放出一个分子的焦磷酸(PPi)。 第2步图示(图片来自互联网) 第3步:在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP;在荧光素酶的催化下,生成的ATP又可以和荧光素结合形成氧化荧光素,同时产生可见光。通过CCD光学系统即可获得一个特异的检测峰,峰值的高低则和相匹配的碱基数成正比。 第3步图示(图片来自互联网) 第4步:反应体系中剩余的dNTP和残留的少量ATP在Apyrase的作用下发生降解。 第4步图示(图片来自互联网) 第5步:加入另一种dNTP,使第2-4步反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

第4步图示(图片来自互联网) Pyrosequecing技术操作简单,结果准确可靠,可应用于SNP位点检测、等位基因频率测定、细菌和病毒分型等领域。 →如果您认为本词条还有待完善,请编辑词条 上一篇SNP(单核苷酸多态性)下一篇阅读质粒图谱 具体事例 【摘要】建立了一种将序列标记反转录聚合酶链反应(PCR)与焦磷酸测序技术结合的相对基因表达量测定法(简称“SRPP”)。先用来源特异性引物对不同来源的同一基因通过反转录标记上特异性标签,PCR后用焦磷酸测序法对扩增产物进行序列解码,使得测序结果中的序列代表基因的来源,峰高代表基因在不同来源中的相对表达量。用实时荧光定量PCR法对本方法的准确性进行了验证,结果表明,SRPP可以同时准确测定同一基因在3个不同来源中的表达量,并实际测定了Egr1基因在糖尿病、肥胖和正常小鼠肝中的表达量差异。 【关键词】序列标记反转录, 聚合物链反应,焦磷酸测序,基因表达 1 引言 差异表达基因与疾病密切相关,深入研究可在基因水平揭示疾病的发病机制。目前,用于检测基因表达水平的技术主要有SAGE法[1]、实时荧光定量PCR法[2,3]和基因芯片法[4]等。但这些方法存在仪器设备昂贵、定量性能差以及同时测定基因表达量的来源数目受限等缺点。 焦磷酸测序技术是新近发展起来的一种基于酶催化化学反应的测序技术[5~8],不需要使用荧光标记,定量性能好。目前,焦磷酸测序技术多用于单核苷酸多态性(SNP)分析、微生物分型和基因甲基化分析等。本研究将焦磷酸测序技术用于基因表达量差异的比较分析,考察了其可行性和准确性,并将其应用于检测Egr1基因在糖尿病、肥胖症和正常小鼠中的差异表达。 2 实验部分 仪器、试剂与材料

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

454测序原理

454生命科学公司所研发的新一代测序平台基于光纤微流体技术和包裹了待测DNA片段的乳化液滴技术(炸药中的表面活性剂来维持乳液的热稳定性)。基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序(sequencing-by-synthesis)的先河。 GS FLX系统是一种依靠生物发光进行DNA序列分析的新技术:在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号释放偶联起来 (见下图)。通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。 454高通量测序方法原理示意图 优缺点: 1)454平台的突出优势是读长,每轮测序能产生100万个读长片段,读长可达到400-500bp; 2)通量为0.4-0.5Gb;

3)读出的片段较短,而且不能提供配对端点测序信息; 4)不需要任何克隆;但是这也造成了这一技术的一些缺陷:无克隆反应导致无法获得材料来覆盖序列缺口,而且在基因组测序完成过程中的一个重要部分就是补充低丰度区域。 应用: 包括基因组学的从头测序和重测序、小RNA的研究、转录图谱的分析以及染色体结构表观遗传学等 GS FLX系统的工作流程 GS FLX系统的流程概括起来,就是“一个片段= 一个磁珠= 一条读长(One fragment = One bead = One read)”。 1)样品输入并片段化:GS FLX系统支持各种不同来源的样品,包括基因组DNA、PCR产物、BAC、cDNA、小分子RNA等等。大的样品例如基因组DNA或者BAC等被打断成300-800 bp的片段;对于小分子的非编码RNA或者PCR扩增产物,这一步则不需要。短的PCR产物则可以直接跳到步骤3)。 2)文库制备:借助一系列标准的分子生物学技术,将A和B接头(3’和5’端具有特异性)连接到DNA片段上。接头也将用于后续的纯化,扩增和测序步骤。具有A、B接头的单链DNA片段组成了样品文库。 3)一个DNA片段=一个磁珠:单链DNA文库被固定在特别设计的DNA捕获磁珠上。每一个磁珠携带了一个独特的单链DNA片段。磁珠结合的文库被扩增试剂乳化,形成油包水的混合物,这样就形成了只包含一个磁珠和一个独特片段的微反应器。

焦磷酸测序(Pyrosequencing)原理

焦磷酸测序(Pyrosequencing)原理 焦磷酸测序技术(pyrosequencing)是一种新型的酶联级联测序技术,焦磷酸测序法适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。焦磷酸测序技术产品具备同时对大量样品进行测序分析的能力,为大通量、低成本、适时、快速、直观地进行单核苷酸多态性(single nucle—otide potymorphisms,SNP s)研究和临床检验提供了非常理想的技术操作平台。该技术进行改进后可以满足上百个核苷酸序列的测序工作,这样该技术又可以满足对重要微生物的鉴定与分型,特定DNA片段的突变检测和克隆鉴定等方面的应用。 1.焦磷酸测序技术原理 焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应。焦磷酸测序技术的原理是:引物与模板DNA退火后,在DNA聚合酶(DNA polymerase)、ATP硫酸化酶(ATP sulfurytase).荧光素酶(1uciferase)和三磷酸腺苷双磷酸酶(Apyrase)4种酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号的释放偶联起来,通过检测荧光的释放和强度,达到实时测定DNA序列的目的。焦磷酸测序技术的反应体系由反应底物、待测单链、测序引物和4种酶构成。反应底物为5’-磷酰硫酸(adenosine- 5’-phosphosulfat,APS)、荧光素(1uciferin)。 2.焦磷酸测序技术的反应过程 在每一轮测序反应中,反应体系中只加入一种脱氧核苷酸三磷酸(dNTP)。如果它刚好能和DNA模板的下一个碱基配对,则会在DNA聚合酶的作用下,添加到测序引物的3’末端,同时释放出一个分子的焦磷酸(PPi)。在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP,在荧光素酶的催化下,生成的ATP又可以和荧光素结合形成氧化荧光素,同时产生可见光。通过微弱光检测装置及处理软件可获得一个特异的检测峰,峰值的高低则和相匹配的碱基数成正比。如果加入的dNTP不能和DNA模板的下一个碱基配对,则上述反应不会发生,也就没有检测峰。反应体系中剩余的dNTP和残留的少量ATP在Apyrase的作用下发生降解。待上一轮反应完成后,加入另一种dNTP,使上述反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

焦磷酸测序仪常见问题及解答

2875 - What is the reason for signals ceasing in the middle of a pyrosequencing run? The cartridge needle can be blocked or damaged causing a dispensation error. Clean the cartridge following the guidelines or repeat the run with a new cartridge. On the other hand if high amounts of template have been used resulting in very high signals (>100 RLU), the substrate for the sequencing reaction might be depleted. In this case template conditions should be optimized. 2879 - What is the reason for a high substrate peak in the pyrosequencing pyrogram? Usually pyrophosphate or dATP/ATP contamination in the sample or in the buffer can cause a high substrate peak. Large amounts of pyrophosphate are generated in the PCR reaction and might be carried over to the sequencing reaction. Check the PyroMark buffers and reagents and use new ones. 2871 - How many nucleotides of a homopolymer can be resolved in pyrosequencing? In the range of 3-5 bases can be resolved depending on the sequence context and base. If it is possible sequencing of a homopolymer of more than 3-5 nucleotides should be avoided by resetting the sequencing primer. 2870 - What does it mean when I get a "wide peak" error appearing at the end of a pyrosequencing run? Usually wide peaks result from too much template for the used enzyme/substrate activity, or from reduced activity/performance of the enzymes themselves so that the pyrophosphate from previous nucleotide incorporation cannot be degraded as fast as usual. 2881 - What is the reason for split peaks appearing in between dispensations on my pyrosequencing pyrogram? The PyroMark cartridge needle can be blocked or damaged. Clean the cartridge or exchange with a new one. Check for correct reagent cartridge and cartridge method used in the run. Check if the reagent cartridge cover was closed properly. Make sure that the cartridge was dry after cleaning because nucleotide droplets might be caught at the needle tip and fall down at any time. or exchanged. 2878 - How do I prevent a drifting baseline in my pyrosequencing pyrogram? Let the PyroMark instrument warm up (about 60 minutes) to adapt to room temperature before use. Make sure the ambient room temperature is within range 18-28°C. 2877 - How do I reduce background peaks in the pyrosequencing pyrogram? There are several reasons for a high assay background; the template can form secondary structures which are extended or the primers itself form dimmers which serve as template. Perform accurate sequencing controls (e.g. PCR or sequencing primer only) as recommended in the PyroMark User Manual to observe this kind of background. In addition, an unspecific priming of primer to template or unspecific annealing of sequencing primer to template might also be a background cause. Please check your complete primer design and if needed, perform a redesign. Try to lower the primer concentration as possible to avoid excess of primer. 2876 - What is the reason for low peak signals in pyrosequencing?

焦磷酸测序

焦磷酸测序: DNA序列分析技术是现代生命科学研究的核心技术之一,而双脱氧核苷酸链终止法(Sanger法)是目前使用最普遍的DNA序列分析技术。在基于Sanger 法的全自动DNA测序技术中,测序反应产生的DNA片段是荧光标记的,这些片段经过平板胶电泳或毛细管电泳得到分离,荧光分子被激发而发光,发出的光信号被检测系统检测。Sanger法的优势在于可以分析未知DNA的序列,且单向反应的读序能力较长,目前的技术可以达到1000bp以上。 在实际工作中,很多情况需要对已知序列的DNA片段进行序列验证,而这种分析往往测几十bp就可以满足需要.在这种情况下,Sanger法未必是最合适的DNA序列分析技术。新发展的Pyrosequencing(焦磷酸测序)技术应该是目前最适合这些应用的DNA序列分析技术。 Pyrosequencing技术是新一代DNA序列分析技术,该技术对DNA的序列分析无须进行电泳,DNA片段无须荧光标记,因此相应的仪器系统无须荧光分子的激发和检测装置.本文将就Pyrosequencing技术的原理和应用进行介绍和讨论. 一、Pyrosequencing技术的原理 首先通过PCR制备待测序的DNA模板,PCR的引物之一是用生物素标记的。PCR产物和偶连avidin的Sepharose微珠孵育,DNA双链经碱变性分开;纯化得到含生物素标记引物的待测序单链,并和测序引物结合成杂交体。 Pyrosequencing技术是由四种酶催化的同一反应体系中的酶级连反应,四种酶是:DNA聚合酶(DNA polymerase)、硫酸化酶(A TP sulfurylase)、荧光素酶(luciferase)和双磷酸酶(apyrase).反应底物为adenosine 5′ phosphosulfate (APS)、荧光素(luciferin)。反应体系还包括待测序DNA单链和测序引物。反应体系配置好后就可以加入底物dNTP进行序列分析了。 测序反应是这样进行的:在每一轮测序反应中,只能加入四种dNTP(dA TP S,dTTP,dCTP,dGTP)之一,如该dNTP与模扳配对,聚合酶就可以催化该dNTP 掺入到引物链中并释放焦磷酸基团(PPi)。掺入的dNTP和释放的焦磷酸是等摩尔数目的.注意:反应时deoxyadenosine alfa-thio triphosphate (dATP S)是dATP的替代物,因为DNA聚合酶对dA TP S的催化效率比对dATP的催化效率高,且dA TP S不是荧光素酶的底物。 硫酸化酶催化APS和PPi形成ATP,ATP和焦磷酸的摩尔数目是一致的。ATP 驱动荧光素酶介导的荧光素向氧化荧光素(oxyluciferin)的转化,氧化荧光素发出与ATP量成正比的可见光信号。光信号由CCD摄像机检测并由pyrogram?反应为峰。每个峰的高度(光信号)与反应中掺入的核苷酸数目成正比。A TP和未掺入的dNTP由双磷酸酶降解,淬灭光信号,并再生反应体系。然后就可以

焦磷酸测序地原理及引物设计

Pyrosequencing RCR 1.实验原理:焦磷酸测序采用生物素标记的引物进行PCR扩增,将PCR产物纯 化并变性为单链后,向其中加入四种酶的混合物:DNA聚合酶(合成DNA双链,释放dNTP的焦磷酸基团,释放出来的焦磷酸基团的量与和模板结合的dNTP的量成正比)、ATP硫酸化酶(在adenosine 5′ phosphosulfate存在的情况下催化焦磷酸基团形成ATP)、荧光素酶(在ATP介导下使荧光素转化为氧化荧光素,氧化荧光素能释放与ATP量成正比的可见光信号)及三磷酸腺苷双磷酸酶(降解未参入新链的dNTP及ATP,猝灭荧光)。 在测序过程中,每次加入一种类型的dNTP,若该dNTP能与模板链互补配对,则在四种酶的作用下发生一系列的反应,最终将荧光信号转换成电信号体现出来,显示为一个个高度不一的峰,峰的高度与碱基的个数成正比。 反之,当dNTP不能与模板链结合时,将直接被三磷酸腺苷双磷酸酶降解,相应的将不会显示峰值。如下图所示: 2.引物设计

焦磷酸测序的模板也是经亚硫酸盐修饰后扩增,故其引物设计原则与BSP引物设计基本一致:1)引物长度在18~24碱基; 2)避免引物间互补或自身形成发卡结构 3)引物中G/C – A/T的分配比例相当,使Tm在62-65°C之间其主要区别在于:1)Pyrosequencing的一条引物的5' 端需使用生物素标记,以和磁珠或琼脂糖beads结合,另一条引物不要 标记 2)由于游离的生物素将会和生物素标记的PCR产物竞争 结合联霉亲和素(beads)而降低信号水平,须使用HPLC 纯化生物素标记的引物。 3)要确保PCR产物目标量大,且没有非特异性条带,也 没有引物二聚体。PCR完成后使用电泳鉴定PCR产物。 4)PCR循环数须足够,以保证完全消耗掉引物。 Pyrosequencing 的引物设计可以直接使用PyroMark Assay Design 2.0软件进行设计。使用该软件时,只需将目的基因序列输入,该软件便可自动设计反应需要的引物,并会将CpG位点一一罗列出来,与常用的引物设计软件一样,也会有一个评分,建议使用评分在九十分以上的引物,当最高得分仍较低时,可考虑将BSR引物的其中一条进行生物素标记后使用。 PS:PyroMark Assay Design 2.0软件对目的基因的片段长度有限制,建议PCR的目的片段控制在300bp以内,测序片段控制在100bp,这样得到的结果会更加准确可靠。

焦磷酸测序步骤中文版

焦磷酸测序步骤 一、实验操作 (一)甲基化检测 亚硫酸氢盐转化 1. bisulfite Mix+800μL Rnase free water,窝旋5min/60℃加热窝旋混匀(配置好的bisulfite Mix勿放置冰上) 2. 配置buffer反应液,室温混匀:DNA Solution (1μg)+RNAfree water 共20μl+ bisulfite Mix 85μl+DNA protect buffer 5μl,(配置好的体系为140μl,不方便上PCR仪,最好分为两管70μl) 3. 上PCR仪,95℃5min→60℃25min→95℃5min→60℃85min→95℃5min→60℃175min →20℃20min,热循环结束,将PCR product转入Spin-column,加入560 Buffer BL。 (当DNA微量时,需要加入carrier RNA,其加强DNA与column膜的结合;当DNA 量>100ng,则不需要加入carrier RNA)混匀,12,000rpm,1min,废弃液。 4. 清洗Bisulfite DNA convertion 1)加入500μl buffer BW,12,000rpm,1min,废弃液。 2)加入500μl buffer BD,室温放置15min(加入buffer BD快速盖盖子,避免出现白色沉淀) 3)加入500μl buffer BW,12,000rpm,1min,废弃液。 4)加入500μl buffer BW,12,000rpm,1min,废弃液。 5) 12,000rpm,1min,废弃液。 6) 56℃5min(蒸发残余液体) 7) 20μl Buffer EB溶解,12,000rpm,1min(-20℃,可保存3年) PCR扩增目的片段 回收的PCR product 1:5稀释→取2μl→PCR→准备焦磷酸测序 焦磷酸测序 1.在PCR板中,准备微珠预混液配制(每管) 1)Beads:3μl,Binding Buffer,40μl,模版:20μl,dd Water:补足80μl。 2)震荡20min(如果准备工作没做好,可延长震荡时间) 2.焦磷酸测序样品准备 1)清洗探头2-3次,最后一次将探头竖直举起,抽出残余水分,将70%乙醇、变性液、洗液倒入相应的位置 位置不同) 2 3)在酶标版中,准备预混液(每管):Aneal Buffer:40μl,Sprinmer(100pmol):0.2μl 4)探头吸附微珠预混液:探头放置70%乙醇,看到液体从关中出来,探头竖直举起;探头放置变性液,看到液体从管中出来,探头竖直举起;探头放置洗液,看到液体从管中出来,探头竖直举起直至水抽干;将探头对准酶标版,关闭真空,停留3s后,探头置入酶标版,轻轻晃动探头;将酶标版80℃2min,室温直至手感不热,放入仪器;5)打开CpG software,可提前设置软件,RUN。

一代、二代、三代测序技术

三代基因组测序技术原理简介 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和 ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

焦磷酸测序技术原理及应用

焦磷酸测序(Pyrosequencing)技术 焦磷酸测序技术(pyrosequencing)是由Nyren等人于1987年发展起来的一种新型的酶联级联测序技术,焦磷酸测序法适于对已知的短序列的测序分析,其可重复性和精确性能与SangerDNA测序法相媲美,而速度却大大的提高。焦磷酸测序技术产品具备同时对大量样品进行测序分析的能力,为大通量、低成本、适时、快速、直观地进行DNA甲基化、SNP等单个/连续多个核苷酸变异进行实时定量检测提供了非常理想的技术操作平台。 一.焦磷酸测序技术原理 焦磷酸测序技术是由4种酶催化的同一反应体系中的酶级联化学发光反应。焦磷酸测序技术的原理是:引物与模板DNA退火后,在DNA聚合酶(DNA polymerase)、ATP硫酸化酶(ATP sulfurytase).荧光素酶(1uciferase)和三磷酸腺苷双磷酸酶(Apyrase)4种酶的协同作用下,将引物上每一个dNTP的聚合与一次荧光信号的释放偶联起来,通过检测荧光的释放和强度,达到实时测定DNA序列的目的。焦磷酸测序技术的反应体系由反应底物、待测单链、测序引物和4种酶构成。反应底物为5’-磷酰硫酸(adenosine- 5’-phosphosulfat,APS)、荧光素(1uciferin)。 1.每次加入一个dNTP,在聚合酶作用下产生一个焦磷酸(PPi); 2.硫酸化酶转化PPi为ATP,ATP使荧光素酶发出荧光(产生的光强度与结合的核苷数量成正比). 3.多余的dNTP被降解,开始新一个循环. 4. 测序结果

2.技术平台: QIAGEN公司PyroMark Q24,PyroMark Q48Autoprep,PyroMark Q96ID焦磷酸测序仪 .

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

焦磷酸测序(Pyrosequencing)技术

焦磷酸测序(Pyrosequencing) 技术 焦磷酸测序(Pyrosequencing)技术是新一代DNA序列分析技术,该技术无须进行电泳,DNA 片段也无须荧光标记,操作极为简便。 Pyrosequencing技术是由4种酶催化的同一反应体系中的酶级联化学发光反应(参见Pyrosequecing的原理),在每一轮测序反应中,只加入一种dNTP,若该dNTP与模板配对,聚合酶就可以将其掺入到引物链中并释放出等摩尔数的焦磷酸基团(PPi)。 PPi可最终转化为可见光信号,并由PyrogramTM转化为一个峰值。每个峰值的高度与反应中掺入的核苷酸数目成正比。然后加入下一种dNTP,继续DNA链的合成。 瑞典Pyrosequencing AB公司基于Pyrosequencing技术而研究开发的PSQ 96系统是一个理想的遗传分析技术平台,它既可进行DNA序列分析,又可进行基于序列分析的SNP检测及等位基因频率测定。我公司是国内最早引进PSQ 96 MA 技术平台的公司之一,它具有以下优点: 1.不需要制胶,不需要毛细管,也不需要荧光染料和同位素。 2.10分钟内可分析96个样品的SNP,可满足高通量分析的要求。 3.每个样品孔都可进行独立的测序或SNP分析,实验设计灵活。 4.序列分析简单,结果准确可靠。 Pyrosequencing技术的原理 Pyrosequencing是一项全新的DNA测序技术,可以快速、准确地测定一段较短的目标片段。其基本原理如下: 第1步:1个特异性的测序引物和单链DNA模板结合,然后加入酶混合物(包括DNA Polymerase、ATP Sulfurylase、Luciferase和Apyrase)和底物混合物(包括APS和Luciferin)。 第2步:向反应体系中加入1种dNTP,如果它刚好能和DNA模板的下一个碱基配对,则会在DNA 聚合酶的作用下,添加到测序引物的3’末端,同时释放出一个分子的焦磷酸(PPi)。

碱基序列标记法结合焦磷酸测序测定不同来源基因表达量

碱基序列标记法结合焦磷酸测序测定不同来 源基因表达量 作者:张晓丹武海萍陈之遥周国华 【摘要】建立了一种将序列标记反转录聚合酶链反应(PCR)与焦磷酸测序技术结合的相对基因表达量测定法(简称“SRPP”)。先用来源特异性引物对不同来源的同一基因通过反转录标记上特异性标签,PCR 后用焦磷酸测序法对扩增产物进行序列解码,使得测序结果中的序列代表基因的来源,峰高代表基因在不同来源中的相对表达量。用实时荧光定量PCR法对本方法的准确性进行了验证,结果表明,SRPP可以同时准确测定同一基因在3个不同来源中的表达量,并实际测定了Egr1基因在糖尿病、肥胖和正常小鼠肝中的表达量差异。 【关键词】序列标记反转录, 聚合物链反应,焦磷酸测序,基因表达 1 引言 差异表达基因与疾病密切相关,深入研究可在基因水平揭示疾病的发病机制。目前,用于检测基因表达水平的技术主要有SAGE法[1]、实时荧光定量PCR法[2,3]和基因芯片法[4]等。但这些方法存在仪器设备昂贵、定量性能差以及同时测定基因表达量的来源数目受限等缺点。

焦磷酸测序技术是新近发展起来的一种基于酶催化化学反应的测序技术[5~8],不需要使用荧光标记,定量性能好。目前,焦磷酸测序技术多用于单核苷酸多态性(SNP)分析、微生物分型和基因甲基化分析等。本研究将焦磷酸测序技术用于基因表达量差异的比较分析,考察了其可行性和准确性,并将其应用于检测Egr1基因在糖尿病、肥胖症和正常小鼠中的差异表达。 2 实验部分 2.1 仪器、试剂与材料 21R型台式高速冷冻离心机(美国Beckman公司);Gene SpeⅢ微量核酸蛋白测定仪(日本Naka Instrument公司);PTC225 PCR扩增仪、Opticon实时荧光PCR仪(美国MJ Research公司)。焦磷酸测序装置由本实验室自行组装[9,10]。此装置主要由焦磷酸测序反应模块、荧光信号放大和数据采集3部分组成。反应模块由位于中间的反应池通过毛细管与四周的dNTP储液池相连组成。通过注射器施压使4种dNTP 循环加入反应池完成测序反应。荧光信号通过R6335光电倍增管(日本Hamamatsu Photonics K.K.公司)放大后,经BPCL微弱发光测量仪(北京中国科学院生物物理研究所)采集数据。 Hotstar Taq DNA聚合酶、Omniscript RT kit反转录试剂盒(德国

相关主题