搜档网
当前位置:搜档网 › 板料成形回弹特征及其控制技术

板料成形回弹特征及其控制技术

板料成形回弹特征及其控制技术
板料成形回弹特征及其控制技术

板料成形回弹特征及其控制技术

1 前言

回弹是板材冲压成形过程的主要缺陷之一.严重影响着威形件的威形质量和尺寸精度,是实际工艺中很难有效克服的成形缺陷之一,它不仅降低了产品质量和生产效率.还制约了自动化装配生产线的实施,是我

国汽车制造工业中亟待解决的关键性问题。

从理论上说,板材冲压成形过程可以被看作是板材经过塑性变形变为想要获得的形状的过程。然而实际上.板料尺寸.材料特性和环境条件使冲压成形过程的预测性和可重复性变得困难。以韧性金属板材为主的冲压成形件从模具上取出后,必然产生一定量的回弹。回弹是板材冲压成形的3种主要缺陷(起皱.破裂和回弹)中最难控制的一种,因为它涉及到对回弹量的准确预示.不同的材料和尺寸的零件其回弹规律大不相同,单凭经验和工艺过程类比是很难进行准确的回弹补偿的.这就使得一个模具设计的周期变长.因此在板材冲压成形中回弹变形是使模具设计明显变复杂的一个基本参数。在大多数板材冲压成形中.强烈的非线性变形过程致使板料产生很大的弹性应变能.在模具与板料动态接触过程中存在于板料中的这种弹性应变能会随着接触压力的消除而自动释放掉,回弹的驱动力一般是朝着板料原始形状变形。因此,冲压成形中的最终产品形状不但依赖于凹模形状.而且依赖于成形后存储在板料中的弹性应变能。弹性应变能与许多诸如材料特性.接触载荷等参数有关,因此在成形过程中预测回弹变得很复杂.这也就给那些必须精

确评估回弹量的设计者提出了很重要的问题。

近40年来,有许多研究人员一直在对回弹行为进行着研究.并提出了很多解决方法和计算机仿真算法.发表了大量相关论文。就有限元仿真方法而言.在众多仿真算法模拟应用中,采用显式算法模拟成形过程.用隐式算法模拟回弹过程的方法最多;其次是冲压成形和卸载回弹过程都采用隐式算法。而G.Y-L.等学者提出一种新算法,冲压成形和回弹过程全部采用显式算法。U.Abdelsalam等学者还提出了采用一步成形算法模拟冲压成形过程,再用隐式算法计算卸载回弹过程.并应用该算法模拟了3个复杂冲压件的卸载回弹过程.这种算法的模拟精度虽然不高.但计算速度很快.可以为模具在设计阶段提供一个定性的参考方案。T-C.Hsu等学者采用隐式TL(Total Lagrangian)算法,引入Hill--次方屈服函数模拟了轴对称问题的冲压成形和回弹过程。M.Kawka等学者采用静态显式有限元(实际上也是隐式算法)算法软件ITAS3D模拟了轿车顶盖和轮毂的多阶段成形过程,以及卸载回弹和切边回弹过程.并与试验结果进行了比较。

以上这些对于回弹的研究只限于理论方面.其与实际试验的对比验证还鲜有涉及。对于如何补偿所产生的

回弹及所谓的回弹控制在试验方面的验证尤其对于新型的高强度材料研究甚少。本文将从这方面着手进行回弹控制的研究。事实上.克服回弹缺陷的方法有很多。一是要在工艺条件允许的前提下,设法将回弹控制在尽可能小的范围内;二是如果实在回弹量很大且难以控制(如轻量化的高强钢板成形回弹问题).就必须借助于计算机仿真和试验相结合的办法,通过回弹补偿技术重新构造加工型面,以确保加工精度。此外,温控成形技术也是有效抑制甚至消除回弹的有效方法之一。本文主要介绍减小回弹的控制技术。

2回弹控制技术

为了避免回弹补偿带来的冲压模面设计的困难,对于许多成形问题,首先希望利用回弹的控制技术来尽可能地消除回弹。在本文中,首先分门别类地介绍回弹特性和控制方法。

所有由弯曲产生变形的金属板材成形过程的表征是,由弹塑性材料特性引起的板材厚度方向不均匀的位移分布而导致回弹现象的产生。当某一冲压件成形完毕.即在成形步骤的结尾.板材体积内存在着残余应力.这些残余应力与工具的接触力相平衡。当工具被释放.就是把成形件从模具上卸下时.板材将寻找新的平衡位置.局部残余应力被释放,导致成形件的最终尺寸与预期值存在一定的偏差,即回弹现象的产生。也就是说.回弹主要是由于弯曲部位外侧(拉伸)和内侧(收缩)的应力差而引起的。因此。为了减少弯曲变形的回弹。可以考虑给弯曲部位施加外力以消除应力差。但是.因产品形状和模具结构等而采取的方法有所不同。

图1a给出板材拉伸卸载的应力应变曲线.图1b给出板材弯曲后的卸载回弹特征。

为了减小弯曲变形产生的回弹,应该在工艺条件允许的前提下,尽可能选择屈服应力小的材料。高强度钢板的屈服应力明显高于普通金属板材,这类材料的回弹量往往很大。成形板材的厚度对弯曲回弹影响也很大,通常,板越厚,回弹量越小。此外,工具角部的弯曲半径对回弹影响也不可忽视,弯曲半径越小,成形卸载后的回弹量越小。因此。,在板材可成形性允许条件下,应尽可能减小模角半径。

下面针对不同的回弹机制,介绍几种抑制回弹的具体方法和策略。

2.1局部压缩减小回弹方法

如图2,利用压缩工艺在弯曲部位压缩板料外侧(将板料在该部位压缩到大约使厚度减小5%-30%),且不让弯曲内侧变化。这种"局部压缩"的工艺策略是利用了弯曲部位压缩板料外侧减薄导致板料局部强度降低的

有利因素。

a部分(外侧弯曲尺)不可与弯曲内侧的弯曲尺同心,由于外侧与内侧的弯曲半径不同心且有所稍稍偏移,有利于外侧部分压缩板料减薄。如果偏移过大,会发生不该产生的变形(如图2c)。

2.2一道工序分2段弯曲方法

如图3,将一次拉延弯曲成形分成2段弯曲成形.以此消除回弹。第一段弯曲采用大间隙(板厚1.15-1.3倍)加工。由于间隙大.板料倾斜,模具的弯曲半径也大.使板料大致弯曲。第二阶段的弯曲是将第一段弯曲的大弯曲半径尺整形到小弯曲半径厂。第一阶段变形的间隙要从最初的小间隙开始调整,根据控制回弹

的效果而逐步放大。

预测在第二阶段弯曲变形时.由于采用小间隙容易产生。拉毛现象"(模具磨损而导致制件拉毛).为了消除"

制件拉毛",模具的凹模有时需要采用表面硬化处理。

2.3 内侧圆角尺硬化方法

如图4,从弯曲部位的内侧进行压缩,以消除回弹。在板材U形弯曲时,由于有两侧对称弯曲,采用这种方法效果比较好。L形弯曲时一般面部分的材料压料力变弱.有时会产生尺寸变差。从形状判断,弯曲部位压力弱。对于既要保证强度又要具有弹性的成形件产品不适用。

另外,还可以变化S(圆角尺处的厚度变化量)的尺寸来调整回弹量。往往由于压缩圆角尺使得翼面长度而稍微变化.对于翼面高度容差小的产品.有时需要展开长度的补偿。

图4 内侧圆角R硬化方法

2.4 硬化加工法

如图5.使弯曲工具的侧壁翘曲.在钢板上留下硬化筋(TYPEA-C)的痕迹。

硬化筋要用在非变薄面上,注意打痕。由于硬化筋会划伤产品,因此要根据产品注意选择。这种回弹抑制

方法对于越厚的板材效果越好。

2.5变整体拉延成形为部分弯曲成形的回弹控制方法

如图6.把整体拉延成形(设整体拉延深度为90 mm)的A部(设为60 mm)采用弯曲成形,消除板外侧和内侧的应力差,剩余30 mm凹模的B部.再通过拉延成形以减少回弹。这种方法对于二维形状简单的产品有效.对于三维形状的复杂产品有时会产生不合格的效果,要注意选择产品。

2.6消除残余应力方法

如图7,拉延成形时在工具的表面增加局部的凸包形状《圆形凸包).在后道工序时再消除增加的形状,使

材料内的残留应力平衡发生变化,以消除除回弹。

2.7加强筋冻结形状方法

如图8,不改变原产品功能的前提下.改变产品形状,增加加强筋.可以控制和改善回弹。

2.8 负回弹方法

如图9.在加工工具表面时.设法使板料产生负向回弹。上模返回后,制件回弹,通过负回弹和回弹而达

到要求的产品形状。

2.9淬火,回火抑制回弹方法

如图10.对板料的弯曲部位进行局部的淬火和回火处理,降低屈服点,进而达到消除回弹之目的。

2.10 冻结形状技术

如图11a,板料弯曲变形没有达到正确的曲率,外侧产生拉应力变平回弹.在边缘里面部位产生皱纹,这是由于弧长a和弧长6(如图11b)之la--J的长度差而造成的。如图11b,由于弧长6比弧长a更短,进而产生堆料(边缘部)产生皱纹;弧长a产生拉应力而变平。为了消除这种现象.可以考虑设法消除弧长a和弧长b的长度差.如图11c.追加使弧长一致的形状筋是比较有效的。

2.11焊接工序配合消除回弹技术

如图12,利用焊接工序消除回弹影响,首先要求焊接工序指定出点焊顺序,目的是保证有回弹或者回弹量大的部位先焊。此外,在焊接工序中要追加强制夹紧及克服回弹的强制加强板。

上述回弹控制的成形加工方法基本上能够处理相对简单覆盖件回弹模面设计问题。但是对于复杂成形覆盖件,特别是新型轻量化板材如高强钢板,屈服极限远远高于普通金属板材。由于回弹与翘曲量很大,常规的回弹制技术往往难于消除回弹以及回弹带来的制造误差。基于回弹仿真和试验相结合的回弹加工型面的补偿技术将是未来从根本上解决回弹控制和加工精度问题的重要途径。

板料成形CAE技术与其应用

板料成形CAE技术及应用 长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于某些特殊复杂的板料成形零件,甚至制约了整个产品的开发进度,而板料成形CAE技术及分析软件的出现,有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高了企业的市场竞争力。 一、前言 计算机辅助设计技术以其强大的冲击力,影响和改变着工业的各个方面,甚至影响着社会的各个方面。它使传统的产品技术、工程技术发生了深刻的变革,极大地提高了产品质量,缩短了从设计到生产的周期,实现了设计的自动化。 板料成形是利用模具对金属板料的冲压加工,获得质量轻、表面光滑、造型美观的冲压件,具有节省材料、效率高和低成本等优点,在汽车、航空、模具等行业中占据着重要地位。由于板料成形是利用板材的变形得到所需的形状的,长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于复杂的板料成形零件无法准确预测成形的结果,难以预防缺陷的产生,只能通过经验或类似零件的现有工艺资料,通过不断的试模、修模,才能成功。某些特殊复杂的板料成形零件甚至制约了整个产品的开发进度。 板料成形CAE技术及分析软件,可以在产品原型设计阶段进行工件坯料形状预示、产品可成形性分析以及工艺技术方案优化,从而有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高企业的市场竞争力。 板料成形CAE技术对传统开发模式的改进作用可以通过图1 和图2进行对比。

图1 传统板料成形模具开发模式 图2 CAE 技术模具开发方式 通过比较,就可发现板料成形CAE技术的主要优点。 (1)通过对工件的可成形工艺性分析,做出工件是否可制造的早期判断;通过对模具技术方案和冲压技术方案的模拟分析,及时调整修改模具结构,减少实际试模次数,缩短开发周期。 (2)通过缺陷预测来制定缺陷预防措施,改进产品设计和模具设计,增强模具结构设计以及冲压技术方案的可靠性,从而减少生产成本。 (3)通过CAE分析可以择优选择材料,可制造复杂的零件,并对各种成形参数进行优化,提高产品质量。 (4)通过CAE分析应用不仅可以弥补工艺人员在经验和应用工艺资料方面的不足,还可通过虚拟的冲压模拟,提高提高工艺人员的经验。 二、板料成形需要解决的问题 板料成形通过模具对板料施加压力,使板料产生永久性的塑性变形,以获得预期的产品形状。在这个过程中影响板材变形的因素非常多,要控制好变形的形状也非常困难。首先,金属受外力作用会发生变形,变形可分为弹性变形和塑性变形,弹性变形是可逆的,外力去除后变形体就会恢复成原来的形状;第二,材料的成分和组织对变形影响极大;第三,塑性变形有多种方式,再结晶温度下的塑性变形有晶内滑移和孪动、位错(位错分多种形式),再结晶温度上的塑性变形有晶间滑移、多晶体扩散和相变变形等;第四,变形温度、变形速度的影响;第五,变形体内部应力状态的影响;第六,摩擦与润滑的影响;第七,材料塑性变形后,当变形体内部各部分变形不一致时,

基于DYNAFORM的板料成形研究

基于DYNAFORM的板料成形研究

基于DYNAFORM的板料成形研究 摘要 板料拉深成形是现在工业领域中一种重要的加工方法。在拉深成形的过程中,零件容易出现开裂,起皱等问题。随着计算机模拟和仿真技术的发展,板料拉深成形过程的分析、缺陷分布等问题都可以通过有限元模拟软件预测分析。针对这些问题,用PRO/ENGINEER软件将零件进行三维建模,导入DYNAFORM,进行初步模拟,设置模拟控制参数,主要是修改板料厚度、板料性能、冲压速度、模具圆角半径等参数。找出模具倒角、材料厚度、冲压速度对材料成形性能的影响,从而对于指导成形工艺的设计具有重要的意义。 关键词:DYNAFORM,拉深,模拟,参数 Based on the dynaform plate forming research

Abstract:Deep drawing of sheet metal industry is now an important processing method. In the drawing forming process, the parts prone to cracking, wrinkling and other problems.Along with the computer simulation and the simulation technology development, the process of sheet forming analysis, defects distribution problems can be simulated by FEM software prediction analysis. To solve these problems, PRO / ENGINEER software part three-dimensional modeling, import on DYNAFORM, a preliminary simulation, set the parameters of analog control, primarily to modify the sheet thickness, sheet performance, pressing speed, die fillet radius and other parameters.Identify mold chamfer, material thickness, speed of pressing forming properties of the material, which for the guidance of the design of the forming process of great significance. Key words: DYNAFORM, drawing, simulation, parameter 目录 第1章前言 (1) 1.1学术背景及理论与实际意义 (1)

板料成形回弹问题研究新进展_朱东波

第7卷第1期2000年3月 塑性工程学报 JOU RN AL O F PLASTICITY EN GIN EERIN G V ol.7 No.1Ma r . 2000 板料成形回弹问题研究新进展 * (西安交通大学先进制造技术研究所 710049)   朱东波 孙 琨李涤尘 卢秉恒 摘 要:本文从回弹理论、回弹数值模拟分析、回弹控制三方面对弯曲成形、3-D 复杂浅拉深成形中回弹研究的历史和最新发展状况作了较全面的介绍。文章所引用的大量文献基本概括了前人在这些方面的主要研究方法和重要研究成果。 关键词:回弹;板料成形;模具 *国家“九·五”重点攻关资助项目(项目号: 85-951-19)。收稿日期: 1999-4-28 1 引 言 板料成形过程中普遍存在有回弹问题,特别在弯曲和浅拉深过程中回弹现象更为严重,对零件的尺寸精度和生产效率造成极大的影响,有必要对其进行深入的研究和有效的控制。零件的最后回弹形状是其整个成形历史的累积效应,而板料成形过程与模具几何形状、材料特性、摩擦接触等众多因素密切相关,所以板料成形的回弹问题非常复杂。半个多世纪来国内外许多学者对回弹问题进行了深入的研究和探讨,这些研究涵盖了从弯曲成形到复杂拉深成形、从理论分析到数值模拟、从回弹预测到回弹控制等诸多方面。本文从三个方面对前人的工作进行了概括性回顾,重点介绍了90年代回弹研究的一些新进展。 2 弯曲理论研究和回弹的解析分析方法 弯曲成形一般只涉及较为简单的几何形状和边界条件,所以有条件用解析方法对其进行深入的研究。50年代,R .H ill 、F .Proska 、F .J .Gardiner 等人的工作奠定了板料弯曲及回弹分析的理论基础 [1] ,后 来不断有学者对这些理论进行深化和发展。Huang ,etc [2] 在其文章中对50年代到80年代间诸多学者的 回弹研究工作做了较详细的回顾和评述。 回弹是弯曲卸载过程产生的反向弹性变形,板料回弹的经典计算公式为: Δk =1R -1R S =12M (1-ν2 ) Et 3 (1) 式中 Δk ——曲率变化量 R ——回弹前中面半径 R S ——回弹后中面半径E ——弹性模量ν ——泊松比t ——回弹前板料厚度 M ——回弹前板内弯矩 弯矩M 由截面纵向应力分布唯一确定。对同一弯曲过程,采用不同的弯曲模型(如是否考虑中性面内移,是否考虑材料强化、各向异性等)可得到不同的应力分布,从而由式(1)得到回弹量Δk 也就不同。所以在理论分析中,弯曲模型是否合理将直接影响回弹计算结果的准确程度。 弯曲的基本理论模型分为两大类。一类是以平截面假定和单向应力假定为基础的工程理论模型,该模型未考虑径向应力,认为弯曲过程中应力中性层、应变中性层始终和几何中面相重合;另一类是由H ill [3] 首先提出的精确理论模型,该模型考虑径向应力及中性层内移的影响,更接近板料弯曲的真实情况。从板料的外部受力状态和加载方式来看,弯曲过程可分为纯弯曲、拉伸弯曲、循环弯曲等几种典型情况。另外,材料模型对弯曲计算结果有很大的影响,常用的材料模型有刚塑性、理想弹塑性、刚性强化、弹性强化等多种形式。 以上基本模型、加载方式及材料模型的不同组合

板料弯曲回弹及工艺控制

板料弯曲回弹及工艺控制 板料在弯曲过程中,产生塑性变形的同时会产生弹性变形。当工件弯曲后去除外力时,会立即发生弹性变形的恢复,结果使弯曲件的角度和弯曲半径发生变化,与模具相应形状不一致,即产生回弹。回弹是弯曲成形过程的主要缺陷,它的存在造成零件的成形精度差,显著地增加了试、修模工作量和成形后的校正工作量,故在冲压生产中,掌握回弹规律非常重要。如果在设计模具前,能准确掌握材料的回弹规律及回弹值大小,设计模具时可预先在模具结构及工作部分尺寸上采取措施,试冲后即使尺寸精度有所差异,其修正工作量也不会太大,这不仅可以缩短模具制造周期,而且有利于模具成本的降低及弯曲件精度的提高。 1 弯曲回弹的表现形式 弯曲回弹的表现形式有下列二个方面(如图1所示): (a) 弯曲半径增加:卸载前板料的内半径r (与凸模的半径吻合),在卸载后增加至r0,半径的增量为△r二r0一r (b) 弯曲件角度增大:卸荷前板料的弯曲角为α(与凸模的顶角吻合),在卸荷后增大到α0,角度增量为△α=α0一α 图1 回弹导致弯曲角和弯曲半径变化 2 弯曲回弹产生的原因 弯曲回弹的主要原因是由于材料弹性变形所引起的。板料弯曲时,内层受压应力,外层受拉应力。弹塑性弯曲时,这两种应力尽管超过屈服应力,但实际上从拉应力过渡到压应力时,中间

总会有一段应力小于屈服应力的弹性变形区。由于弹性变形区的存在,弯曲卸载后工件必然产生回弹。在相对弯曲半径较大时,弹性变形区占的比重大,回弹尤其显著。 回弹是由于在板厚方向应力或应变分布不均匀而引起的。这种应力和应变的不均匀分布是弯曲的特点,对于只施加弯矩的弯曲方式,要有效减少回弹是困难的。为了使回弹减小,应尽量使板厚断面内的应力和应变分布均匀,为此可采取在纵向纤维方向对板料进行拉伸或压缩的方法,也可采用在板厚方向施加强压的方法。在沿板的长度方向单纯拉伸变形的场合,除去外力后,由于在整个板厚断面内变形的恢复是均匀的,所以不会发生形状的变化。 3 影响弯曲回弹的因素 (1)材料的机械性能材料的屈服点σs越高,弹性模量E越小,回弹越大。 (2)相对弯曲半径R/t 弯曲半径R越大,材料厚度t越小,即相对弯曲半径R/t值越大,回弹越大。 (3)弯曲处校正力的大小校正力越大,回弹越小。 (4)凸凹模间隙间隙越大,回弹越大。间隙小于材料厚度时,有可能出现负回弹。 (5)弯曲件的形状弯曲件直边过短时,回弹较大。V型弯曲件的回弹比U型弯曲件的回弹大。 (6)凹模形状及尺寸凹模深度过小时,回弹很大。 4 控制弯曲回弹的方法与措施 减小回弹常用方法有补偿法、校正法、改变应力状态、改进工件设计等。影响弯曲回弹的因素很多,对于不同的影响因素,应采用不同的措施,也可综合运用几种方法,来减少回弹。 4.1 补偿法减少弯曲回弹 补偿法是按预先估算或试验所得的回弹量,在模具工作部分相应的形状和尺寸中予以“扣除”,从而使出模后的弯曲件获得要求的形状和尺寸。 (l) V型弯曲,如图2a所示。可在凸模和凹模上同时减小一个回弹角,使工件回弹后恰好等于所要求的角度,这种方法适用于相对弯曲半径较大,回弹较大的工件。 (2) L型弯曲,如图2b所示。凹模向内倾斜一角度△α,并同时缩小凸、凹模的间隙,单面间隙取小于材料厚度,促使工件贴住凹模。出模后工件回弹,直边恢复垂直。图2c所示,采用硬橡胶促使工件贴住凹模,补偿工件回弹。

激光板料成形技术的研究与应用

激光板料成形技术的研究与应用 ——激光热应力成形与激光冲击成形 摘要: 激光加工技术是利用激光束与物质相互作用的特性对金属或非金属材料进行切割、焊接、表面处理、打孔以及微加工等的一门加工技术。随着激光技术的发展,特别是大功率工业激光器制造技术的日益成熟,激光作为一种“万能”工具,已应用于材料的切割、焊接、弯曲变形和表面改性处理等领域,其中板料激光成形技术已较为成熟,广泛应用于各种碳钢、不锈钢、合金有色金属以及金属基复合材料的弯曲成形,替代了部分零件的冲压工业。金属板料激光成形技术是近年来出现的一种先进柔性加工技术。金属板料成形作为薄板直接投入消费前的主要深加工方法,已在整个国民经济中占有十分重要的地位,广泛应用于航空航天、船舶工业、汽车覆盖件、家电等生产行业。传统的金属板料加工方法主要用模具在压力机上进行冷冲压成形,其生产效率高,适用于大批量生产。随着市场竞争的日趋激烈,产品的更新换代速度日益迅速,原有的采用模具加工的技术就表现出生产准备时间长,加工柔性差,模具费用大,制造成本高等缺陷,且模具冷冲压成形仅适用于低碳钢、铝合金以及铜等塑性较好的材料,其适用范围有限。为此国内外许多学者致力于板料塑性成形新技术的研究,实现金属板料的快速高效、柔性冲压和无模成形,以适应现代制造业产品快速更新的市场需要。本文介绍了激光热应力弯曲成形以及冲击成形的成形机理,分析了成形的主要因素,并对这两种成形技术的未来做出展望。 关键词:激光技术、板料成形、热应力弯曲成形、冲击强化技术 一、激光弯曲成形技术 激光弯曲成形是一种新兴的塑性加工方法,具有高效、柔性、洁净等特点。它是基于材料的热胀冷缩特性,利用高能激光束扫描金属板料表面时形成的非均匀温度场导致的热应力来实现塑性变形的工艺方法。与传统的金属成形工艺相比,它不需模具、不需外力,仅仅通过优化激光加工工艺、精确控制热作用区内的温度分布,从而获得合理的热应力分布,使板料最终实现无模成形。激光束的大小和能量精确可控,特别适用于冷加工难以成形的硬且脆,或刚性大的材料,比如陶瓷、钛合金等。 1、激光弯曲成形基本原理: 板材激光弯曲成形是近年来出现的一种板材柔性成形方法,究其根源,可以追溯到上百年前的火工矫形。它的基本原理是,在基于材料的热胀冷缩特性上,利用高能激光束扫描金属板材表面,通过对金属板材表面的不均匀加热,照射区域内厚度方向上会产生强烈的温度梯度,从而引起非均匀分布的热应力[6]。当这一热应力超过了材料相应温度条件下的屈服极限,就会使板材产生所需要的弯曲变形,激光弯曲成形的装置示意图如图1所示[7]。激光弯曲成形实际上就是这样一种基于材料的热胀冷缩特性、用热应力代替机械载荷的板料无模成形技术。

板料成形CAE分析

板料成形CAE分析 实验报告 班级: 学号: 姓名:

板料成形CAE分析 一、实验目的和要求: 通过本实验的教学,使学生基本掌握有限元技术在板料塑性成形领域的应用情况,拓宽学生的知识面,开阔视野,使学生对塑性成形过程的数值模拟技术有深刻的理解,预测板料弯曲成形的性能。 二、教学基本要求: 学会使用Dynaform数值模拟软件进行板料弯曲成形过程的仿真模拟,对模拟结果具有一定的分析和处理能力。 三、实验内容提要: 掌握前处理的关键参数设置,如零件定义、网格划分、模型检查、工具定义、坯料定义、工具定位和移动、工具动画、运行分析。了解后处理模块对模拟结果的分析,如读入d3plot 文件、动画显示变形和生成动画文件、成形极限图分析、坯料厚度变化分析等。 四、实验步骤 1、导入零件模型,保存文件 打开下拉菜单File->Import,如图2所示,在F:\dynaform\BLANK_CAE目录下分别导入文件punch.igs,binder.igs,die.igs和blank.igs。 图1 导入文件窗口

3、更改零件层名 打开下拉菜单Parts->Edit,对应不同的零件更改层名,改好层名后保存文件。 图2 修改层名窗口 4、进行网格划分 以blinder为例进行说明。 (1)、点击,只选择binder1(红色),点击OK退出。 图3

(2)、选择Preprocess—>Element进入如图3界面。选择,在surf mesh中将max size 改为5. 图4 图5 (3)、依次选select surfaces—>displayed surf-->0k-->apply,然后依次退出各个页面。网格化后的零件如图6所示。 图6网格化后的零件 4、检查工具。 仍然以binder为例。

先进板料成形技术与性能

板料成形有限元分析的发展综述 摘要:在参阅和分析大量有关文献的基础上,对有限元法的产生和弹塑性有限元的发展进行了总结,特别是对当前应用广泛的板料成形有限元数值模拟在国内外的发展概况和发展趋势进行了详尽的剖析,为深入了解板料成形有限元的发展提供了有益的参考。 关键词:板料成形;数值模拟;有限元法;有限元分析;弹塑性 引言 有限单元法是工程计算领域的一种主要的数值计算方法,其基本思想就是将连续区域上的物理力学关系近似地转化为离散规则区域上的物理力学方程。它是一种将连续介质力学理论、计算数学和计算机技术相结合的一种数值分析方法。此方法由于其灵活、快捷和有效,已迅速发展成为板料冲压成形中求解数理方程的一种通用的数值计算方法。 有限元法源于40年代提出的结构力学的矩阵算法。“有限元法”这一术语是R.W.Clough于1960年在论文“The finite element method in plane stress analysis”中首次提出来的,他用这种方法首次求解了弹性力学的二维平面应力问题。1963年,Besseling证明了有限元法是基于变分原理的Ritz法的另一种形式,从而使Ritz分析的所有理论基础都适用于有限元法,确认了有限元法是处理连续介质问题的一种普遍方法。 板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性等三非线性问题的计算,难度很大。随着非线性连续介质力学理论、有限元法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际的应用。 1 弹塑性有限元分析研究发展概况 有限元法建立之初,只能处理弹性力学问题,无法应用于金属塑性成形分析。1965年Marcal提出了弹塑性小变形的有限元列式求解弹塑性变形问题,揭开了有限元在塑性加工领域应用的序幕。1968年日本东京大学的Yamada推导了弹塑性小变形本构的显式表达式,为小变形弹塑性有限元法奠定了基础。但小变形理论不适于板料冲压成形这样的大变形弹塑性成形问题,因此人们开始致力于研究大变形弹塑性有限元法。1970年美国学者Hibbitt等首次利用有限变形理论建立了基于Lagrange格式(T.L格式)的弹塑性大变形有限元列式。1973年Lee 和Kabayashi提出了刚塑性有限元法。1973年Oden等建立了热-弹粘塑性大变形有限元列式。1975年Mcmeeking建立了更新Lagrange格式(U.L格式)的弹塑性大变形有限元列式。1978年Zienkiewicz等提出了热耦合的刚塑性有限元法。1980年Owen出版了第一本塑性力学有限元的专著,全面系统地论述了材料非线性和几何非线性的问题。至此,大变形弹塑性有限元理论系统地建立起来了。 2 板料成形有限元数值模拟国内外研究发展概况

板料冲压件螺纹底孔冲压成形技术

板料冲压件螺纹底孔冲压成形技术 摘要:在板料冲压件上,按其料厚不同分别采用精冲小孔、变薄翻边、冷冲挤等工艺方法,成形螺纹底孔。本文论述了上述螺纹冲压成形工艺、冲模结构及其设计与制造技术。 主题词:冲件螺纹底孔冲小孔变薄翻边冷冲挤成形技术 螺纹联接结构,尤其紧螺纹联接结构,是各种机电与家电产品中零部件最主要的联接结构型式。薄板冲压件进行紧螺纹联接,需要有大于料厚的联接螺纹长度,以确保其联接可靠性,增强其负载能力,才能达到使薄板冲件联接牢靠、重量小的目的,从而使其成为结实、轻巧、紧凑的理想结构零件。 在仪器仪表、电子电器、各类家电、家用器具、玩具等产品的板料冲压件上,经常采用M2-M10的小螺纹紧联接结构。为提高效率并满足大量生产的需求,采用精冲小孔、变薄翻边、冷冲挤等工艺方法,冲压成形这些小螺纹底孔,不仅能以冲压制孔取代钻孔而大幅度提高生产效率,同时能获得尺寸精确、一致性好的底孔,并可使螺纹联接有足够的长度,从而确保其联接可靠性及设计要求的承载能力。所以,用冲压成形技术加工小螺纹底孔,具有优质高产的效果,也是一种成熟而值得推广的工艺技术。 1 螺纹底孔的计算 合适螺纹底孔的大小,不仅取决于螺纹直径,而且与其螺距有着密切的关系,通常可按下式计算: 当t L≤1时,取:d Z=d-t L

当t L>1时,取:d Z=d-~t L (2) 式中 t L-螺距,mm d z-螺纹底孔直径,mm d-螺纹直径,mm 表1 螺纹底孔直径的合理值(mm) 螺纹直径d 螺 距 t L 底 孔 直 径d z M1 M2 M3 M4 M5 M6 M8 M10 M12 1 5

M14 M16 M18 M20 M22 M24 M27 M302 2 3 3 2 冲制螺纹底孔的基本工艺方法 用冷冲压冲制板料冲压件上螺纹底孔的主要工艺方法有如下几种: (1)厚料冲小孔与精冲孔 当冲件厚t可以满足螺纹联接所需长度时,可用冲压制孔工艺解决。通常在这种情况下,多为厚料冲小孔,即冲制螺纹底孔的直径dz≤t或稍大于t,见表2。螺纹联接的最小有效长度取决于螺纹直径、螺距并与联接件的材料种类密切相关。

板料成形回弹特征及其控制技术

板料成形回弹特征及其控制技术 1 前言 回弹是板材冲压成形过程的主要缺陷之一.严重影响着威形件的威形质量和尺寸精度,是实际工艺中很难有效克服的成形缺陷之一,它不仅降低了产品质量和生产效率.还制约了自动化装配生产线的实施,是我 国汽车制造工业中亟待解决的关键性问题。 从理论上说,板材冲压成形过程可以被看作是板材经过塑性变形变为想要获得的形状的过程。然而实际上.板料尺寸.材料特性和环境条件使冲压成形过程的预测性和可重复性变得困难。以韧性金属板材为主的冲压成形件从模具上取出后,必然产生一定量的回弹。回弹是板材冲压成形的3种主要缺陷(起皱.破裂和回弹)中最难控制的一种,因为它涉及到对回弹量的准确预示.不同的材料和尺寸的零件其回弹规律大不相同,单凭经验和工艺过程类比是很难进行准确的回弹补偿的.这就使得一个模具设计的周期变长.因此在板材冲压成形中回弹变形是使模具设计明显变复杂的一个基本参数。在大多数板材冲压成形中.强烈的非线性变形过程致使板料产生很大的弹性应变能.在模具与板料动态接触过程中存在于板料中的这种弹性应变能会随着接触压力的消除而自动释放掉,回弹的驱动力一般是朝着板料原始形状变形。因此,冲压成形中的最终产品形状不但依赖于凹模形状.而且依赖于成形后存储在板料中的弹性应变能。弹性应变能与许多诸如材料特性.接触载荷等参数有关,因此在成形过程中预测回弹变得很复杂.这也就给那些必须精 确评估回弹量的设计者提出了很重要的问题。 近40年来,有许多研究人员一直在对回弹行为进行着研究.并提出了很多解决方法和计算机仿真算法.发表了大量相关论文。就有限元仿真方法而言.在众多仿真算法模拟应用中,采用显式算法模拟成形过程.用隐式算法模拟回弹过程的方法最多;其次是冲压成形和卸载回弹过程都采用隐式算法。而G.Y-L.等学者提出一种新算法,冲压成形和回弹过程全部采用显式算法。U.Abdelsalam等学者还提出了采用一步成形算法模拟冲压成形过程,再用隐式算法计算卸载回弹过程.并应用该算法模拟了3个复杂冲压件的卸载回弹过程.这种算法的模拟精度虽然不高.但计算速度很快.可以为模具在设计阶段提供一个定性的参考方案。T-C.Hsu等学者采用隐式TL(Total Lagrangian)算法,引入Hill--次方屈服函数模拟了轴对称问题的冲压成形和回弹过程。M.Kawka等学者采用静态显式有限元(实际上也是隐式算法)算法软件ITAS3D模拟了轿车顶盖和轮毂的多阶段成形过程,以及卸载回弹和切边回弹过程.并与试验结果进行了比较。 以上这些对于回弹的研究只限于理论方面.其与实际试验的对比验证还鲜有涉及。对于如何补偿所产生的

板料成形CAE技术

板料成形CAE技术 贵州风华机器厂童春桥 一、前言 计算机辅助设计技术以其强大的冲击力,影响和改变着工业的各个方面,甚至影响着社会的各个方面。它使传统的产品技术、工程技术发生了深刻的变革,极大地提高了产品质量,缩短了从设计到生产的周期,实现了设计的自动化。 板料成形是利用模具对金属板料的冲压加工,获得质量轻、表面光滑、造型美观的冲压件,具有节省材料、效率高和低成本等优点,在汽车、航空、模具等行业中占据着重要地位。由于板料成形是利用板材的变形得到所需的形状的,长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于复杂的板料成形零件无法准确预测成形的结果,难以预防缺陷的产生,只能通过经验或类似零件的现有工艺资料,通过不断的试模、修模,才能成功。某些特殊复杂的板料成形零件甚至制约了整个产品的开发进度。 板料成形CAE技术及分析软件,可以在产品原型设计阶段进行工件坯料形状预示、产品可成形性分析以及工艺方案优化,从而有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高企业的市场竞争力。 板料成形CAE技术对传统开发模式的改进作用可以通过图1 和图2进行对比。

图1 传统板料成形模具开发模式 图2 CAE 技术模具开发方式 通过比较,就可发现板料成形CAE技术的主要优点。 (1)通过对工件的可成形工艺性分析,做出工件是否可制造的早期判断;通过对模具方案和冲压方案的模拟分析,及时调整修改模具结构,减少实际试模次数,缩短开发周期。 (2)通过缺陷预测来制定缺陷预防措施,改进产品设计和模具设计,增强模具结构设计以及冲压方案的可靠性,从而减少生产成本。 (3)通过CAE分析可以择优选择材料,可制造复杂的零件,并对各种成形参数进行优化,提高产品质量。 (4)通过CAE分析应用不仅可以弥补工艺人员在经验和应用工艺资料方面的不足,还可通过虚拟的冲压模拟,提高提高工艺人员的经验。 二、板料成形需要解决的问题 板料成形通过模具对板料施加压力,使板料产生永久性的塑性变形,以获得预期的产品形状。在这个过程中影响板材变形的因素非常多,要控制好变形的形状也非常困难。首先,金属受外力作用会发生变形,变形可分为弹性变形和塑性变形,弹性变形是可逆的,外力去除后变形体就会恢复成原来的形状;第二,材料的成分和组织对变形影响极大;第三,塑性变形有多种方式,再结晶温度下的塑性变形有晶内滑移和孪动、位错(位错分多种形式),再结晶温度上的塑性变形有晶间滑移、多晶体扩散和相变变形等;第四,变形温度、变形速度的影响;第五,变形体内部应力状态的影响;第六,摩擦与润滑的影响;第七,材料塑

板料成型技术中的拉深筋研究

1 前言 在汽车覆盖件成形过程中,零件各部分成形条件不同,因此各部分成形所需的成形力不同,通常要采用拉深筋来进行控制。拉深筋参数的合理取值是控制金属流动、防止出现起皱和破裂的重要手段。拉深筋的设计是冲压模具设计的关键技术。 拉深筋作为一种改善成形性的有效方法,其作用机理是:当板料渡过拉深筋时,会在A点、C点、E点附近发生弯曲变形,如图1,在B点、D点、F点附近发生反弯曲变形,反复的弯曲和反弯曲变形所产生的变形抗力即为拉深筋的变形阻力。同时,当板料在AB、CD、E F段上滑动时,会因摩擦而产生摩擦阻力。拉深筋的变形阻力和摩擦阻力之和即为拉深筋阻力。也有学者认为,拉深筋阻力还应包括板料通过拉深筋后由于应变强化而导致后续变形抗力增大所增加的变形阻力。在拉深模具中设置拉深筋就是要利用拉深筋阻力来控制毛坯各部分的成形力,从而起到控制局部变形条件,使零件各部分的变形条件趋于平衡,最终保障零件的顺利成形。 随着现代制造技术的发展,板料冲压成形的有限元模拟已成为模具设计与制造的关键技术。在有限元模拟中精确模拟真实拉深筋很困难,主要是因为拉深筋尺寸较小,形状复杂。要精确考虑板料与拉深筋的接触,则必须将拉深筋曲面划分成非常小的网格,但这会大大增加计算量,降低了计算效率,同时对模具几何形状的修改也极其不利。因此这种做法不常被采用。通常的做法是采用等效拉深筋模型,也就是将真实拉深筋等效为一条附着在模具表面且能承

受一定约束力的拉深筋线。这就需要计算单位长度的拉深筋需要承受的拉深筋约束阻力,所以拉深筋阻力模型的性能直接影响到计算精度。为此,近40年来很多学者分别采用实验研究、理论分析和有限元方法对拉深筋的作用机理、拉深筋阻力、拉深筋对成形质量的影响作了研究。 2 拉深筋等效阻力模型的理论研究 在板料成形过程中,拉深筋阻力是控制板料流动重要手段之一。为此,不少学者希望利用塑性成形理论建立合理的数据模型,从而直接计算拉深筋阻力。1978年,Weidemann将板料通过凸凹筋圆角时必须克服的摩擦力和由于弯曲/反弯曲变形产生的变形阻力,并建立了著名的拉深筋阻力模型(1)。 式中t—板料的初始厚度 ω—拉深筋的长度 μ—摩擦系数 σs—屈服强度 ψ—板料弯曲角 Rg、Rb—拉深筋的肩部、底部半径 P—单位长度上的等效压边力

激光板料成型技术的研究与应用

激光板料成型技术的研究与应用 —金属板料激光成型技术研究与应用 摘要: 金属板料成型技术的研究一直是国内学者研究的热点,其传统的方法采用模具加工进行冷冲压成型,虽然生产效率高和大批量生产的特点,但存在生产准备时间长,加工柔性差,模具费用高等不足,且仅适用于低碳钢等薄板材料。由于金属材料的热胀冷缩特性,当其受到不均匀加热时,将会在材料内部产生热应力。板料激光成型技术就是一种利用高能激光束扫描金属薄板表面,在热作用区产生强烈的温度梯度,导致非均匀分布的热应力,使金属板料发生塑性变形的工艺方法。 随着中小型高功率激光器技术的成熟和商品化设备的推出,人们纷纷把目光转向激光无模成型,以实现板料的快速、高效、精确和柔性成形,以适应产品快速更新的市场竞争需要。金属板料的激光无模成形方法主要包括激光热应力成型和激光冲击成型。 关键词:激光金属板料成型热应力冲击 正文: 激光成型是一种利用激光作为热源的热应力无模成型新技术。介绍了板料激光成型技术的工艺过程及影响激光成型的主要因素,通过实验研究了激光能量因素、板料的材料性能及几何参数对板料弯曲角度的影响 金属板料的激光热应力成形是一个非常复杂的热力耦合过程,成形影响因素很多。主要与激光参数、材料种类和尺寸等有关。国内外的学者经过实验研究得出较为相似的结论: 首先,激光能量因素影响着激光热应力成形中的弯曲角的形成和热影响区的大小。激光能量因素由能量密度来表征,同时扫描次数和轨迹也影响激光的吸收。实验证明,在输入总能量一定时,大能量密度的输入、短时间的加热有利于增加弯曲角。 其次,材料的热物性和力学性能对激光弯曲成形的影响较为复杂,目前尚无法对此进行定量分析。同时实验表明,在同样的工艺条件下材料的比热和热传导

板料成形性能及CAE分析

板料成形性能及CAE分析 文献综述 引言 随着强度的提高,高强度钢板塑性变差、成形难度增加。对典型高强度钢板,如DP 钢、TRIP 钢和BH 钢等在汽车上的应用情况进行介绍,介绍了目前处在实验测试阶段的TWIP钢,具有许多优良的性能,只是投入生产中还存在一些尚待解决的问题。对高强度钢板冲压生产时成形性差、回弹严重,以及冲模受力恶劣等常见问题进行了分析,最后对高强度钢板冲压成形性能研究现状和回弹影响因素进行了总结。结果表明,高强度钢板成形性随材料、模具和工艺参数变化而波动,所以须综合研究三者的影响规律,从而提高高强度钢板的成形性能。 1 高强度钢板在汽车上的应用情况 高强度钢板的拉伸强度一般在350MPa 以上,它不但具有较高的拉伸强度,还有较高的屈服点,具有高的减重潜力、高的碰撞吸收能、高的成形性和低的平面各向异性等优点,在汽车上得到了广泛的应用[1]。高强度钢板最初主要用于车身的前保险杠和车门抗侧撞梁。近年来,随着高强度钢板的研制和开发,其成形性、焊接性、疲劳强度和外观质量都有所提高,现在高强度钢板已被广泛用来代替普通钢板制造车身的结构构件和板件[2]。 1. 1 双相钢( DP 钢) DP 钢是由低碳钢或低碳微合金钢经两相区热处理或控轧控冷而得到,其显微组织主要为铁素体和马氏体,马氏体以岛状弥散分布在铁素体机体上,DP 钢的显微组织示意如图1 所示[3]。软的铁素体赋予DP钢较低的屈强比、较大的延伸率,具有优良的塑性; 而硬的马氏体则赋予其高的强度。DP 钢的强度主要由硬的马氏体相的比例来决定,其变化范围为5% ~20%,随着马氏体的含量增加,强度线性增加,强度范围为500 ~ 1 200MPa。目前大量使用的有DP590、DP780,热镀锌合金化DP980 的研发工作正在进行中[4]。

冲压是塑性成形加工方法之一以板料(金属

冲压是塑性成形加工方法之一以板料(金属

Chapter 1 Introduction 1.Definition of stamping ----a plastic forming method Raw material----sheet metal or non-metal Tool ----die Equipment----press Result----separate or deform, workpiece with shape, dimension and property. 冲压是塑性成形加工方法之一。以板料(金属、非金属)为原料,利用模具在压力机上对板料施加压力使其分离或变形获得所需零件。所需零件具有一定形状、尺寸和性能。 2.Basic requirement used in sheet forming Formability, surface quality, tolerance in thickness, and economy 3.Basic processes (1)cutting processes(分离工序): shearing, blanking, punching, parting, lancing, shaving (2)plastic deformation processes(成形工序): bending, deep drawing, spinning, bulging, flanging Chapter 2 Shearing, Blanking and Punching 1. Shearing

Equipment: straight parallel cutters t↑B↓ straight inclined cutters t↓B↑ 2. Blanking and punching mechanism (1) 3 deformation stages (2) Features of sheared edges of the sheet metal 4 parts----rollover, burnish zone, fracture, burr (reason); main affecting factors (3 aspects) 3. Blanking and punching clearance The effect of the amount of clearance between the punch and die on the operation process (3)features of sheared edges (4)dimensional precision (5)force and power (6)die life 4. The calculating of punch and die blade size (1) Principles of calculation: benchmarks, limit dimension (2) Methods of calculation: separately, coordinately (3) Steps

板料成形性能及冲压材料

板料冲压成形性能及冲压材料 板料的冲压成形性能 板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。下面分别讨论。 (一)成形极限 在冲压成形中,材料的最大变形极限称为成形极限。对不同的成形工序,成形极限应采用不同的极限变形系数来表示。例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。 依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。归纳起来,大致有下述几种情况: 1.属于变形区的问题 伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。 2.属于非变形区的问题 传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。也分为两种情况: 1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。 2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。 非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。根据发生问题的部位不同,可分为: 1)待变形区拉裂或起皱:例如在盒形件的后续拉深工序中,待变形区金属流入变形区的速度不一致,靠直边部分流入速度快,角部金属流入速度慢。在这两部分金属的相互影响下,直边部分容易发生拉裂,角部则容易沿高度方向压屈起皱。 2)已变形区拉裂或起皱:如薄壁件反挤时,若金属从变形区流到已变形区的速度不均匀,则速度快的部位易因受附加压应力而起皱,速度慢的部位易受附加拉应力的作用而开裂。

【机械类文献翻译】板料成形中有限元仿真及相关技术的研究进展

附件1:外文资料翻译译文 板料成形中有限元仿真及相关技术的研究进展 1理研和光材料制造实验室,日本 2法国国家科学研究中心,法国 3 IIS,东京大学,六本木,东京都港区,日本 摘要本文概述了汽车制造商和钢板供应商采用的板料成形仿真及相关技术的现状。为此,作者调查了欧洲、日本和美国的行业,与工程师和研究人员讨论上述问题。各行业中使用的软件如表所示,行业用户对有限元素的评价也归纳在表中。根据这些信息提出在这领域的研究方法。 关键词板料冲压成形,仿真,有限元法,计算机辅助设计 1 导言 汽车行业面临着全球范围严重的挑战:激烈的市场竞争和严格的政府环境保护法规。汽车制造商为迎接这些挑战而采取的战略是有时称为3R的策略:缩短上市时间,降低开发成本以赢得竞争,减少车辆重量以提高燃料效率。来实现三个目标的解决方案必不可少的要在产品开发和进程设计中采用基于CAD / CAE / CAM系统集成技术。 这一努力最显著的部分在于减少冲压车身面板相关的加工费用和提前期,甚至在增加技术难度,如使用铝合金和高强度钢,和要求冲压件高几何精度情况下。为处理这趋势所带来的超越过去的经验的问题,板料成形仿真的数值方法显得越来越重要。它由计算机试错取代了物理冲压试错。 成功的数值仿真主要取决于成形仿真软件的进展,但其他相关的技术的进展也很重要。相关技术的例子有能迅速构建和修改加工表面的CAD系统,或多或少在CAD 表面自动创建有限元网格的现代网格生成器,使用户能够掌握大量的数据的可视化的硬件和软件以及最后在合理的时间内处理大型仿真的计算机硬件。本文的目的在于总结业界金属板料成形仿真和相关技术实现现状,并对未来的研究方向提出建议。在80 和90年代关于金属板料成形仿真已举办了许多国际会议并发表了许相关

板料冲压成形模拟软件

eta/DYNAFORM 板料冲压成形模拟软件返回 发布时间:2004-02-06 22:29:00来源: ETA公司 双击鼠标滚屏 eta/DYNAFORM 板料冲压成形模拟软件 eta/DYNAFORM是由美国ETA公司开发的用于板料成形模拟的专用软件包,可以帮助模具设计人员显著减少模具开发设计时间及试模周期,不但具有良好的易用性,而且包括大量的智能化自动工具,可方便地求解各类板成形问题。DYNAFORM可以预测成形过程中板料的破裂、起皱、减薄、划痕、回弹,评估板料的成形性能,从而为板料成形工艺及模具设计提供帮助;DYNAFORM专门用于工艺及模具设计涉及的复杂板成形问题;DYNAFORM包括板成形分析所需的与CAD软件的接口、前后处理、分析求解等所有功能。目前,eta/DYNAFORM已在世界各大汽车、航空、钢铁公司,以及众多的大学和科研单位得到了广泛的应用,自进入中国以来,DYNAFORM已在长安汽车、南京汽车、上海宝钢、中国一汽、上海汇众汽车公司、洛阳一拖等知名企业得到成功应用。 主要特色 1.集成操作环境,无需数据转换 完备的前后处理功能,实现无文本编辑操作,所有操作在同一界面下进行 2.求解器 采用业界著名、功能最强的LS-DYNA,是动态非线性显示分析技术的创始和领导者,解决最复杂的金属成形问题。 3.工艺化的分析过程 囊括影响冲压工艺的60余个因素 以DFE为代表的多种工艺分析模块 有好的工艺界面,易学易用 4.固化丰富的实际工程经验 功能介绍 1. 基本模块 eta/DYNAFORM提供了良好的与CAD软件的IGES、VDA、DXF,UG和CATIA等接口, 以及与NASTRAN, IDEAS, MOLDFLOW等CAE软件的专用接口,以及方便的几何模型修补功能。 IGES 模型转入自动消除各种孔 eta/DYNAFORM的模具网格自动划分与自动修补功能强大,用最少的单元最大程度地逼近模具型面。比通常用于模具网格划分的时间减少了99%! 初始板料网格自动生成器,可以根据模具最小圆角尺寸自动确定最佳的板料网格尺寸,并尽量采用四边形单元,以确保计

相关主题