搜档网
当前位置:搜档网 › 蓄能器计算

蓄能器计算

蓄能器计算
蓄能器计算

蓄能器在系统中的应用、选型、计算

蓄能器在系统中的应用、选型、计算

高压蓄能器在高压EH油系统中是如何发挥作用的?什么时候发挥作用?

高压蓄能器主要是平衡管路油压波动。具体分析一个特殊例子:当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到9.7MPA时造成保护动作而停机。蓄能器的重要性在高压EH油系统中举足轻重。

流体实际上是不可压缩的,不能储存能量,因而液压蓄能器利用气体(氮气)可压缩性来储存流体。蓄能器实质上是一个储存压力流体的腔室,靠气体的可压缩性将不可压缩的流体能量得以储存,以备做有用功。上述的流体与液压回路相联结,当系统压力升高,流体压缩气体而进入蓄能器;当系统压力降低,压缩气体膨胀,并迫使流体流回液压回路。

蓄能器的典型应用:流体储存,紧急能源,吸收脉动,涌流控制,噪声衰减,车辆减震,容积补偿,压力补偿,渗漏补偿,热胀吸收,力学平衡,增加流量。

储蓄液压能:

(1)对于间歇负荷,能减少液压泵的传动功率当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。

(2)在瞬间提供大量压力油。

(3)紧急操作:在液压装置发生故障和停电时,作为应急的动力源。

(4)保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。

(5)驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。

(6)稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。

缓和冲击及消除脉动:

(1)吸收液压泵的压力脉动。

(2)缓和冲击:如缓和阀在迅速关闭和变换方向时所引起的水锤现象。

注:

1.缓和冲击的蓄能器,应选用惯性小的蓄能器,如气囊式蓄能器、弹簧式畜能器等。

2.缓和冲击的蓄能器,一般尽可能安装在靠近发生冲击的地方,并垂直安装,油口向下。如实在受位置限制,垂直安装不可能时,再水平安装。

3 .在管路上安装蓄能器,必须用支板或支架将蓄能器固紧,以免发生事故。

4.蓄能器应安装在远离热源地地方。

水泥厂立式辊磨中蓄能器的选择案例

磨辊的油缸压力在运行中的变化曲线。当蓄能器太小,设定正常压力Pn太大时,则液压弹簧系统很硬,这时磨辊随着料层厚度变化使液压系统压力变化幅度很大。为很好地发挥蓄能器缓冲振动作用,蓄能器要选得足够大,与液压油缸相连管道应有足够的断面,而且蓄能器应尽量靠近油缸。蓄能器选得小,产生较大振动。一般认为在磨辊加压的接杆上测得振动速度在1~5mm/s内较为合适,以此为标准来选择蓄能器。还建议蓄能器氮气充气压力:

Po=0.9×pmin

式中:Pmin一液压系统最小压力,MPa;液压系统压力变化值△P=Pmax—_Pmin=25%Pn ;Pn一正常工作压力,MPa。

蓄能器的容量计算

作辅助动力源

V0—所需蓄能器的容积(m3)

p0—充气压力Pa,按0.9p1>p0>0.25 p2充气

Vx—蓄能器的工作容积(m3)

p1—系统最低压力(Pa)

p2—系统最高压力(Pa)

n—指数;等温时取n=1;绝热时取n=1.4

吸收泵的脉动

A—缸的有效面积(m2)

L—柱塞行程(m)

k—与泵的类型有关的系数:

泵的类型系数k

单缸单作用0.60

单缸双作用0.25

双缸单作用0.25

双缸双作用0.15

三缸单作用0.13

三缸双作用0.06

p0—充气压力,按系统工作压力的60%充气

吸收冲击

m—管路中液体的总质量(kg)

υ—管中流速(m/s)

p0—充气压力(Pa),按系统工作压力的90%充气

注:

1.充气压力按应用场合选用。

2.蓄能器工作循环在3min以上时,按等温条件计算,其余均按绝热条件计算。

放入我的网络收藏夹

蓄能器的容量计算

2.蓄能器工作循环在3min以上时,按等温条件计算,其余均按绝热条件计算。

蓄能器的计算

3.蓄能器的计算 3.1. 状态参数的定义 P0=预充压力 P1=最低工作压力 P2=最高工作压力 V0=有效气体容量 V1=在P1时的气体容量 V2=在P2时的气体容量 t0=预充气体温度 t min=最低工作温度 t max=最高工作温度 ①皮囊内预先充有氮气,油阀是关闭的,以防止皮囊脱离。 ②达到最低工作压力时皮囊和单向阀之间应保留少量油液(约为 蓄能器公称容量的10%),以便皮囊不在每次膨胀过程中撞击阀,因为这样会引起皮囊损坏。 ③蓄能器处于最高工作压力。最低工作压力和最高工作压力时 的容量变化量相当于有效的油液量。 △V=V1-V2 预充压力的选择 贺德克公司的皮囊式蓄能器允许容量利用率为实际气体容量的75%。因此预充氮气压力和最高工作压力间的比例限于1:4,另外预充压力不得超过最低系统压力的90%。遵照这种规定可

保证较长的皮囊使用寿命。 其它压缩比可采用特别的措施达到。为了充分地利用蓄能器的容量,建议使用下列数值: 蓄能: P 0,tmax =0.9×P 1 吸收冲击: P 0,tmax =0.6÷0.9×P m (P m =在自由通流时的平均工作压力) 吸收脉动: P 0,tmax =0.6×P m (P m =平均工作压力) 或P 0,tmax =0.8×P 1(在多种工作压力时) 3.2.1 预充压力的极限值 P 0≤0.9×P 1 允许的压缩比为 P 2:P 0≤4:1 此外,贺德克公司低压蓄能器还需注意: SB35型:P 0max =20 bar SB35H 型:P 0max =10 bar 3.2.2 对温度影响的考虑: 为了即使在相当高 态蓄能器的充气和检验P 0charge 须作如下选择: P 0,to = P 0,tmax × 273 + t 273 + t max 0 t 0=预充气体温度(℃)

蓄能器的原理

蓄能器技术概述 《液气压世界》2007年第6期阅读次数:1665 蓄能器是一种能把液压储存在耐压容器里,待需要时又将其释放出来的能量储存装置。蓄能器是液压系统中的重要辅件,对保证系统正常运行、改善其动态品质、保持工作稳定性、延长工作寿命、降低噪声等起着重要的作用。蓄能器给系统带来的经济、节能、安全、可靠、环保等效果非常明显。在现代大型液压系统,特别是具有间歇性工况要求的系统中尤其值得推广使用。 1.1 蓄能器的工作原理 液压油是不可压缩液体,因此利用液压油是无法蓄积压力能的,必须依靠其他介质来转换、蓄积压力能。例如,利用气体(氮气)的可压缩性质研制的皮囊式充气蓄能器就是一种蓄积液压油的装置。皮囊式蓄能器由油液部分和带有气密封件的气体部分组成,位于皮囊周围的油液与油液回路接通。当压力升高时油液进入蓄能器,气体被压缩,系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。 蓄能器类型多样、功用复杂,不同的液压系统对蓄

能器功用要求不同,只有清楚了解并掌握蓄能器的类型、功用,才能根据不同工况正确选择蓄能器,使其充分发挥作用,达到改善系统性能的目的。 1.2 蓄能器的类型 蓄能器按加载方式可分为弹簧式、重锤式和气体式。 弹簧式蓄能器如图1(a)所示,它依靠压缩弹簧把液压系统中的过剩压力能转化为弹簧势能存储起来,需要时释放出去。其结构简单,成本较低。但是因为弹簧伸缩量有限,而县弹簧的伸缩对压力变化不敏感,消振功能差,所以只适合小容量、低压系统(P≦1.0~ 1.2MPa),或者用作缓冲装置。 (a)弹簧式(b)重锤式 图1-1 弹簧式和重锤式蓄能器 重锤式蓄能器如图1(b)所示,它通过提升加载在密封活塞上的质量块把液压系统中的压力能转化为重力

蓄能器使用步骤

低压透平油蓄能器充氮步骤及测压方法 在汽轮机低压透平油纯电调系统中设有容量为10L的蓄能器,现将充氮步骤及测压方法简述如下: 一、蓄能器充氮步骤: 1、将蓄能器项部的六角罩盖螺母拆下,装上充气工具。 2、将连接充气工具软管另一端的组件的接头螺母与氮气瓶上的 接头旋上并拧紧。 3、开启蓄能器下部连接压力油管路上的进油截止阀(工作油压为 零)。 4、将充气工具中放气的针阀B关闭,再顺时针拧充气工具上端 的手柄A,将蓄能器的充气嘴顶开。 5、然后缓慢打开氮气瓶上的阀门,向蓄能器充氮。注意:在缓慢 打开氮气瓶上阀门时,必须同时监视充气工具上的压力表读数,当压力达到要求的充氮压力时,即关闭氮气瓶上的阀门。设计充氮压力一般为额定工作压力的60%。 例如工作压力为:20MPa 充氮压力为1.2MPa 工作压力为:1.2MPa 充氮压力为0.72MPa 6、随后逆时针拧充气工具上端的手柄A,使蓄能器的充气阀关闭 后才可拆去充气工具及连接氮气瓶的软管组件。 7、检查蓄能器顶部的充气嘴有无漏气,若有漏气。则需更换充气 嘴;若无泄漏,则装上蓄能器充气嘴上的六角罩盖螺母,充氮完毕。

二、蓄能器测压方法 在机组运行一定的时间,或长期停机后需重新启动时,应对蓄能器进行检查,并测定充氮压力值,当氮气压力值低于工作压力的50%时,则应重新充氮气,检查测定氮气压力方法如下: 1、将蓄能器顶部的六角罩盖螺母拆下,装上充气工具。 2、将连接充气工具的软管拆下,换上堵头。 3、旋动充气工具上的手柄A,将蓄能器的充气嘴顶开,由充气工 具上的压力表测取蓄能器压力值,若低于工作压力的50%时,则必须进行补充氮气。 4、充氮方法及步骤如上所述。

液压蓄能器的计算

液压蓄能器的计算 根据使用情况的不同,蓄能器的容量计算分为三种情况。 1.作为能源使用,排出的油速度较慢时 蓄能器用来保持系统压力,补偿泄漏等情况,蓄能器内气体的变化状态,可按等温变化考虑。即 p0V0=p1V1=p2V2=常数 式中p0——供油前充气压力(Pa) p1——最高工作压力(Pa) p2——最低工作压力(Pa) V0——供油前蓄能器气体容积,即蓄能器的总容量(L); V1——压力p1时的气体容积(L) V2——压力p2时的气体容积(L) 由上式可知,当工作压力从p1降为p2时,气体容积变化量,即蓄能器排出的油量ΔV为 ΔV=V2- V1=p0 V0(1/ p2-1/ p1) 于是蓄能器的总容积为 V0=(ΔV p1 p2)/ p0(p1- p2) 2.作为能源使用,排出油的速度很快时 蓄能器内气体的变化状态可按绝热变化考虑。即 p0V01.4= p1 V11.4= p2V21.4=常数 当蓄能器的工作压力从p1降为p2时,排出的油量 ΔV=p00.71 V0(1/ p20.71-1/ p10.71) 于是,蓄能器的总容积为 V0=(ΔV p10.71p20.71)/ p00.71(p10.71- p20.71) 式中符号含义同前。 对于气囊式蓄能器的充气压力p0推荐:折合型取p0=(0.8~0.85)p2;波纹型取p0=(0.6~0.65)p2; 对于活塞式蓄能器推荐:p0=(0.8~0.9)p2。 3.作为吸收压力冲击和压力脉动使用 (1) 吸收压力冲击(如阀门突然关闭等情况)时,可按下面经验公式计算 V0=0.004qp3(0.0164L-t)/(p3-p1) 式中V0——蓄能器的总容积(L); p1——阀门关闭前管内液压油的工作压力(Pa) p3——阀门关闭后允许的最大冲击压力,一般取p3=1.5 p1(Pa) q——阀门关闭前管内的流量(L/min) L——产生冲击压力的管道长度(m) t——关闭阀门的时间(s),t=0为突然关闭。 计算结果V0为正值时,才有设置蓄能器的必要,并且要尽量安装在发生压力冲击的地方。 (2) 吸收液压泵压力脉动时,其计算公式为 V0=V p I/0.6K 式中V0——蓄能器的总容积(L); I——液压泵的排量变化率,I=ΔV/V p,ΔV为超过平均排量的排出量; V p——液压泵的每转排量(L/r); K——液压泵的压力脉动率(K=Δp/P p) P p——液压泵工作压力(Pa) Δp——液压泵压力脉动。 使用时,取蓄能器充气压力P0=0.6P。

蓄能器计算

蓄能器在系统中的应用、选型、计算 蓄能器在系统中的应用、选型、计算 高压蓄能器在高压EH油系统中是如何发挥作用的?什么时候发挥作用? 高压蓄能器主要是平衡管路油压波动。具体分析一个特殊例子:当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到9.7MPA时造成保护动作而停机。蓄能器的重要性在高压EH油系统中举足轻重。 流体实际上是不可压缩的,不能储存能量,因而液压蓄能器利用气体(氮气)可压缩性来储存流体。蓄能器实质上是一个储存压力流体的腔室,靠气体的可压缩性将不可压缩的流体能量得以储存,以备做有用功。上述的流体与液压回路相联结,当系统压力升高,流体压缩气体而进入蓄能器;当系统压力降低,压缩气体膨胀,并迫使流体流回液压回路。 蓄能器的典型应用:流体储存,紧急能源,吸收脉动,涌流控制,噪声衰减,车辆减震,容积补偿,压力补偿,渗漏补偿,热胀吸收,力学平衡,增加流量。 储蓄液压能: (1)对于间歇负荷,能减少液压泵的传动功率当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。 (2)在瞬间提供大量压力油。 (3)紧急操作:在液压装置发生故障和停电时,作为应急的动力源。 (4)保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。 (5)驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。 (6)稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。 缓和冲击及消除脉动: (1)吸收液压泵的压力脉动。 (2)缓和冲击:如缓和阀在迅速关闭和变换方向时所引起的水锤现象。 注: 1.缓和冲击的蓄能器,应选用惯性小的蓄能器,如气囊式蓄能器、弹簧式畜能器等。 2.缓和冲击的蓄能器,一般尽可能安装在靠近发生冲击的地方,并垂直安装,油口向下。如实在受位置限制,垂直安装不可能时,再水平安装。 3 .在管路上安装蓄能器,必须用支板或支架将蓄能器固紧,以免发生事故。 4.蓄能器应安装在远离热源地地方。 水泥厂立式辊磨中蓄能器的选择案例 磨辊的油缸压力在运行中的变化曲线。当蓄能器太小,设定正常压力Pn太大时,则液压弹簧系统很硬,这时磨辊随着料层厚度变化使液压系统压力变化幅度很大。为很好地发挥蓄能器缓冲振动作用,蓄能器要选得足够大,与液压油缸相连管道应有足够的断面,而且蓄能器应尽量靠近油缸。蓄能器选得小,产生较大振动。一般认为在磨辊加压的接杆上测得振动速度在1~5mm/s内较为合适,以此为标准来选择蓄能器。还建议蓄能器氮气充气压力: Po=0.9×pmin

蓄能器的原理

蓄能器技术概述 蓄能器是一种能把液压储存在耐压容器里,待需要时又将其释放出来的能量储存装置。蓄能器是液压系统中的重要辅件,对保证系统正常运行、改善其动态品质、保持工作稳定性、延长工作寿命、降低噪声等起着重要的作用。蓄能器给系统带来的经济、节能、安全、可靠、环保等效果非常明显。在现代大型液压系统,特别是具有间歇性工况要求的系统中尤其值得推广使用。 1.1 蓄能器的工作原理 液压油是不可压缩液体,因此利用液压油是无法蓄积压力能的,必须依靠其他介质来转换、蓄积压力能。例如,利用气体(氮气)的可压缩性质研制的皮囊式充气蓄能器就是一种蓄积液压油的装置。皮囊式蓄能器由油液部分和带有气密封件的气体部分组成,位于皮囊周围的油液与油液回路接通。当压力升高时油液进入蓄能器,气体被压缩,系统管路压力不再上升;当管路压力下降时压缩空气膨胀,将油液压入回路,从而减缓管路压力的下降。 蓄能器类型多样、功用复杂,不同的液压系统对蓄能器功用要求不同,只有清楚了解并掌握蓄能器的类型、功用,才能根据不同工况正确选择蓄能器,使其充分发挥作用,达到改善系统性能的目的。 1.2 蓄能器的类型 蓄能器按加载方式可分为弹簧式、重锤式和气体式。 弹簧式蓄能器如图1(a)所示,它依靠压缩弹簧把液压系统中的过剩压力能转化为弹簧势能存储起来,需要时释放出去。其结构简单,成本较低。但是因为弹簧伸缩量有限,而县弹簧的伸缩对压力变化不敏感,消振功能差,所以只适合小容量、低压系统(P≦1.0~1.2MPa),或者用作缓冲装置。 (a)弹簧式(b)重锤式 图1-1 弹簧式和重锤式蓄能器 重锤式蓄能器如图1(b)所示,它通过提升加载在密封活塞上的质量块把液压系统中的压力能转化为重力势能积蓄起来。其结构简单、压力稳定。缺点是安装局限性大,只能垂直安装;不易密封;质量块惯性大,不灵敏。这类蓄能器仅供暂存能量用。这两种蓄能器因为其局限性已经很少采用。但值得注意的是,有些研究部门从经济角度考虑在这两种蓄能器的结构上做一些改进,在一定程度

蓄能器的作用

液压蓄能器的作用和主要用途 1.存贮能量,应急液压 蓄能器被广泛利用作辅助能源,与压力继电器组合使用,在间歇工作的场合,可作为辅助能源,实现液压泵的小型化并可节省能源,如钢厂炼钢炉的倾转液压系统。。 2.吸收脉动,平稳系统 液压泵排出的液体都具有较大的脉动,这种脉动会使液压系统产生噪声、振动,并破坏系统的工作稳定性;在液压泵出口处使用蓄能器可以有效的衰减脉动,使装置平稳的工作,这在某些精密设备中犹为重要。 3.吸收冲击,保护回路 在液压回路中,由于液压阀急速闭合而发生载荷剧变;这种剧变会产生很大的瞬间冲击压力会破坏管道、连接接头或其它液压元件,并产生剧烈的振动和噪声;使用蓄能器可有效缓和冲击,保护液压装置。如压铸机、高空混凝土输送机中液压系统中使用的蓄能器就很好的体现了这一功能。 4.热膨胀消减泄漏补偿 在压力控制的闭式回路中,使用蓄能器可有效的补偿温度降低、内部泄漏或外部泄漏而引起的压力降低;也可有效控制由于温度升高而引起的压力上升、从而使系统稳定的工作。 5.吸收振动,减振平衡 蓄能器中胶囊充满气体可起到气体弹簧的作用,可吸收来自汽车、提升机、移动吊车等驱动和悬挂系统的机械振动,保持车辆的平稳性。 6.液体或液气分隔传送 使用蓄能器可实现两种不相容的液体或液体与气体之间的能量传递,进行隔绝输送。 互联网上与蓄能器相关的常用搜索关键词: 液压蓄能器,活塞式蓄能器,囊式蓄能器,气囊式蓄能器,皮囊式蓄能器,蓄能器胶囊,蓄能器皮囊,蓄能器气囊,隔膜式蓄能器,隔膜蓄能器, 微型蓄能器,高压蓄能器,耐高温蓄能器,抗腐蚀蓄能器,蓄能器安全阀,蓄能器附件,小缸径囊式蓄能器,蓄能器控制阀组,蓄能器气瓶, 蓄能器氮气瓶,充气装置,蓄能器支架,蓄能器配件,,,,,,,,,, 液压蓄能器结构,蓄能器的结构,蓄能器结构图,蓄能器技术参数,蓄能器详细技术参数,蓄能器技术标准,蓄能器结构设计,液压蓄能器额定容积, 蓄能器流体容积/升/加仑,蓄能器工作压力/psi/bar/Mpa/兆帕,蓄能器保护压力,蓄能器爆破压力,蓄能器容积压力的计算,,,, 蓄能器选型,蓄能器的选型,蓄能器的作用,选用蓄能器,蓄能器的用途,皮囊式蓄能器在液压系统中的应用,皮囊式蓄能器工作过程,

液压元件的计算与选择

第二节第四节液压元件的计算与选择 一、液压泵 首先依据初选的系统压力选择液压泵的结构类型,一般P<21MPa,选用齿轮泵和叶片泵;P>21MPa,则选择柱塞泵。然后确定液压泵的最大工作压力和流量。液压泵的最大工作压力必须等于或超过液压执行元件最大工作压力及进油路上总压力损失这两者之和,液压执行元件的最大工作压力可以从工况图或表中找到;进油路上总压力损失可以通过估算求得,也可以按经验资料估计,见表10-3。 液压泵的流量必须等于或超过几个同时工作的液压执行元件总流量的最大值以及回路中泄漏量这两者之和。液压执行元件总流量的最大值可以从工况图或表中找到(当系统中备有蓄能器时,此值应为一个工作循环中液压执行元件的平均流量);而回路中泄漏量则可按总流量最大值的10%-30%估算。 在参照产品样本选取液压泵时,泵的额定压力应选得比上述最大工作压力高20%-60%,以便留有压力储备;额定流量则只需选得能满足上述最大流量需要即可。 液压泵在额定压力和额定流量下工作时,其驱动电机的功率一般可以直接从产品样本上查到。电机功率也可以根据具体工况计算出来,有关的算式和数据见第三章相关部分或液压工程手册。 二、阀类元件 阀类元件的规格按液压系统的最大压力和通过该阀的实际流量从产品样本上选定。各类液压阀都必须选得使其实际通过流量最多不超过其公称流量的120%,否则会引起发热、噪声和过大的压力损失,使阀的性能下降。选用液压阀时还应考虑下列问题:阀的结构形式、特性、压力等级、连接方式、集成方式及操纵方式等。对流量阀应考虑其最小稳定流量;对压力阀应考虑其调压范围;对换向阀应考虑其滑阀机能等。 1.流量阀的选择 选择节流阀和调速阀时还要考虑其最小稳定流量是否符合设计要求,一般中、低压流量阀的最小稳定流量为50ml/min~100ml/min;高压流量阀的最小稳定流量为min~20ml/min。 流量阀对流量进行控制,需要一定的压差,高精度流量阀进、出口约需1MPa的压差。普通调速阀存在起始流量超调的问题,对要求高的系统可选用带手调补偿器初始开度的调速阀或带外控关闭功能的调速阀。 对于要求油温变化对外负载的运动速度影响小的系统,可选用温度补偿型调速阀。 2.溢流阀的选择

囊式蓄能器使用说明书

囊式蓄能器使用维护说明书 NXQ 系列液压囊式蓄能器是液压系统中重要的不可缺少的液压辅件,常见的联接形式有螺纹联接和法兰联接(见图1)。主要工作原理:液压囊式蓄能器是利用气体(氮气)的可压缩性来蓄积液体的原理(即采用氮气作为压缩介质)而工作的。是利用胶囊内气体体积随压力的变化而变化,从而达到储存或释放液压来储蓄能量、稳定压力、消除脉冲、吸收冲击、补偿容量和补偿泄漏等作用。 图1 1.安装位置 蓄能器应选择尽量靠近装置的场所安装。用于缓冲和吸收脉动时,应尽可能安装在靠近振动源处。为充分发挥蓄能器功能,蓄能器应垂直安装。为便于蓄能器的维护和检查,蓄能器的上方及周围应留有一定空间。 2.蓄能器的固定 安装蓄能器,应牢固地支持在托架上或壁面上。径长比过大时,还应设置抱箍加固。蓄能器固定推荐采用图2的形式。 图2 3.蓄能器与管路连接 国标蓄能器系通过过渡接头与管路连接。螺纹连接接头形式见表2(仅供参考),与进油阀所连接的接头应注意拧入端口内孔尺寸(Φ )不能太小,以防阀杆顶住接头卡死,造成胶囊夹破。法兰连接形式见表3(仅供参考)。 4.安装注意事项 .不得在蓄能器上进行焊接,铆接或机械加工; .蓄能器与管路系统之间应设置操作简便的截止阀,此阀供充气、检查蓄能器、调节放油速度或长时间停机时使用; .蓄能器与液压泵之间应装设单向阀,当泵电机停止运转时,防止蓄能器中所储存的压力油倒流;

.为防止蓄能器对管路系统的危害,对大于等于10L的蓄能器,在进入蓄能器的位置应设置安全阀或溢流阀; .蓄能器的胶囊内只允许充装氮气,严禁充装空气或者氧气,胶囊外的介质为石油基液压液。 5.充氮--充氮条件 .蓄能器投入使用前应给蓄能器胶囊充入氮气; .使用中蓄能器检查发现胶囊内氮气漏损时应给胶囊补充氮气。 6.充气方法 .充气前应准备好氮气瓶和充氮工具 (见图3),用充气工具进行充氮,当充气压力大于10MPa时,还应采用增压器(充氮小车) (见图4)加压到充气压力; .先用刷子蘸取洗衣粉液或肥皂水涂在蓄能器各接口和密封处,如发现漏气,应卸压并及时维修; .接好测压装置;拧紧放气塞,以免充气时漏气; .将充气工具一端与蓄能器充气口连接,另一端通过充气管路接头与氮气瓶出气口连接; .顺时针旋开蓄能器上端的针阀,顶开阀门; .打开氮气瓶上的阀门开关,接通气源。 6.7.一边慢慢打开充气工具控制开关进行充气,让压力表指针读数缓慢上升,一边仔细观察压力表指针读数; .充氮应缓慢进行,只有当胶囊膨胀关闭进油阀后,才允许适当加大充气速度。 .当压力达到预定(一般取~时,立即关闭充气工具控制开关(氮气压力超过,不易被压缩,达不到吸收冲击的效果); .关闭氮气瓶上的阀门开关,再逆时针旋转关闭蓄能器上端的针阀,关闭阀门; .将充气工具两端分别从蓄能器充气口和氮气瓶出气口松开卸下,与氮气瓶一起收好。 图3充氮工具

蓄能器安装法则

蓄能器的安装维护使用说明 1.1蓄能器的安装与维护要点 1.1.1蓄能器的安装 (1)蓄能器安装前的检查 ①产品是否与设计规格型号相同、②充气阀是否紧固、③有无运输过程中造成影响使用的损伤、④进液阀进液口是否堵口好。 (2)蓄能器安装的基本要求 ①蓄能器的工作介质的黏度和使用温度均应与液压系统工作介质的要求相同。 ②蓄能器应安装在检查、维修方便之处。 ③用于吸收冲击、脉动时,蓄能器要紧靠振源,应装在易发生冲击处。 ④安装位置应远离热源,以防止因气体受热膨胀造成系统压力升高。 ⑤固定要牢固,但不允许焊接在主机上,应牢固地支持在托架上或壁面上。长度外径比过大时,还应设置抱箍加固。托架主要用于从下方承受蓄能器(垂直安装、油口向下)的重量,抱箍主要用于防止蓄能器的摇摆晃动。专用的皮囊式蓄能器托架及抱箍一般都带有橡胶垫和橡胶护套。托架及抱箍均可自制,托架平板中央的开口应大于油口并小于蓄能器外径,囊式蓄能器托架平板中央开口最好加橡胶垫圈,抱箍要求不高时可以采用普通的U型抱箍。 ⑥囊式蓄能器原则上应该油口向下垂直安装,倾斜或卧式安装时,皮囊因受浮力与壳体单边接触,将有妨碍正常伸缩运行、加快皮囊损坏、降低蓄能器机能的危险。因此一般不采用倾斜或卧式安装的方法。活塞式蓄能器,应严格按照油口向下垂直安装;卧式安装时,活塞的重量使密封件在侧压下加速磨损;卧式安装或者油口向上安装时,流体内的杂质容易沉淀累积,将磨损缸体内壁及密封件,严重影响密封性能。如有自己加工的连接短管等,要保证其清洁,不携带金属碎屑;安装过程的各阶段,要防止灰尘等固体颗粒进入蓄能器内部及管路。系统在检测、充氮前要将充氮装置用酒精洗干净,检查各阀口是否有碰伤、划痕,各密封装置是否有损坏,一旦发现及时更换和修复。 ⑦在泵和蓄能器之间应安装单向阀,以免在泵停止工作时,蓄能器中的油液倒灌入泵内、流回油箱,发生事故。 ⑧在蓄能器与系统之间,应装设截止阀,此阀供充气、调整、检查、维修或者长期停机使用。最好使用专用蓄能器安全阀组(又叫蓄能器安全阀块,一般由截止阀、安全阀、卸荷阀等一体集成)。

16MPa调速器的蓄能器、接力器和油泵参数选择

16MPa调速器的蓄能器、接力器和油泵参数选择 李晃 Ⅰ.参数选择原则 参数选择中按下述原则进行: 1.在油泵不工作的条件下, 蓄能器在正常工作油压下限p omin降到最低操作油压p R时至少能提供3个导叶接力器行程的油量。在上述要求的基础上,应适当应适当增大蓄能器容积,延长油泵打油间隔时间,以减少油泵的起停次数。 2.每台油泵的每分钟输油量按油泵的市场供应情况选取,可大于GB/9652.1的规定。 3.取蓄能器的预充压力为0.9p R ,且缓慢充压;在此基础上再适当增大蓄能器容积;正常工作油压的变化范围(p omax~p omin)取名义工作油压的±5%,即16MPa~1 4.4MPa。 4.最低操作油压p R的选择,应遵守使所选蓄能器容积小、且接力器的容积不宜过大的原则,从而降低产品成本。 Ⅱ.最低操作油压p R的选择对所需蓄能器容积的影响 已知接力器工作容量,那么接力器容积V S: V S=A / p R×10-6(m3) 式中:A—接力器工作容量(N·m); p R—最低操作油压(MPa)。 蓄能器在正常工作油压下限降到最低操作油压时能提供3~4个导叶接力器行程的油量进行蓄能器容积选择计算,先设提供的可用油体积V u=4V S。 所需的在正常工作油压下限时蓄能器氮气体积V air: V air= V u /{(p omin / p R)1/1.3-1} 式中:p omin—正常工作油压下限(MPa) 。 事故低油压紧急停机后达最低操作油压时的氮气体积V Rair: V Rair= V air+V u =V u /{(p omin / p R)1/1.3-1}+V u =V u[1/{(p omin / p R)1/1.3-1}+1] 设蓄能器预充压力为0.9p R,此时蓄能器氮气体积即所需蓄能器容积V o: V o = V Rair /0.9 =4.44A[1 / {(p omin / p R)1/1.3-1}+1](1/p R) 从上式可知,已知接力器工作容量和正常工作油压下限,所需蓄能器容积是最低操作油压的函数。 设K= p R / p omin,那么蓄能器氮气体积即所需蓄能器容积V o: V o=4.44 [1 /{(1/K)1/1.3-1}+1]( A/K p omin) =kA/ p omin

蓄能式液控蝶阀(水泵型)说明书

蓄能器 液控缓闭止回蝶阀 HBD743HS-10C 使用说明书高能阀门集团有限公司

目录 1.产品简介 2.型号说明 3.标准与规范 4.基本参数 5.特殊参数 6.主要零件选用材料 7.产品结构说明 8.工作原理及操作说明 9.吊装及调试维护 10.一般故障及排除方法 11.阀门成套供应范围 12.附件

蓄能器液控缓闭止回蝶阀 1.产品简介 液控缓闭止回蝶阀是目前国内外较先进的管路控制设备,主要安装于水利、电力、给排水等各类泵站的水泵出口,替代止回阀和闸阀的功能。工作时,阀门与管道主机配合,按照水力过渡过程原理,通过预设的启闭程序,有效消除管路水锤,实现管路的可靠截止,起到保护管路系统安全的作用。 本公司生产的液控缓闭止回蝶阀流阻系数小、自动化程度高、功能齐全、性能稳定可靠,是我公司设计人员在广泛搜集、研究、总结国内外同类产品性能的基础上,引入阀门、液压、电气等行业的多项研究成果,厚积而薄发,开发出来的新一代智能化高效节能产品。公司技术力量雄厚,并可根据用户的特殊要求单独进行设计,多方位满足广大用户对该类产品的需要。 该产品主要有如下特点: 1、可取代水泵出口处原电动闸阀和止回阀的功能,并把机、电、液系统集成为一个整体,减少占地面积及基建投资。 2、电液控制功能齐全,无需另外配置即可以作为一个独立的系统单机就地调试、控制;也可以作为集散性控制系统(DCS)的一个设备单元,通过I/O通道由中央计算机进行集中管理,与水泵、及其他管道设备实现联动操作;并配有手动功能,无动力电源时也可以实现手动开、关阀,满足特殊工况下的阀门调试、控制要求。 3、可控性好,调节范围大、适应性强。电液控制系统设有多处调节点,可以按不同的管道控制要求进行启闭程序设置,保证在满足开、关阀条件时,阀门能够自动按预先设定的时间、角度开启和分快关、慢关两阶段。并能实现无电关阀,有效消除破坏性水锤,防止水泵和水轮机组飞逸事故的发生,降低管网系统的压力波动,保障设备的安全可靠运行。 4、主阀密封面为三偏心金属密封或双偏心橡胶密封结构,启闭轻松、密封可靠;并有一道额外加大的偏心,使阀门具有良好的自关闭、自密封性能。中、小通径蝶板设计成流线型平板结构,大通径蝶板设计成双平板桁架式结构,排挤小,水流平顺,阀门流阻系数仅为 0.15~0.8,远小于止回阀的流阻系数(1.7~2.6),节能效果明显。 2.型号说明 HB D 7 4 3 H – 10 C 阀门材料:镍铬铸铁 公称压力:0.6MPa 密封材料:不锈钢 结构形式:三偏心 连接方式:法兰连接 驱动方式:液压传动 阀门类型:蝶阀 功能特征:蓄能罐式

40L低压蓄能器说明书

40L低压蓄能器使用 维护说明书

该系统配备两只40L低压蓄能器,蓄能器与连接块连接,连接块进油口与系统保安油管路相连,出油口与系统无压回油连接。其作用是向保安油管路提供紧急用油,防止保安油压低引起跳机事故。图1.1为低压蓄能器油路图。 图1.1 在该蓄能器连接块上装有两个进油截止阀和两个排油截止阀以及两只压力表。通过此两只截止阀可将蓄能器与系统隔离并放掉蓄能器中的油液,以进行在线维修;两只压力表可直观的观察蓄能器进口油压压力。其中SH1、SH4为蓄能器进油截止阀,SH2、SH3为排油截止阀,当需要检修蓄能器时可SH1、SH4,打开SH2、SH3将蓄能器内部油排回油箱中,待油压下降为0时便可拆卸蓄能器进行维修。正常使用时SH1、SH4进油截止阀完全打开,SH2、SH3排油截止阀完全关闭。 该蓄能器为皮囊式,材质为丁腈皮囊,油路块采用2Cr13不锈钢、连接管 路采用0Cr18Ni9不锈钢钢管连接。进油口DN50与系统保安油连接,出油口DN10 与系统无压回油连接。图1.2为蓄能器组件外形尺寸及油口图。

图1.2 该蓄能器工作介质为HT32透平油,工作介质应维持在工作温度为35℃-65℃之间,避免温度过高或者过低影响蓄能器正常工作。蓄能器额定工作压力682KPa,耐压试验压力为1MPa,充氮压力为0.22MPa。在油冲洗前应将蓄能器进油、回油截止阀全部打开并进行油冲洗至油质化验合格。检查蓄能器内氮气压力为 0.22MPa。若压力不足则应补充充氮。 蓄能器的充氮步骤: 1)关闭蓄能器的进油阀,打开蓄能器排油阀。 2)检测蓄能器的氮气压力表氮气压力为 0.22MPa,否则必须充氮。 3)拆下氮气压力表组件前先旋动手柄至完全松开位置, 再慢慢松开放气螺钉,直到氮气压力表组件处 于无氮气压力自然状态,然后再拆下氮气压力表组 件,换上软管,用充气组件将蓄能器与氮气瓶连接 好。如出现接头螺纹不匹配,则需加工过渡接头。

蓄能器的计算

3.蓄能器得计算 3、1、状态参数得定义 P0=预充压力 P1=最低工作压力 P2=最高工作压力 V0=有效气体容量 V1=在P1时得气体容量 V2=在P2时得气体容量 t0=预充气体温度 t min=最低工作温度 tmax=最高工作温度 ①皮囊内预先充有氮气,油阀就是关闭得,以防止皮囊脱离。 ②达到最低工作压力时皮囊与单向阀之间应保留少量油液(约为蓄能器公 称容量得10%),以便皮囊不在每次膨胀过程中撞击阀,因为这样会引起皮囊损坏。 ③蓄能器处于最高工作压力。最低工作压力与最高工作压力时得容量变化 量相当于有效得油液量。 △V=V1-V2 3.2.预充压力得选择 贺德克公司得皮囊式蓄能器允许容量利用率为实际气体容量得75%。因此预充氮气压力与最高工作压力间得比例限于1:4,另外预充压力不得超过最低系统压力得90%.遵照这种规定可保证较长得皮囊使用寿命。 其它压缩比可采用特别得措施达到。为了充分地利用蓄能器得容量,建议使用下列数值: 蓄能: P0,tmax=0、9×P1 吸收冲击: P0,tmax=0、6÷0、9×P m(P m=在自由通流时得平均工作压力) 吸收脉动: P0,tma x=0、6×Pm(P m=平均工作压力) 或P0 =0、8×P1(在多种工作压力时) ,tmax 3.2.1 预充压力得极限值 P0≤0、9×P1 允许得压缩比为 P2:P0≤4:1 此外,贺德克公司低压蓄能器还需注意: SB35型:P0ma x=20 bar SB35H型:P0max=10 bar 3。2.2 对温度影响得考虑: 为了即使在相当高得工作温度下仍保持所推荐得预充压力,冷态蓄能器得充气与检验P0 须作如下选择: charge P0,to= P0,tmax× t0=预充气体温度(℃) t max=最高工作温度(℃)

蓄能器的使用说明和安装维护及操作技巧

蓄能器的使用说明和安装维护及操作技巧 一、蓄能器的安装与维护要点 1、蓄能器的安装 (1)蓄能器安装前的检查 安装前的检查不可忽略。安装前应对蓄能器进行如下检查:产品是否与设计规格型号相同、充气阀是否紧固、有无运输过程中造成影响使用的损伤,以及进液阀进液口是否堵口好。 (2)蓄能器安装的基本要求 蓄能器安装的基本要求有以下几点: A.蓄能器的工作介质的黏度和使用温度均应与液压系统工作介质的要求相同。 B.蓄能器应安装在检查、维修方便之处。 C.用于吸收冲击、脉动时,蓄能器要紧靠振源,应装在易发生冲击处。 E.安装位置应远离热源,以防止因气体受热膨胀造成系统压力升高。 F.固定要牢固,但不允许焊接在主机上,应牢固地支持在托架上或壁面上。径长比过大时,还应设置抱箍加固。 G.囊式蓄能器原则上应该油口向下垂直安装,倾斜或卧式安装时,皮囊因受浮力与壳体单边接触,将有妨碍正常伸缩运行、加快皮囊损坏、降低蓄能器机能的危险。因此一般不采用倾斜或卧式安装的方法。活塞式蓄能器,应严格按照油口向下垂直安装;卧式安装时,活塞的重量使密

封件在侧压下加速磨损;卧式安装或者油口向上安装时,流体内的杂质容易沉淀累积,将磨损缸体内壁及密封件,严重影响密封性能。 H.在泵和蓄能器之间应安装单向阀,以免在泵停止工作时,蓄能器中的油液倒灌入泵内、流回油箱,发生事故。 I.在蓄能器与系统之间,应装设截止阀,此阀供充气、调整、检查、维修或者长期停机使用。最好使用专用蓄能器安全阀组(又叫蓄能器安全阀块,一般由截止阀、安全阀、卸荷阀等一体集成)。 J.蓄能器装好后,应充填惰性气体(如氮气N2),严禁充氧气(O2)、氢气(H2)、压缩空气或其他易燃性气体。 K.蓄能器是压力容器,装拆和搬运时,必须先放出内部气体。 2、蓄能器的维护检查 蓄能器在使用过程中,需定期对气囊、密封件进行气密性检查。对于新使用的蓄能器,第一周检查一次,第一个月内还要检查一次,然后半年检查一次。对于作应急动力源的蓄能器,为了确保安全,更应经常检查与维护。 蓄能器充气后,各部份绝对不充许再拆开,也不能松动,以免发生危险。需要拆开时应先放尽气体,确认无气体后,再拆卸。 在有高温辐射热源环境中使用的蓄能器可在蓄能器的旁边装设两层铁板和一层石棉组成的隔热板,起隔热作用。 安装蓄能器后,系统的刚度降低,因此对系统有刚度要求的装置中,必须充分考虑这一因素的影响程度。 在长期停止使用后,应关闭蓄能器与系统管路间的截止阀,保护蓄能器油压在充气压力以上,囊式蓄能器使气囊不靠底,活塞式蓄能器使活塞不靠底。 蓄能器在液压系统中属于危险部件,所以在操作中要特别注意。当出现故障时,切记一定要先卸掉蓄能器的压力,然后用充气工具排尽胶囊中的气体,使系统处于无压力状态方可进行维修并拆卸蓄能器及各零件,以免发生意外事故。

Dn1600蓄能器快关蝶阀液压系统说明书

XkDFYZB-6*300E--P 蓄能器快关蝶阀液压系统(Dn1600/0.25快关蝶阀用)

蓄能器快关蝶阀液压系统 一、液压系统结构参数和调节设定 1、液压油缸 配套液压缸型号:QBT2—D140*450。液压缸采用高强度无缝钢管经高精度控机床加工后经 珩磨而成,缸底集成缓闭装置(可调节),液压缸外形(见图七)。缓闭速度调节阀:顺时针旋转为减 少缓闭速度;缓闭角度调节阀:顺时针旋转为减少缓闭角度。 2、液压装置部分基本参数 油箱溶积95L 加油数量75L 额定流量6L/min 快速流量300L/min 工作压力9.0-11.0MPa 蓄能器容量25L 蓄能器充氮气压力 5.5MPa 保压性能4h压降不大于2MPa(稳压后) 开阀时间10-30秒(0-90°)可调 关阀时间10-30秒(0-90°)可调 快关时间大于2秒(包括缓冲时间) 过滤精度10u 装置总重约280kg(不包括液压油) 装置外形1200*500*1400(长*宽*高) 工作介质N46号液压油(必要时加40号抗冻液压油) 应用环境按常规工业设备要求 3、结构组成和功能简介 蝶阀液系统驱动装置主要由油箱电动机油泵组、蓄能控制阀组、滤油管路系统、执行液压缸,PLC电气控制系统等部件组成:系统主要负责油路控制,提供蝶阀开启动力,并完在蝶阀的慢开、 慢关、快关过程的控制。 油箱电动机油泵组—主要用于储存液压装置工作时需要的油液同时供给液压系统所需压力油。 滤油管路系统—过滤进入工作回路的油液,保证系统油液清洁,使得各控制阀能正常动作; 蓄能器控制组—按系统要求为控制驱动外界负载作快速运动提供压力油。 油路控制阀组简图见附图(一),主要由油路块、叠加式溢流阀、单向阀、电磁阀(DT1、DT2)、 叠加式液控单向阀、叠加式液控单向节流阀、电磁球阀DT3,、上限压力继电器KP1, 下限压力继 电器KP2、过滤压力差继电KP3、压力表、插装阀CF1、插装阀CF2、针阀等组成: 溢流阀—设定系统安全压力;(出厂设定值为12.5MPa) 顺时针旋转为调高设定值。 节流阀—调节系统开、关阀速度;顺时针旋转向里拧到底为最慢值。 压力继电器KP2—设定系统压力控制下限点(出厂设定值:9.5MPa); 顺时针旋转为调高设定值。 压力继电器KP1--设定系统油压的控制上限点(出厂设定值:11.0MPa); 顺时针旋转为调高设定值。 压力表1—显示系统供油管路内油液压力;压力表2—显示蓄能器内油液压力。

皮囊式蓄能器使用及注意事项

皮囊式蓄能器使用及注意事项 1.本警告及注意事项,只是要点并未涉及所有方面,所以使用蓄能器前,务必全面阅读使用说明书,保证安全第一。 2.安全使用产品,必须遵守设置地的相关法规及安全守则。 3.请按照说明书的使用方法,即一般机械的操作常识来进行操作。未记述的按专业人员的指示进行。 4.为了保证生产安全,设备使用时,请遵照当地法律/法规进行作业。 5.必须保证在最高使用压力以下使用。使用压力超过最高使用压力值(使用可能的最高压力)时,可能导致产品的损坏。 6.分解时,必须把蓄能器内的液压、气压降低到大气压。在蓄能器内的压力高于大气压的状态下分解蓄能器时,液体、氮气及飞散的零件可能造成人员受伤事故。 7.禁止进行加工与改造。对产品进行焊接等的热加工(不含焊接法兰)、切削及研削等的机械加工,有可能造成各机器损坏。 8.禁止对蓄能器进行加热。蓄能器内的氮气,因温度上升会形成高压。对蓄能器加热导致蓄能器内的氮气压力超过最高使用压力时,造成蓄能器的损坏。 9.必须保证螺纹型号一致。螺纹型号不同的(规格、公称直径、螺矩)零件进行连接,压力上升时有可能损伤螺纹部分。 10.禁止在腐蚀性环境中使用。在腐蚀性环境中使用时,有可能造成产品的损坏。 11.请使用专用紧固夹具固定。产品固定时请使用复数专用固定夹具进行固定。产品支架与液压回路振幅不一致时,可能造成回路连接部的损坏。保证给排油阀与配管的中心线在一条直线上,然后连接蓄能器壳体、配管,分别将各接续部适当固定。 12.氮气排放时,脸部要避开排气口,并且必须进行作业空间换气。排放氮气时如果脸部靠近排气口,有可能会因高压气能、带动飞散的垃圾等导致身体受伤。在密闭或狭小的房间里排放氮气时,会导致缺氧症发生。 13.吊起时,请使用专用吊装工具。使用普通的钢丝绳、缆绳等捆绑吊装蓄能器时,可能发生蓄能器脱落事故。 注意:蓄能内严禁充填氧气,有引发爆炸的危险。蓄能器内,只能充填氮气。

蓄能器的选型及计算

蓄能器在系统中的应用、选型、计算 高压蓄能器在高压EH油系统中是如何发挥作用的?什么时候发挥作用? 高压蓄能器主要是平衡管路油压波动。具体分析一个特殊例子:当系统的多数油动机快速开启时(比如汽轮机开始冲转,2个中压调节门同时开启,或者2900转时的阀切换,6个高调门同时开启),系统油压必然快速下降,此时油泵来不及做出反映,蓄能器在设计上位置不仅靠近油动机并且能比油泵更加迅速的向系统补充油液,避免系统油压下降到 9.7MPA时造成保护动作而停机。蓄能器的重要性在高压EH油系统中举足轻重。 流体实际上是不可压缩的,不能储存能量,因而液压蓄能器利用气体(氮气)可压缩性来储存流体。蓄能器实质上是一个储存压力流体的腔室,靠气体的可压缩性将不可压缩的流体能量得以储存,以备做有用功。上述的流体与液压回路相联结,当系统压力升高,流体压缩气体而进入蓄能器;当系统压力降低,压缩气体膨胀,并迫使流体流回液压回路。 蓄能器的典型应用:流体储存,紧急能源,吸收脉动,涌流控制,噪声衰减,车辆减震,容积补偿,压力补偿,渗漏补偿,热胀吸收,力学平衡,增加流量。 储蓄液压能: (1)对于间歇负荷,能减少液压泵的传动功率当液压缸需要较多油量时,蓄能器与液压泵同时供油;当液压缸不工作时,液压泵给蓄能器充油,达到一定压力后液压泵停止运转。(2)在瞬间提供大量压力油。 (3)紧急操作:在液压装置发生故障和停电时,作为应急的动力源。 (4)保持系统压力:补充液压系统的漏油,或用于液压泵长时期停止运转而要保持恒压的设备上。 (5)驱动二次回路:机械在由于调整检修等原因而使主回路停止时,可以使用蓄能器的液压能来驱动二次回路。 (6)稳定压力:在闭锁回路中,由于油温升高而使液体膨胀,产生高压可使用蓄能器吸收,对容积变化而使油量减少时,也能起补偿作用。 缓和冲击及消除脉动:

液压元件选择标准

液压系统元件的选择 液压元件的选择 液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 pB=p1+ΣΔp ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?ΣΔp为(2~ 5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照下表选取。 常用中、低压各类阀的压力损失(Δpn) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 单向阀0.3~0.5 背压阀3~8 行程阀1.5~2 转阀1.5~2 换向阀1.5~3 节流阀2~3 顺序阀1.5~3 调速阀3~5 (2)确定液压泵的流量qB。泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即qB≥K(Σq)max(m3/s) 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: qB≥K(A1-A2)vmax(m3/s) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 qB= ViK/Ti 式中:Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。 上面所计算的最大压力pB是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力pB应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=pBqB/103ηB (kW) 式中:pB为液压泵的最大工作压力(N/m2);qB为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考下表估取,液压泵规格大,取大值,反之取小值,定

相关主题