搜档网
当前位置:搜档网 › 高三数学专题复习-概率中的相遇问题

高三数学专题复习-概率中的相遇问题

高三数学专题复习-概率中的相遇问题
高三数学专题复习-概率中的相遇问题

数学专题复习概率中相遇问题的处理方法在高考中有一类概率题型使许多考生感到吃力,那就是“相遇问题”。其实这类问题就是新课标中的新增内容——几何概型的应用,下面用几个例子来说明这类问题的处理方法。

例1 男女两人约定晚上7点至8点在某商场约会,如果女的不等男的,那么两人如期相会的概率是多

少?

分析:设男的到达时刻为x,女的到

达时刻为y,则x≤y。如图容易得出

相会概率为1

2

p=

例2 男女两人约定晚上7点至8点在某商场约会,并约好先到的必须等候,男的要等30分钟,女的只等20分钟,那么两人如期相会的概率是多少?

分析:设男的到达时刻为x,女的到达时刻

为y,则

30

20

060

060

y x

x y

x

y

-≤

?

?-≤

?

?

≤≤

?

?≤≤

?

。如图容易得出相会概率

11

60603030404047

22

606072 p

?-??-??

==

?

例3 某同学到公交车站等车上学,可乘116路和128路,116路公交车8分钟一班,128路公交车10分钟一班,求这位同学等车不超过6分钟的概率。

分析:设116路公交车到达时刻为x,128路公交车到达时刻为y,构建面积几何概型,如图:记“6分钟内乘客128路或116路车”为事件A,则A所占区域面积为6102672

?=。由几何概

?+?=,整个区域的面积为10880

型概率公式得729

()

P A==,即该同学等等车不超过6分钟的概率为0.9.

8010

高中数学解题方法系列:概率的热点题型及其解法

高中数学解题方法系列:概率的热点题型及其解法 概率主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。 题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。 例1:甲、乙两人各射击一次,击中目标的概率分别是 32和4 3.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率; (Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中... 目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少? 解:(1)设“甲射击4次,至少1次未击中目标”为事件A,则其对立事件A 为“4次均击中目标”,则()()4 26511381P A P A ??=-=-= ???(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()223 23442131133448P B C C ??????=?????= ? ? ???????(3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。 故()22123313145444441024 P C C ??????=+????=?? ? ?????????例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. (Ⅰ)求3个景区都有部门选择的概率; (Ⅱ)求恰有2个景区有部门选择的概率. 解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等. (I)3个景区都有部门选择可能出现的结果数为!32 4?C (从4个部门中任选2个作为1组, 另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为 P(A 1)=.943!3424=?C (II)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

高三年级数学概率训练题(含答案)

高三年级数学概率训练题(含答案) 数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。小编准备了高三年级数学概率训练题,希望你喜欢。 一、选择题:本大题共12小题,每小题5分,共60分. 1.从装有5只红球,5只白球的袋中任意取出3只球,有事件: ①取出2只红球和1只白球与取出1只红球和2只白球 ②取出2只红球和1只白球与取出3只红球 ③取出3只红球与取出3只球中至少有1只白球 ④取出3只红球与取出3只白球. 其中是对立事件的有() A.①② B.②③ C.③④ D.③ D解析:从袋中任取3只球,可能取到的情况有:3只红球,2只红球1只白球,1只红球,2只白球,3只白球,由此可知①、②、④中的两个事件都不是对立事件.对于③,取出3只球中至少有一只白球包含2只红球1只白球,1只红球2只白球,3只白球三种情况,与取出3只红球是对立事件. 2.取一根长度为4 m的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于1 m的概率是() A.14 B.13

C.12 D.23 C解析:把绳子4等分,当剪断点位于中间两部分时,两段绳子都不少于1 m,故所求概率为P=24=12. 3.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙两人下一盘棋,你认为最为可能出现的情况是() A.甲获胜 B.乙获胜 C.甲、乙下成和棋 D.无法得出 C解析:两人下成和棋的概率为50%,乙胜的概率为20%,故甲、乙两人下一盘棋,最有可能出现的情况是下成和棋. 4.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a2的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是() A.1- B.4 C.1- D.与a的取值有关 A 解析:几何概型,P=a2-a22a2=1-4,故选A. 5.从1,2,3,4这四个数中,不重复地任意取两个种,两个数一奇一偶的概率是() A.16 B.25 C.13 D.23 D 解析:基本事件总数为6,两个数一奇一偶的情况有4种,

高中数学《概率与统计》教学设计

高中数学《概率与统计》教学设计 课题:1.3抽样方法 教学目的:1理解什么是系统抽样 2.会用系统抽样从总体中抽取样 教学重点:系统抽样的概念及如何用系统抽样获取样本 教学难点:与简单随机抽样一样,系统抽样也属于等概率抽样,这是本节课的一个难点;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行,这时在整个抽样过程中每个个体被抽取的概率仍然是相等的.这是本节课的又一难点授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数. 2.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样 3.⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为 N 1;在整个抽样过程中各个个体被抽到的概率为N n;⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础. 4.抽签法:先将总体中的所有个体(共有N个编号(号码可从1到N,并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时

高三数学 深入分析高考中概率试题的特点与解题方法

深入分析高考中概率试题的特点与解题方法 1 概率试题的特点 (1)密切联系教材,试题通常是通过对课本原题的改编,通过对基础知识的重新组合、拓广,从而成为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题. (2)概率试题与其它数学试题有着明显的区别,它具有一定的应用性.近三年来出现过三种类型:一是课本中出现的,从实际生活中概括出来的;二是与横向学科有联系的问题;三是赋予时代气息的数学问题. (3)概率试题中注重了对四个基本公式的考查,即对等可能性事件的概率;互斥事件的概率加法公式;独立事件的概率乘法公式;事件在n次独立重复试验中恰发生k次的概率的考查. 2 概率试题的解题分析 2.1 通过对事件的理解与把握来解决问题 例1 (2000年新课程卷第17题)甲乙两人参加普法知识竞赛,其中选择题6个,判断题4个,甲、乙二人依次各抽一题. (Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少? 分析本题是一个等可能性事件的概率问题.同时注意到“甲、乙二人依次各抽一题”在解题中的作用,于是可利用排列知识及等可能事件的概率公式加以求解. 2.2 通过应用分类讨论的思想来解决问题 例2 (2002年新课程卷第19题)某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立). (Ⅰ)求至少3人同时上网的概率; (Ⅱ)至少几人同时上网的概率小于0.3? 分析本题可应用分类讨论的思想将问题(Ⅰ)“至少3人同时上网的概率”转化为恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时

上网的四种类型,再结合相互独立事件同时发生或互斥事件有一个发生的概率的计算方法加以求解.同时问题(Ⅰ)的解决为第二问的求解做好了铺垫. 2.3 通过合理运用公式()1()P A P A =-来解决问题 例3 (2000年新课程卷第18题)用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作,当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1、N 2正常工作的概率. 分析 系 统N 1正常工作的概率由物理串联知识结合独立事件的乘法公式即可求得;而系统N 2正常工作的概率由“当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作”可知,必须分成三类:一元件A 、B 正常工作,元件C 不正常工作;二元件A 、C 正常工作,元件B 不正常工作;三元件A 、B 、C 都正常工作.在解题时容易遗漏第三种情况,且忘记不正常工作的元件,导致解题错误.但若我们合理使用公式()1()P A P A =-,则系统N 2正常工作的概率可以看成元件A 正常工作,元件B 、C 都不正常工作的对立事件的概率,从而可以简化计算过程. 3 概率试题对高考复习的启示 3.1 在复习中,不能因为概率这部分是新增加的内容而加以忽视,也不能因为概率与排列、组合同在一个章节,认为只可能出现填空、选择题的类别.因为从近三年的试卷看到,每年均有一个概率解答题,所以在复习中应引起足够的重视. 3.2 在复习中,应充分研究大纲、考纲,使学生做到:(1)五个了解,即了解随机事件的统计规律性;随机事件的概率;等可能事件的概率;互斥事件;相互独立事件.(2)四个会,即会用排列组合基本公式计算等可能事件的概率;会用互斥事件的概率加法公式计算事件的概率;会用独立事件的概率乘法公式计算事件的(N 1 (N 2

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

2021届新高三数学精品专项测试题 19 条件概率与全概率公式 学生版

【新高考】2021届高三特前班精准提升数学专项测试题 19 条件概率与全概率公式 例1:一个袋中装有大小相同的个白球和个黑球,若不放回地依次取两个球,设事件 为 “第一次取出白球”,事件 为“第二次取出黑球”,则概率 ( ) A . B . C . D . 例2:有台车床加工同一型号的零件,第1台加工的次品率为 ,第,台加工的次品 率为 ,加工出来的零件混放在一起.已知1,2,3台车床加工的零件数分别占总数的 , , . (1)任取一个零件,计算它是次品的概率; (2)如果取到的零件是次品,计算它是第台车床加工的概率. 一、选择题 1.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又 下雨的概率为 .则在下雨条件下吹东风的概率为( ) A . B . C . D . 2.根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续天有客人入 住的概率为 ,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为( ) A . B . C . D . 3.已知正方形 ,其内切圆与各边分别切于点 , , 、 ,连接 , ,, .现向正方形 内随机抛掷一枚豆子,记事件 :豆子落在圆内,事件 :豆 子落在四边形 外,则 ( ) A . B . C . D . 4.把一枚硬币连续抛两次,记“第一次出现正面”为事件 ,“第二次出现正面”为事件 , 则 ( ) A . B . C . D . 5.已知 , , 等于( ) A . B . C . D . 6.从,,,,,,,,中不放回地依次取个数,事件 为“第一次取到的是 此卷 只装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

高三数学一轮复习统计与概率练习题

第10章 第3节 一、选择题 1.(文)(2010·重庆文,5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ) A .7 B .15 C .25 D .35 [答案] B [解析] 抽取比例为 = ,因为青年职工抽取7人,所以中年职工抽取 5人,老年职工抽取3人,所以样本容量为7+5+3=15人,故选B. (理)设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,则P(ξ=0)和D(ξ)的值依次为( ) A .1,6 B.12,12 C.13,29 D.14,516 [答案] C [解析] 由题意,设ξ的分布列为 即“ξ=0”表示试验失败,“ξ=1”表示试验成功, 由p +2p =1,得p =1 3, ∴P(ξ=0)=1 3, 又E(ξ)=0×13+1×23=2 3, ∴D(ξ)=????0-232×13+??? ?1-232×23=2 9, 故选C. 2.(2010·安徽江南十校联考)最小二乘法的原理是( ) A .使得∑i =1 n [yi -(a +bxi)]最小

B .使得∑i =1n [yi -(a +bxi)2]最小 C .使得∑i =1n [yi2-(a +bxi)2]最小 D .使得∑i =1n [yi -(a +bxi)]2最小 [答案] D [解析] 根据回归方程表示到各点距离最小的直线方程,即总体偏差最小,亦即∑i =1n [yi -(a + bxi)]2最小. 3.(2010·银川模拟)下列四个命题正确的是( ) ①线性相关系数r 越大,两个变量的线性相关性越强,反之,线性相关性越弱; ②残差平方和越小的模型,拟合的效果越好; ③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好; ④随机误差e 是衡量预报精确度的一个量,它满足E(e)=0. A .①③ B .②④ C .①④ D .②③ [答案] B [解析] 线性相关系数r 满足|r|≤1,并且|r|越接近1,线性相关程度越强;|r|越接近0,线性相关程度越弱,故①错误;相关指数是度量模型拟合效果的一种指标.相关指数R2越接近于1,模型的拟合效果越好,R2越大,残差平方和就越小,故残差平方和越小的模型,拟合效果越好,故②对③错.故选B. 4.若两个分类变量x 、y 的列联表为 则变量y 与x 有关系的可能性为( ) A .99%以上 B .95%以上 C .99.5%以上 D .95%以下

高三数学一轮复习统计与概率专题训练.doc

《统计与概率》 专题练习(一) 一.选择题 1.小敏打开计算机时, 忘记了开机密码的前两位, 只记得第一位是 M , I , N 中的一个字母, 第二位是 1,2,3,4,5 中的一个数字,则小敏输入一次密码能够成功开机的概率是 (A ) 8 ( B ) 1 (C ) 1 (D ) 1 15 8 15 30 2.从甲、乙等 5 名学生中随机选出 2 人,则甲被选中的概率为 (A ) 1 (B ) 2 ( C ) 8 (D ) 9 5 5 25 25 3.甲、乙两人下棋,两人下成和棋的概率是 1 ,甲获胜的概率是 1 ,则甲不输的概率为 2 3 (A ) 5 ( B ) 2 ( C ) 1 ( D ) 1 6 5 6 3 4.【 2015 高考新课标 1,文 4】如果 3 个正整数可作为一个直角三角形三条边的边长,则称 这 3 个数为一组勾股数,从 1,2,3,4,5 中任取 3 个不同的数,则这 3 个数构成一组勾股数的 概率为( ) (A ) 3 ( B ) 1 ( C ) 1 (D ) 1 10 5 10 20 二.填空题 5.从 1 ,2 ,3,6 这 4 个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的 概率是 . 6. 在三张奖劵中有一、二等各一张, 另有 1 张无奖,甲乙两人各抽取一张, 两人都中奖的概 率为 . 7. 某校早上 8: 00 上课,假设该校学生小张与小王在早上 7:30 —7:50 之间到校,且每人在 该时间段的任何时间到校是等可能的, 则小张比小王至少早 5 分钟到校的概率为 _____ (用数字作答) 三.解答题 8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有 2 个红球 A 1 , A 2 和 1 个白球 B 的甲箱与装有 2 个红球 a 1 , a 2 和 2 个白球 b 1 , b 2 的乙箱中, 各随 机摸出 1 个球,若摸出的 2 个球都是红球则中奖,否则不中奖。 (Ⅰ)用球的标号列出所有可能的摸出结果;

高中理科数学解题方法篇(概率与数据)

概率与数据 概率 1.随机事件的概率,其中当时称为必然事件;当时称为不可能事件P(A)=0; 2.等可能事件的概率(古典概率): P(A)=。理解这里m、n的意义。比如: (1)将数字1、2、3、4填入编号为1、2、3、4的四个方格中,每格填一个数字,则每个方格的标号与所填数字均不相同的概率是______(答:); (2)设10件产品中有4件次品,6件正品,求下列事件的概率:①从中任取2件都是次品;②从中任取5件恰有2件次品;③从中有放回地任取3件至少有2件次品;④从中依 次取5件恰有2件次品。(答:①;②;③;④) 3、互斥事件:(A、B互斥,即事件A、B不可能同时发生)。计算公式:P(A+B)=P(A)+P(B)。比如: (1)有A、B两个口袋,A袋中有4个白球和2个黑球,B袋中有3个白球和4个黑球,从A、B袋中各取两个球交换后,求A袋中仍装有4个白球的概率。(答:); (2)甲、乙两个人轮流射击,先命中者为胜,最多各打5发,已知他们的命中率分别为0.3和0.4,甲先射,则甲获胜的概率是(0.425=0.013,结果保留两位小数)______(答:0.51); (3)有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用的概率为P(n),且P(n)与时刻t无关,统计得

到,那么在某一时刻,这个公用电话亭里一个人也没有的概率P(0)的值是(答:) 4、对立事件:(A、B对立,即事件A、B不可能同时发生,但A、B中必然有一个发生)。计算公式是:P(A)+ P(B)=1;P()=1-P(A); 5、独立事件:(事件A、B的发生相互独立,互不影响)P(A?B)=P(A) ? P(B) 。提醒: (1)如果事件A、B独立,那么事件A与、与及事件与也都是独立事件; (2)如果事件A、B相互独立,那么事件A、B至少有一个不发生的概率是1-P(A B)=1-P(A)P(B); (3)如果事件A、B相互独立,那么事件A、B至少有一个发生的概率是1-P() =1-P()P()。比如: ①设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是______(答:); ②某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得0分,假设这位同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为_____________;这名同学至少得300分的概率为_____________(答:0.228;0.564); ③袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色全相同的概率是________(答:);

高三数学单元练习题概率与统计(Ⅲ)

高三数学单元练习题:概率与统计(Ⅲ) 一、 选择题(本题共12小题,每小题5分,共60分) 1设M 和N 是两个随机事件,表示事件M 和事件N 都不发生的是 ( ) A .M N + B .M N ? C . M N M N ?+? D .M N ? 2. 某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采取分层抽样法抽取容量为45的样本,那么高一,高二,高三各年级抽取的人数分别为 ( ) A..15,10,20 ,15,15 C.10,5,30 D15,5,25 3.设一随机试验的结果只有A 和B ,且P(A)=m,令随机变量ξ=1 ?????A发生 B 发生,则ξ的方差为( ) B.2m(1-m) (m-1) (1-m) 4. 设ξ是离散型随机变量,η=2ξ+3,则有 ( ) A .E η=2E ξ,D η=4D ξ B .E η=2E ξ+3,D η=4D ξ C .E η=2E ξ+3,D η=2D ξ+3 D .E η=2E ξ,D η=4D ξ+3 5.观察2000名新生婴儿的体重,得到频率分布直方图如图,则其中 体 重 [2700,3000]的婴儿有( ) 名 名 名 名 6. 将一组数据x 1,x 2,…,x n 改变为x 1-c ,x 2-c ,…,x n -c (c ≠0),下面结论正 确的是 A.平均数和方差都不变 B.平均数不变,方差变了 C.平均数变了,方差不变 D.平均数和方差都变了 7. 船队若出海后天气好,可获利5000元,若出海后天气坏,将损失2000元;若不出海也要损失1000元,根据预测天气好的概率为,则出海效益的期望是( ) A 、2600 B 、2400 C 、 2200 D 、2000 8.设随机变量ξ服从正态分布N(0,1),记()()x P x ξΦ=<.给出下列结论:①1 (0)2 Φ= ;②()1()x x Φ=-Φ-;③(||)2()1P a a ξ=Φ-<;④(||)1()P a a ξ=-Φ>.其中正确命题的个数为( ) .2 C 9. 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在到之间的学生数为b ,则a , b 的值分别为 ( ) A ., 78 B ., 83 C ., 78 D ., 83 10. 抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是 ( ) A.3 10 B.9 55 C. 9 50 D. 9 80 11.如果随机变量ξ~N (1,0),标准正态分布表中相应0x 的值为)(0x Φ则 ( ) A.)()(00x x P Φ==ξ B.)()(00x x P Φ=>ξ C.)()|(|00x x P Φ=<ξ D. )()(00x x P Φ=<ξ 12.为了考察两个变量x 和y 之间的线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l .已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数

2013届高三数学名校试题汇编(第3期)专题11 概率与统计 文

【精选+详解】2013届高三数学名校试题汇编(第3期)专题11 概 率与统计 文 一.基础题 1.【安徽省2013届高三开年第一考文】右图是甲、乙两名运动员某赛季6个场次得分的茎 叶图,用x 甲,x 乙分别表示甲乙得分的平均数,则下列说法正确的是( ) A .x 甲>x 乙且甲得分比乙稳定 B .x 甲=x 乙且乙得分比甲稳定 C .x 甲=x 乙且甲得分比乙稳定 D .x 甲

4这四个数中一次随机地取两个数,则其中一个数是另一个的两倍的概率是 【解析】 13 【潮州市2012-2013学年度第一学期期末质量检测】某校有4000名学生,各年级男、女生 人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2, 二.能力题 1.【广东省华附、省实、广雅、深中2013届高三上学期期末四校联考】某产品的广告费用x 与销售额y 的统计数据如下表: 6万元时销售额为( ). (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B 【解析】由题,计算得:5.3=x ,42=y ,代入回归方程a bx y +=1.9=?a 。 所以,当5.651.964.96=+?=?=y x ,选B. 2.【潮州市2012-2013学年度第一学期期末质量检测】

概率习题精选精讲

概 率 (1)随机事件——概率学把“可能性”引进数学 在概率学中,我们称一定发生的事件为必然事件,不可能发生的事件是不可能事件,可能发生也可能不发生的事件是随机事件. 概率也就是事件发生的可能性.所以必然事件的概率是1,不可能事件的概率是0,而随机事件的概率在区间(0,1)之中. 【例1】 同时掷两枚骰子,则以下事件各是什么事件? (1) 点数之和是正整数; (2) 点数之和小于2; (3) 点数之和是3的倍数. 【解析】(1)是必然事件,(2)是不可能事件;(3)是随机事件. (2)等可能事件——概率公式的起源 如果一次试验中可能出现的结果有n 个,而且这n 个结果出现的可能性相同,则称这类事件为等可能事件.由此导出基本概率公式是: ()m P A n = .(其中n 和 m 分别表示基本事件总数和事件A 发生的次数.) 【例2】将一枚骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为 ( ) A. 19 B. 112 C.1 15 D. 1 18 【解析】抛掷一枚骰子后,出现任何一面的可能性相同.所以本题属于等可能事件. 一枚骰子连续抛掷三次,则基本事件总数3 6 216n ==;设事件A ;连掷3次所得点数依次成等差数列,那么3数相等时有111, 222,…666等六种;3数不相等时有123,234,345,456,135,246及其反序数等12个.于是事件A 发生的次数61218m =+=种. 故()181 21612 P A = =.选B. (3)互斥事件——概率的加法原理 在某种试验中,不能同时发生的事件称为互斥事件.如果A 、B 是互斥事件,那么: ()()()P A B P A P B ?=+. 【例3】在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A . 310 B .15 C .110 D .112 【解析】设小球标注的数字之和为3与6的事件分别为A 、B.显然A 与B 不能同时成立,是互斥事件. 由于基本事件总数 2 510.n C ==事件 A 只有1+2=3一种,;事件 B 有1+5=2+4=6两种,.∵A 与B 互斥, ()()()12 3 10 10 P A B P A P B +∴?=+= =.选A. (4)对立事件——两互斥事件的特写 在一次试验中,如果事件A 与B 一定恰有一个发生,则称事件A 与B 是对立事件. 注意对立事件必然互斥,但是互斥事件不一定对立. 一般地,记A 的对立事件为 A .由于A 与A 具有互补性,所以()()1P A P B +=.这是简化概率计算的基本公式. 【例4】8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,这两个强队被分在一个组内的概率是多少? 【解析】 我们用a 、b 分别记八个队中的两个强队. 令C =“a 队与b 队分在同一组”, 则C =“a 队与b 队不在同一组”. a 队与 b 队不在同一组,只能分成两种情况:a 队在第一组,b 队在第二组,此时有C 3 6·C 3 3=C 3 6种分法;a 队在第二组,b 队在第一

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

2020年高考文科数学概率与统计题型归纳与训练

2020年高考文科数学《概率与统计》题型归纳与训练 【题型归纳】 题型一古典概型 例1 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(). A. 1 5B. 2 5 C. 8 25 D. 9 25 【答案】B 【解析】可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有: (甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42 105 =.故选B. 例2 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】2 3 【解析】根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6 种,其中2本数学书相邻的有4种,则其概率为:42 63 p==. 【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二几何概型 1 / 18

例 1 如图所示,正方形ABCD 内的图形来自中国古代的太极 图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ). A. 14 B. π8 C. 12 D. π 4 【答案】B 【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为 8 22122 ππ=??? ????a a .故选B. 例2 在区间[0,5]上随机地选择一个数p ,则方程22320x px p 有两个负根的概率为________. 【答案】3 2 【解析】方程2 2320x px p 有两个负根的充要条件是2121244(32)0 20320 p p x x p x x p ??=--≥? +=-? 即 2 1,3 p <≤或2p ≥,又因为[0,5]p ∈,所以使方程22320x px p 有两个负根的p 的取值范围为2(,1][2,5]3,故所求的概率2(1)(52)23503 -+-=-,故填:32. 【易错点】“有两个负根”这个条件不会转化. 【思维点拨】“有两个负根”转化为函数图像与x 轴负半轴有两个交点.从而得到参数p 的范围.在利用几何概型的计算公式计算即可. D

相关主题