搜档网
当前位置:搜档网 › 固定翼单座轻型飞机图纸

固定翼单座轻型飞机图纸

固定翼单座轻型飞机图纸
固定翼单座轻型飞机图纸

固定翼单座轻型飞机图纸

这是一套上单翼的超轻型飞机的图纸,主要的材料为铝合金,连接方式以铆接和螺栓连接为主,发动机选用的是Rotax447之类的40马力两冲程活塞螺旋桨发动机,采用拉式推进方式半开放式座舱,具有三轴控制能力,侧置操纵杆,起落架为前三点布局。是一款非常优秀的上单翼骨架式超轻型飞机。

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

未来飞行器设计要点

目录一.世界经济的发展等因素,城市的特点 二.代步工具的发展历程,以及其类型和特点 三.代步工具历史产品介绍 四.设计灵感与产品设计 五.产品设计 六.细节演示 七.未来代步工具的材料及其工业设计 八.展板

人们随着时代的发展,使出行代步工具发展的很快。要想从一个城市,快速到达另一个城市,人们又想方设法的使“出行代步工具”得到了进一步的发展。不外乎至使地上跑的,水中游的,天上飞的代步工具,发展的尽乎完美的快捷和舒适。 本次设计基于世界城市发展的背景之下,通过分析和研究城市化进程、城市居民出行方式以及代步工具的发展历程,结合人性化设计、人机工程学和设计心理学等工业设计相关理论来深入分析城市居民代步工具设计中使用者的生理和心理需求,探讨其更符合城市居民人性化设计需求的可行性方案。 一.世界经济的发展等因素,城市的特点 我国现代城市交通的发展具有两大特征: 城市交通与城市对外交通的联系加强了,综合交通和综合交通规划的概念更为清晰。 随着城市交通机动化程度的明显提高,城市交通的机动化已经成为现代城市交通发展的必然趋势。 1.发展规律 现代城市交通重要表象是“机动化”,其实质是对“快速”和“高效率”的追求。 城市交通拥挤一定程度上是城市经济繁荣和人民生活水平提高的表现。随着城市交通机动化的迅速发展,城市机动交通比例不断提高,机动交通与非机动交通、行人步行交通的矛盾不断激化,机动交通与守法意识薄弱的矛盾日渐明显。

交通需求越来越大,而城市交通设施的建设就数量而言,永远赶不上城市交通的发展,这是客观的必然。 现代城市交通机动化的迅速发展也势必对人的行为规律和城市形态产生巨大影响,城市交通机动化的发展也会成为城市社会经济和城市发展的制约因素。现代城市交通的复杂性要求我们对城市交通要进行综合性的战略研究和综合性的规划,城市规划要为城市和城市交通的现代化发展做好准备。 2. 城市综合交通规划的内容 城市人群出行方式的发展,历史与现状,以及促使居民出行方式发生变化的关键因素。 刚建国时期——交通不便大城市电车、汽车比较多见,黄包车,自行车是比较普遍的代步工具。在一般的中小城市,有少量的自行车和人力车。农村,北方有马车、人力板车,南方有航船、牛车,步行是最普遍的出行方式 改革开放前——有所改善,以自行车为主“一五”计划期间兴建宝成铁路、鹰厦铁路;新藏、青藏、川藏公路修到“世界屋脊”,密切了祖国内地同边疆的联系,也便利了经济文化的交流;1957年,武汉长江大桥建成,连接了长江南北的交通。 国家整体交通水平有所提高.改革开放前,城市的交通资源极为有限,人们出行除了用双脚行走之外,可以代步的交通工具也就是公交车和自行车了。但是公交线路少,车厢经常拥挤不堪。相比之下,最方便的交通工具当然是自行车,中国曾被称作“自行车王国”,可

机翼分析

B-2隐形战略轰炸机 一、飞机简介: B-2隐形战略轰炸机是冷战时期的产物,由美国诺思罗普公司为美国空军研制。1979年,美国空军根据战略上的考虑,要求研制一种高空突防隐形战略轰炸机来对付苏联90年代可能部署的防空系统。1981年开始制造原型机,1989年原型机试飞。后来对计划作了修改,使B-2轰炸机兼有高低空突防能力,能执行核及常规轰炸的双重任务。 二、飞机整体结构: 飞机三视图和飞机内部结构剖析(图下)

三、飞机机翼结构分析: B-2轰炸机采用翼身融合、无尾翼的飞翼构形,其机体扁平,采用翼身融合的无尾(无垂直尾翼)的飞翼构型,机翼前缘为直线,交接于机头处,机翼后掠33度,飞机头部到翼尖成锐角,机翼后缘成双“W”形(锯齿形)有8个操纵面(6个升降副翼,2个阻流方向舵),巨大的锯齿状后缘由10条直的边缘组成,翼展尺寸为52.43米机翼前缘交接于机头处,机翼后缘呈锯齿形。机身机翼大量采用石墨/碳纤维复合材料、蜂窝状结构,表面有吸波涂层,发动机的喷口置于机翼上方。这种独特的外形设计和材料,能有效地躲避雷达的探 测,达到良好的隐形效果。 形尾翼原始设计 是专门为高空飞 行设计的,能够 满足高空阵风载 荷的需求,但不 适应于低空阵风 载荷的需求。飞 机主翼的设计进 行了重大改动, 因为空军不仅要 求飞机能从高空 突入,而且还要 能超低空突防, 从而带来了提高 飞机升力、增强

机械结构强度、进一步降低其雷达反射截面积等一系列问题,使飞机的设计历经数年才得以定型。B-2飞机的结构设计是基于满足阵风载荷(又称突风载荷)标准进行设计的,航空历史上仅有几种型号的飞机是按阵风载荷需求设计的,大部分军用飞机是根据机动载荷(又称惯性载荷)需求而设计。 机翼结构为单块式。从构造上看,单块式机翼的长桁较多且较强;蒙皮较厚;长桁、蒙皮组成可受轴向力的壁板。当有梁时,一般梁缘条的剖面面积与长桁的剖面面积接近或略大,有时就只布置纵墙。为了充分发挥单块式机翼的受力特点,左、右机翼一般连成整体贯穿机身。但有时为了使用、维护方便,在展向布置有设计分离面。分离面处采用沿翼箱周缘分散连接的形式将机翼连为一体。 单块式机翼的上、下壁板成为主要受力构件。这种机翼比梁式机翼的刚度特性好(这点对后掠机翼很重要)。同时由于结构分散受力,能更好地利用剖面结构高度,因而在某些情 况下(如飞机速度较大时)材料利用率较高,重量可能较轻。此外单块式机翼比梁式机翼生存力强。它的缺点是不便于开口 (Boeing)波音747 SP 一、飞机名称: 波音747 SP 波音747,又称为“珍宝客机”(Jumbo Jet),是一种双层客舱四发动机飞机,是世界上最易识别的客机之一,亦是全世界首款生产的宽体民航客机,由美国波音民用飞机集团制造。波音747原型大小是1960年代被广泛使用的波音707的两倍。1965年8月开始研制,自1970年投入服务后,一直是全球最大的民航机,垄断着民用大型运输机的市场,到A380投入服务之前,波音747保持全世界载客量最高飞机的纪录长达37年。 二、飞机整体结构:

机翼组成详细说明

关于飞机机翼 机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型。 前缘:翼型最前面的一点。 后缘:翼型最后面的一点。 翼弦:前缘与后缘的连线。 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。

翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生 推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢? 首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。

固定翼飞机翼型解析

固定翼飞机翼型解析 2008-07-18 06:53:50 来源: 作者: 【大中小】评论:3条 翼型的各部分名称如图1所示。翼弦是翼型的基准线,它是前缘点同后缘点的连线。中弧线是指上弧线和下弧线之间的内切圆圆心的连线。 中弧线最大弯度用中弧线最高点到翼弦的距离来表示。在一定的范围内,弯度越大,升阻比越大。但超过了这个范围,阻力就增大的很快,升阻比反而下降。中弧线最高点到翼弦的距离一般是翼弦长的4%~8%中弧线最高点位置同机翼上表面边界层的特性有很大关系。竞时模型飞机翼型的中弧线最高点到前缘的距离一般是翼弦的25%、50%。翼型的最大厚度是指上弧线同下弧线之间内切圆的最大直径。一般来说,厚度越大,阻力也越大。而且在低雷诺数情况下,机翼表面容易保持层流边界层。因此,竞时模型飞机要采用较薄的翼型。翼型最大厚度一股是翼弦的6%、8%。但是,线操纵特技模型飞机例外,它的翼型最大厚度可以达到翼弦的12%、18%。翼型最大厚度位置对机翼上表面边界层特性也有很大影响。翼型前缘半径决定了翼型前部的“尖”或“钝”,前缘半径小,在大迎角下气流容易分离,使模型飞机的稳定性变坏,前缘半径大对稳定性有好处,但阻力又会增大。

常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,如图2所示 对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上 双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模型飞机上 平凸翼型的下弧线是一条直线。这种翼型最大升阻比要比双凸翼型大。一般用在速摩不太高的初级线操纵或遥控模型飞机上 凹凸翼型的下弧线向内凹入。这种翼型能产生较大的升力,升阻比也比较大。广泛用在竞赛留空时间的模型飞机上 S形翼型的中弧线象横放的S形。这种翼型的力矩特性是稳定的,可以用在没有水平尾翼的模型飞机上

机翼原理

飞机机翼原理 机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。 机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 前缘:翼型最前面的一点。 后缘:翼型最后面的一点。 翼弦:前缘与后缘的连线。 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身

轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生 推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢? 首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。

固定翼航空模型飞机的组成

模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机等组成。 1、机翼(由主翼及副翼两部分组成)——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定,可控制飞机做出横滚等动作。 A.机翼翼弦的25%~30%处是飞机的重心所在。 B.机翼的形状(即翼型)由翼肋维持,翼肋由前缘、主梁和后缘连起来。 2、尾翼——包括水平尾翼(由水平安定面及升降舵两部分组成)和垂直尾翼(由垂尾安定面及方向舵两部分组成)两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的 升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身——将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装 载必要的控制机件,设备和燃料等,即是动力系统和遥控设备的搭载平台。 A.机身一般由几个舱组成,以层板制成的隔框分开。 B.机身里装有动力系统和遥控设备。以油动飞机为例,经典的安装顺序,从机头 到机尾,依次是发动机、油箱、接收机和接收机电池、舵机。

4、起落架——供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三 个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机——它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。 6、螺旋桨——按材料分有塑料桨,碳纤桨,玻纤桨,尼龙桨,木桨。固定翼螺旋桨的参数有长度和螺距两个参数(单位都是英寸)如:19*8的2叶木桨,这桨的长度就是19英寸、螺距就是8英寸。其中螺距指的是螺旋桨每旋转一圈飞机前进的理论值。 7、整流罩(桨罩)——降低风阻、美观大方。 8、舵机——与遥控器接收机搭配一起使用,执行遥控器发射的指令。主要参数是扭力、灵敏度、重量、尺寸。一般一架固定翼汽油飞机至少需要配6个舵机(副翼2个、升 降舵2个、方向舵1个、油门1个)。

飞机机翼各部分图解及专业术语

机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 2 前缘:翼型最前面的一点。 3 后缘:翼型最后面的一点。 4 翼弦:前缘与后缘的连线。 5 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 7 翼展:飞机机翼左右翼尖间的直线距离。 8 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。 中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生 推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。

飞机机翼图设计

伯恩思坦多项式与Bezier曲线 一、引言 1971年法国雷诺汽车公司的工程师Bezier提出了一种新的参数曲线表示法。这种方法能方便地控制输入参数(控制点)以改变曲线的形状。被称为Bezier曲线,数学原理使用了伯恩思坦多项式。设f(x)是定义在[0,1]上的连续函数,称表达式 ∑= -- ≈ n k k n k k n t t C n k f x f ) 1( ) / ( ) ( 右端为函数的伯恩思坦逼近多项式。 下面是函数) sin( ) (x x fπ =的伯恩思坦多项式逼近实验程序 n=input('input n='); x=[0:n]/n; f=sin(x*pi); for i=1:n+1 y=f;t=x(i); for k=n:-1:1 for j=1:k y(j)=t*y(j)+(1-t)*y(j+1); end end p(i)=y(1); end max(abs(f-p)) plot(x,f,'b',x,p,'o',x,p,'r') 下面两图分别是取不同点数的伯恩思坦多项式逼近。 n=10逼近n=20逼近 二、Bezier曲线 Bezier曲线的形状是通过一组多边折线(控制多边形)的各顶点P0,P1,…,P m所定义出来的。在多边折线的各顶点中,只有第一点P0和最后一点P m在曲线上,其余的点则用以定义曲线的阶次。 给定控制多边形顶点P0,P1,…,P m的坐标 (x0,y0),(x1,y1),……,(x m,y m) 曲线参数方程为 ∑= -- = m k k k m k k m x t t C t x ) 1( ) (,∑ = -- = m k k k m k k m y t t C t y ) 1( ) (

固定翼设计涉及的几个方面技术

1、微型无人机平台 (1)设计要求 基于小型无人机的摄影测量遥感平台还处于起步阶段,还没有一套完整的作业规范。现行的航测规范主要是参照大多数测绘单位现有的技术条件和仪器设备制定的, 而小型无人机作为一种新型的低空对地观测平台,主要在1000m以下的高度进行航拍,且其采用的是高分辨率的数码相机作为成像设备,与传统的航空摄影测量有较大的不同。因此,已有的摄影测量规范在这种新型摄影平台上并不一定能适用。按照传统的 航测作业准则,有以下几点参考指标: 1)飞行速度宜在5O~100km/h之内; 2) 发动机宜在飞机前进方向的后部(以避免湍流的影响); 3) 在发动机出故障时,飞机应可以安全滑翔降落; 4) 相对地面的飞行高度的变化应小于5%; 5) 相邻摄站飞行高度的变化应小于5%; 6) 航摄平台在作业时其水平误差不得大于3。; 7) 测量飞行速度的误差不大于5%; 8) 偏离航线的绝对误差不得大于相片旁向覆盖域的5%; (2)微型无人机遥感设备集成与接口 微型无人机平台可采用的候选遥感设备包括4种高空间分辨率(<1 m×1 m)轻型(<6O kg)机载合成孔径雷达(SAR)和两种轻型光学成像设备。选择适合于具体应用和无人机特点的遥感设备,建立标准设备接口,缩短安装调试周期是集成应用型无人机航 空遥感系统的关键。具体内容包括: 1)针对不同应用要求,通过性能价格比较,选择遥感设备; 2)完成遥感数据获取设备与无人机平台之间的统一接口设计,以便实现不同型号SAR、红外摄像仪和可见光CCD等设备的快速更换; 3) 无人机遥感设备的安装调试。 2、微型无人机飞行控制系统

NCG-1型无人机飞控系统是我公司技术人员自主研发的一套微型无人机控制系统。该系统包含:机载飞控、地面站、通讯设备。可以控制各种布局的无人驾驶飞机,使 用简单方便,控制精度高,GPS导航自动飞行功能强,并且有各种任务接口,方便用 户使用各种任务设备。起飞后即可立即关闭遥控器进入自动导航方式,在地面站上可 以随意设置飞行路线和航点,支持飞行中实时修改飞行航点和更改飞行目标点。单一 地面站控制多架飞机的能力和自动起降的功能也正在开发中。 作为无人机的飞行控制核心设备,系统的主要任务是利用GPS等导航定位信号, 并采集加速度计、陀螺等飞行器平台的动态信息,通过INS/GPS组合导航算法解算无 人机在飞行中的俯仰、横滚、偏航、位置、速度、高度、空速等信息,以及接收处理 地面发射的测控信息,用体积小巧的嵌入式中央处理器形成以机载控制计算机为核心 的电子导航设备,对无人机进行数字化控制,根据所选轨道来设计舵面偏转规律,控 制无人机按照预定的航迹飞行,使其具有自主智能超视距飞行的能力。 (1)自稳能力: 在各种气象条件及外界不可预测影响下,智能测算无人机的各项指标参数,自动 控制无人机的飞行姿态的稳定,确保无人机正常飞行; (2)自航能力: 在保持无人机飞行稳定的前提下,采用各种导航手段,控制无人机按照预先设定 的航迹飞行,执行相应航线任务; (3)状态监控与测控接口: 作为整个无人机系统的控制核心,飞行控制计算机系统实时监控无人机各模块状态,并通过高速接口与地面站实时进行指令和数据的交换。 NCG-1型无人机飞控系统采用了最先进的FutabaPCM1024系列遥控,操作比一般的无人机控制系统更加灵活灵活,飞行姿态控制更加方便。控制系统的舵机是我公司 自主研发的,达到了50Hz更新率,13 位舵机分辨率,使我们的微型无人机能够获取 更高精度的数据。主要特性如下: 集成4Hz更新率GPS,可扩展北斗、GLONASS组合导航; 集成数字式空速、气压传感器,0.1mba高精度,高度测量可扩展无线电高度计; 集成低成本低重量IMU,通过带GPS修正的Kalman滤波计算最贴近真实情况的 飞机姿态,动态精度±2o,消除瞬时加速度、陀螺漂移对姿态计算的影响;

如何设计制作飞机模型

论主题:自己设计制作模型飞机的体会【精品】 尽管学飞以来一直在飞成品机(ARF),但是,我自己要设计制作一架模型飞机的愿望一直在心里涌动。机会终于来改直归固,于是我决定做一架练习机送给他。几经周折后,我成功地将自己亲手设计制造的一架航模送上了蓝天。我实现,那种喜悦满足的心情是难以用语言来表达的。 下面我就讲讲我的设计制作过程,希望能对想动手做航模的朋友有所帮助。不对之处,还望大家共同交流提高。 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答识,我是这样设计制造我的“菜鸟1号”的。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型

固定翼的飞行教程及原理入门必看

固定翼的飞行教程及原理入门必看 本帖最后由贾恬夏于2009-8-9 10:50 编辑 飞行前要注意哪些 飞行前要注意 1、尽可能清理飞行场地。 2、充分注意周边环境: - 请勿在强风、雨天或夜晚飞行 - 请勿在通风不畅或建筑物内飞行 - 请勿在人多的地方飞行 - 请勿在学校、住宅或医院近旁飞行 -请勿在公路铁道或电线近旁飞行 -请勿在有可能因其他航模飞机引起的无线电波频率干扰的地方飞行 3 儿童遥控飞机一定要有成人在旁看护. 4、模型飞机不能用于超出使用范围的其它用途。 5、随时放置好螺丝刀,扳手及其它工具。在启动前,检视用于组装或维修飞机机的工具是否已经准备好。 6、检查飞机的每个部分。启动前,检查确保飞机无零件损坏并且工作正常。检视以确保所有活动零件位置正确, 所有螺丝及螺母已适当拧紧,并且没有损坏和装配不当的地方。检查确保电池已充满电。根据操作手册的说明 更换损坏和不能再用的零件。如果操作手册没有说明,请与经销商或与我们客户服务部联系。 7、备件请用正品。不要使用非原厂配置的零配件,否则可能有引发事故或伤害的危险。8、启动电机前检查各舵机是否工作正常。 启动前的检查 1、初学者有必要从有经验者那儿了解安全事项和操作说明。 2、检查确定没有松动或掉落的螺丝和螺母。 3、检查确定电动机座上螺丝没有松动。 4、检查确定桨叶没有损坏或磨损。 5。检查确定发射机、接收机、电池已充满电。 6、检查遥控器的有效控制距离。 7、检查确定所有的舵机动作滑顺。舵机动作有误和故障会导致失控, 8、在飞行中如有异常抖动,请立即降落查找原因。 19、不计后果地飞行会导致事故和伤害,请遵循所有规则,安全负责的享受飞行乐趣。 ------------------------------------------------------------------------------------------------------------------------------------------------------- 航模飞机飞行原理 飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。故起飞一般只分三个阶段,即起滑跑、离地和上升。起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。并同时保持滑跑方向。对螺旋桨飞机而言,起飞滑跑中引起飞机偏转的主要原因是螺旋桨的副作用。起

飞机机翼各部分图解及专业术语讲课教案

飞机机翼各部分图解及专业术语

机翼各翼面的位置图 图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 1 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 2 前缘:翼型最前面的一点。 3 后缘:翼型最后面的一点。 4 翼弦:前缘与后缘的连线。 5 弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 6 迎角(Angle of attack) :机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 7 翼展:飞机机翼左右翼尖间的直线距离。 8 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 9上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞

机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 10 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。 11 机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。 中单翼因翼梁与机身难以协调,几乎只存在理论上; 下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力 重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生推力----由发动机产生的向前作用力 阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢? 首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。 空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。 简单来说,飞机向前飞行得越快,机翼产生的气动升力也就越大。当升力大于重力时,飞机就可以向上爬升;当升力小于重力时,飞机就可以降低高度。

固定翼DIY全解

DIY模型飞机的完全攻略 2008-06-10 08:35:03 来源: 作者: 【大中小】评论:1条 尽管学飞以来一直在飞成品机(ARF),但是,我自己要设计制作一架模型飞机的愿望 一直在心里涌动。机会终于来了,前些天伟哥决定改直归固,于是我决定做一架练习机送给他。几经周折后,我成功地将自己亲手设计制造的一架航模送上了蓝天。我的愿望得到了厚重的实现,那种喜悦满足的心情是难以用语言来表达的。 下面我就讲讲我的设计制作过程,希望能对想动手做航模的朋友有所帮助。不对之处,还望大家共同交流提高。 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具有一定的挑战性了。当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身长度应该是多少、尾翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答案。根据我所学的知识,我是这样设计制造我的“菜鸟1号”的。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些, 所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。 机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。

飞行器设计与工程项目设计方案

飞行器设计与工程项目设计方案 1.1微型飞行器简介 微型无人飞行器是一种新概念飞行器,因为有体积小、重量轻、成本低、携带方便、飞行高度低、适应性强、灵活多变、隐蔽性好,具有起飞降落不需要跑道或者发射装置、回收装置和其他基础设施等众多优点,对未来军事作战产生深远影响。微型飞行器也称为MAV(Micro Air Vehicle),现在正在研究的MAV 主要有三种,一种是像飞机一样的固定翼模型,第二种是跟昆虫和鸟类一样的扑翼模型,第三种是跟直升机一样的旋翼模型。微型飞行器跟鸟类和昆虫一样都在低雷诺数下飞行,因此对鸟类和昆虫的研究对微型飞行器大有帮助。它们可以毫不引人注意的进行空中侦察活动,并将其传回地面。而近些年来,微纳米科技的和微电子科技的蓬勃发展又给微型飞行器增加了新的应用前景,正因为它有如此众多的优点,使得它能吸引越来越多的研究者目光。以美国Florida大学的UF,“臭鼬”研制组及通用电气公司的“微型星”,加利福尼亚技术学院与瓦伊伦门特航空公司及洛杉矶大学共同研究的“微型蝙蝠”,荷兰科学家研制的代夫尔微型摄影飞行器等微型飞行器 . 图1-1 微型飞行器 微型飞行器的研制现阶段的关键技术在于低雷诺数条件下飞行器尺寸小且重量轻,要求在能完成任务的前提下,保证有小尺寸和轻重量等特点,而且要协调动力能源系统和通讯控制装配。对微型飞行器的界定,美国国防部预研计划局有四条指标,第一条它微型飞行器的最大尺寸不超过15厘米,第二条,最大航程10公里以上,第三条,最大飞行速度至少达到每小时40到50公里,第四条,最大续航时间起码达到2小时。 图1-2 微型飞行器效果图 微型飞行器的兴起与微型飞行器的应用广泛有非常大的联系,微型飞行器除了用于军事侦查外,还在交通、通讯、宇航、大气研究等众多领域有广泛的应用潜力。在国防领域具有十分重要而广泛的研究背景,能过比其他飞行器更好地执行的任务。在军事领域,可用于敌情侦察、目标追踪、部署传感器和中继通信等,装有传感器和摄像头的微型垂直起降飞行器可用于低空和近距离的侦察和监视,甚至可以飞抵并停留在建筑物顶部进行长时间的侦查、探测,因此,它在未来的城市战区和军事行动中能发挥独特的作用现在各个国家和有实力的研究单位以

怎样设计一架航模飞机

怎样设计一架航模飞机集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

怎样设计一架航模飞机 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具有一定的挑战性了。当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身长度应该是多少、尾翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答案。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是XXXXX翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。 机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不

飞机结构与工艺及历史发展浅述

https://www.sodocs.net/doc/2212684222.html, 飞机结构与工艺及历史发展浅述 机翼 1.机翼的基本结构元件及受力机翼的基本结构元件是由纵向骨架、横向骨架以及蒙皮和接头等组成,现将各个结构元件的作用及受力分述如下: 1.纵向骨架——沿翼展方向安置的构件,包括梁、纵樯和桁条。 (1)梁——最强有力的纵向构件。它承受着全部或大部分的弯矩和剪力。梁的椽条承受由弯矩而产生的正应力;腹板承受剪力。梁的数量一般为一根或两根,也有两根以上的。机翼结构只有一根梁者称为单梁机翼;有两根者称为双梁机翼;两根以上者称为多梁机翼;没有翼梁称为单块式机翼。 翼梁的位置:在双翼及有支撑的机翼上,根据统计,前梁在12~18%翼弦处;后梁在55~70%翼弦处。在悬臂式单翼机上,单梁机翼的梁位于25~40%翼弦处。双梁机翼的前梁在20~30%翼弦处;后梁在50~70%翼弦处。 (2)纵樯——承受由弯矩和扭转而产生的剪力。与梁的区别是椽条较弱,椽条不与机身相连。其长度与翼展相等或仅为翼展的一部分。纵樯通常放置在机翼的前缘或后缘,与机翼上下蒙皮相连,形成一封闭的盒段以承受扭矩。 (3)桁条——承受局部空气力载荷;支持和加强蒙皮;并将翼肋互相连系起来。而且还可以承受由弯曲而产生的正应力。有的机翼为了更加强蒙皮,桁条需要很密,因而导致使用波纹板来代替桁条,或者把桁条与蒙皮作成一体,形成整体壁钣。 2.横向骨架——沿翼弦方向安置的构件。主要包括普通翼肋和加强翼

肋。 (1)普通翼肋——将纵向骨架和蒙皮连成一个整体;把由蒙皮传来的空气动力载荷传给翼梁;并保证翼剖面之形状。参与一部分机翼结构的受力。 (2)加强翼肋——除了起普通翼肋作用外,还承受集中载荷。 3.蒙皮——它固定在横向和纵向骨架上而形成光滑的表面。 布质蒙皮主要是承受局部空气动力载荷,并把它传给骨架。硬质蒙皮除了上述作用外,还参与结构整体受力。视具体结构的不同,蒙皮可能承受剪应力,也可能还承受正应力。 4.接头——把载荷从一个构件传到另一个构件上去的构件。如机翼与机身的连接、副翼与机翼连接等,均需用接头。机翼接头的形式很多,常见的有耳片式接头,套管式接头、对孔式接头,垫板式和角条式接头等多种。机翼构造的发展在机翼构造的发展过程中,最主要的变化就是维形件和受力件的逐渐合并。 在飞机发展的初期,为了减小重量,完全根据受力件和维形件分开,并且分段地承受载荷的原理来安排机翼的构造。这种构造形式的受力骨架是一个由翼梁、张线及横支柱(或翼肋)所组成的空间桁架系统。它承受所有的弯矩、扭矩和剪力。机翼的表面和机翼的形状是用亚麻的蒙皮和翼肋形成的。所以这种机翼可以叫作构架式机翼。 随着飞机速度的增大,翼载荷的增大,出现了蒙皮承受剪力和部分正应力的梁式机翼。这种机翼构造型式的特点是有强有力的梁,以及光滑的硬质蒙皮,这种机翼的蒙皮是金属铆接结构,为现在飞机所广泛采用。它的翼梁腹板承受剪力,蒙皮和腹板组成的盒段承受扭矩,蒙皮也参与翼梁椽条的承受弯矩的作用。但是梁式机翼的蒙皮较薄,桁条也较少,有的机翼的桁条还是分段断开的,有的甚至没有桁条。因此梁式机翼蒙皮承受由弯矩引起的拉压作用不大。 飞机场速度进一步增大,为保持机翼有足够的局部刚度和抗扭刚度,需要加厚蒙皮和增多桁条。这样,由厚蒙皮和桁条组成的壁钣已经能够承担大部分弯矩,因而梁的椽条可以减弱,直至变为纵樯,于是就发展成为

相关主题