搜档网
当前位置:搜档网 › SPC常数表

SPC常数表

SPC常数表

d2、d3、A2、D3、D4、均为与样本含量有关的常数,可查表

初中物理基本单位、基本公式、基本常数大全

初中物理公式 物理量计算公式备注 速度v= s / t 1m / s = 3.6 Km / h 声速v= 340m / 光速C = 3×10^8 m /s 密度ρ= m / V 1 g / cm^3 = 103 Kg / m 合力 F = F1 - F2 (F1、F2在同一直线线上且方向相反) F = F1 + F2 (F1、F2在同一直线线上且方向相同 ) 压强 p = F / S 适用于固、液、气 p =ρg h 适用于竖直固体柱和液体 浮力①F浮= G – F ②漂浮、悬浮:F浮= G ③F浮= G排=ρ液g V排 物体浮沉条件 ①F浮>G(ρ液>ρ物)上浮至漂 浮 ②F浮=G(ρ液=ρ物)悬浮 ③F浮<G(ρ液<ρ物)下沉杠杆平衡条件F1 *L1 = F2 *L 2 杠杆平衡条件也叫杠杆原理 滑轮组 F = G / n ( 理想滑轮组) F =(G动+ G物)/ n (忽略轮轴间的摩擦) η=G/ nF(实际情况n:作用在动滑轮上绳子股数) 功W = F S = P t 1J = 1N?m = 1W?s 功率P = W / t = Fv 1KW = 10^3 W,1MW = 10^3KW 有用功W有用= G h(竖直提升)= F S(水平移动)= W总– W额=ηW总额外功W额= W总– W有= G动h(忽略轮轴间摩擦)= f L(斜面) 总功W总= W有用+ W额= F S = W有用/ η 机械效率η= W有用/ W总 热量Q=cm(t-t°) 电流I=U/R 电功W=UIt =Pt 电功率P=W/t=UI =I2R=U2/R 串联电路I=I1=I2 电流处处相等 U = U 1+ U 2 干路电压等于各支路电压之和 R=R1+R2 总电阻等于的电阻之和

结构力学形常数和载常数表.docx

精品文档 表 1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正) 固端剪力 序号计算简图及挠度图弯矩图及固端弯矩 F QAB F QBA 1ql ql 22 √ (↑)(↑) 2 3 ql 7 ql 2020 (↑)(↑) F P b2 (l 2a)F P a2 (l 2b) 3l 3l 3 (↑)(↑) 4F P F P 22 √ (↑)(↑)5 √ 00 65ql3ql 88 √ (↑)(↑) 2ql ql 7510 (↑)(↑) 9ql11ql 84040 (↑)(↑) F P b(3l 2 b 2 )F P a2 ( 3l a) 92l 32l 3 (↑)(↑)

表 1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正) 固端剪力 序号计算简图及挠度图弯矩图及固端弯矩 F QAB F QBA 10√ 11√ 12√ 13 14√ 15√ 16√ 17 18√ 11 F P 5 F P 1616 (↑)(↑)3EI t3EI t 2hl2hl (↑)(↓) ql0 (↑) F P0 (↑) F P0 (↑) F QBA L F P F P(↓)(↑) F QBA R0 00 6ab3M6ab3M l l (↓)(↑) 3M3M 2l2l (↓)(↑)

表 1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正) 序号计算简图及挠度图弯矩图及固端弯矩 固端剪力 F QAB F QBA 3(l 2b2 )M3(l 2 b 2 ) M 192l 32l 3 (↓)(↑) 209M9M 8l8l √ (↓)(↑) 213M3M 2l2l √ (↓)(↑)2200 23 √ 00 ql 24 0 2 (↑) ql 25 0 2 (↑) qa 3 ( 2l 3qa3 2l 2l3 (2l a) 262la 2a3 ) (↑)(↑)

统计过程控制作业指导书(修改版)

统计过程控制作业指导书 1 目的 应用适当的统计技术,对定量信息进行分析处理,以控制过程特性,确保产品质量特性达到规定的要求。 2 适用范围 适用于质量策划、过程特性、产品特殊特性及持续改进的数据统计和分析。 3 参考文件 《统计过程控制(SPC)参考手册》 4 名词和定义 4.1 统计过程控制:是一种制造控制方法,是将制造中的控制项目,依其特性所收集的数据,通过过程能力的分析与过程标准化,发掘过程中的异常,并立即采取改善措施,使过程恢复正常的方法。 4.2 控制图:是对过程质量特性值进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。 4.3 过程变差:由于普通和特殊两种原因造成的变差,本变差可用样本标准差S 来估计。 4.4 过程固有变差:仅由于普通原因产生的那部分过程变差。该变差可以从控制图上通过R/d2 来估计。 4.5 过程能力:仅适用于统计稳定的过程,是过程固有变差的6σ范围,式中σ通常由R/d2(σR/d2)计算而得。 4.6 Cp:能力指数 4.7 Pp:性能指数 4.8 Cpu:上限能力指数 4.9 Cpl:下限能力指数 4.10 Cpk:这是考虑到过程中心的能力指数,定义为Cpu和Cpl的最小 值。 4.11 Ppk:这是考虑到过程中心的性能指数。 4.12 Ca:偏移度 4.13 UCL:(Upper Control limit)上控制限 LCL:(Lower Control limit)下控制限

5 权责 5.1 制定责任 5.2 实施责任 5.2.1 质量管理处负责指导、监督各部门统计技术应用的有效性。 5.2.2 技术部 5.2.2.1 负责研究初始过程能力并提出改进措施。 5.2.2.2 负责针对质量月报中提到的过程能力达不到要求的进行分析,提出改进措施。 5.2.2.3 负责对现场过程控制中过程特性和产品特性变差较大的利用控制图进行分析,并提出改进措施。 5.3品保部质检处 5.3.1 负责制定和修正控制用控制图的上、下控制限。 5.3.2 负责收集生产各处室完成的控制用控制图,并对实际的过程能力进行计算,将过程能力指数计算结果报到质量月报中。 5.4 生产各处室负责按照控制计划的要求对需用控制图进行控制的项目,在控制用控制图上进行过程监控。 5.5 由CFT小组每天对控制图进行监控,对工艺技术人员不能解决的异常问题及时分析对策。 6 内容及要求 6.1确定需求 6.1.1统计过程控制用于研究工序能力、监控工艺状况、评估测量系统。 6.1.2技术部在产品质量先期策划时要确定每一过程适用的统计技术,并纳入控制计划。 6.1.3技术部在新产品差异性分析以后,对差异方面的产品特性进行初始过程能力的研究。 6.2 统计过程控制的应用时机 6.2.1初始过程性能Ppk研究 6.2.1.1APQP小组按照《产品质量先期策划程序》规定,在新产品开发试生产阶段进行初始过程能力研究。初始过程能力研究计划见附件1。

物理最常用常数

常用物理常数表 光速 101099792458.2×=c cm sec -1 万有引力常数 81067259.6?×=G dyn cm -2 g -2 普朗克常数 27106260.6?×=h erg sec 271005457266.12/?×==πh erg sec 玻尔兹曼常数 1610380662.1?×=k erg deg –1 里德堡常量 312.109737/2342==∞ch e m R e π cm -1 斯特藩—玻尔兹曼常数 51066956.5?×=σ erg cm -2 deg -4 sec -1 电子电量 101080325.4?×=e esu 1910602192.1?×= coulomb 电子质量 281010956.9?×=e m g 原子质量单位 2410660531.1?×=amu g 精细结构常数 0360.1372//12==e hc πα 第一玻尔轨道半径 82220105291775.04/?×==e m h a e π cm 经典电子半径 1322108179380.2/?×==c m e r e e cm 质子质量 2410672661.1?×=p m g 007276470.1= amu 中子质量 24 1067492.1?×=n m g 00866.1= amu 电子静止能量 5110034.02=c m e meV 常用天文常数表 地球质量 27 10976.5×=⊕M g 地球赤道半径 164.6378=⊕R km 地球表面重力 665.980=⊕g cm sec -2 天文单位 810495979.1×=AU km 1光年 ly = 9.460×1012 km 1秒差距 pc= 3.084×1013 km=3.262ly 千秒差距 kpc=1000pc 地月距离 3.8×105 km 太阳到冥王星的平均距离 5.91×109km 最近的恒星(除太阳)的距离 4×1013km =1.31pc= 4.3ly 太阳到银心的距离 2.4×1017km=8kpc 太阳质量 M ⊙ 3310989.1×= g 太阳半径 R ⊙10109599.6×=cm 太阳光度 L ⊙33 10826.3×= erg sec -1

结构力学-形常数和载常数表复习过程

结构力学-形常数和载 常数表

表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正) 序号 计算简图及挠度图 弯矩图及固端弯矩 固端剪力 F QAB F QBA 1 √ 2ql (↑) 2ql (↑) 2 ql 203 (↑) ql 207 (↑) 3 32) 2(l a l b F P +(↑) 32) 2(l b l a F P +(↑) 4 √ 2P F (↑) 2P F (↑) 5 √ 6 √ 85ql (↑) 83ql (↑) 7 52ql (↑) 10 ql (↑) 8 409ql (↑) 4011ql (↑) 9 3 222) 3(l b l b F P -(↑) 3 22) 3(l a l a F P - (↑) 表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正) 序号 计算简图及挠度图 弯矩图及固端弯矩 固端剪力 F QAB F QBA

10√ P F 1611 (↑) P F 165 (↑) 11√ hl t EI 23?α (↑) hl t EI 23?α (↓) 12√ ql (↑) 13 P F (↑) 14√ P F (↑) 15√ P F (↑) P L QBA F F = (↓) 0=R QBA F 16√ 17 M l ab 3 6 (↓) M l ab 3 6 (↑) 18√ l M 23 (↓) l M 23 (↑) 表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正) 序号 计算简图及挠度图 弯矩图及固端弯矩 固端剪力 F QAB F QBA 19 3 222)(3l M b l - (↓) 3 222)(3l M b l - (↑)

基本物理常数大全

Fundamental Physical Constants—Adopted values Relative std. Quantity Symbol Value Unit uncert.u r relative atomic mass1of12C A r(12C)12(exact) molar mass constant M u1×10?3kg mol?1(exact) molar mass of12C M(12C)12×10?3kg mol?1(exact) conventional value of Josephson constant2K J?90483597.9GHz V?1(exact) conventional value of von Klitzing constant3R K?9025812.807?(exact) standard atmosphere101325Pa(exact) 1The relative atomic mass A r(X)of particle X with mass m(X)is de?ned by A r(X)=m(X)/m u,where m u=m(12C)/12=M u/N A=1u is the atomic mass constant,N A is the Avogadro constant,and u is the atomic mass unit.Thus the mass of particle X in u is m(X)=A r(X)u and the molar mass of X is M(X)=A r(X)M u. 2This is the value adopted internationally for realizing representations of the volt using the Josephson effect. 3This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

结构力学形常数和载常数表

表1—载常数表(固端弯矩以顺时针方向为正; 固端剪力以使杆件顺时针转动为正) 序 号 计算简图及挠度图 弯矩图及固端弯矩 固端剪力 F QAB F QBA 1 √ 2 ql (↑) 2 ql (↑) 2 ql 20 3 (↑) ql 20 7 (↑) 3 3 2) 2(l a l b F P +(↑) 3 2) 2(l b l a F P +(↑) 4 √ 2 P F (↑) 2 P F (↑) 5 √ 6 √ 8 5ql (↑) 8 3ql (↑) 7 5 2ql (↑) 10 ql (↑)

840 9ql (↑) 40 11ql (↑) 932 2 2) 3( l b l b F P - (↑) 3 2 2 ) 3( l a l a F P -(↑) 表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺 时针转动为正) 序 号计算简图及挠度图弯矩图及固端弯矩 固端剪力 F QAB F QBA 10√ P F 16 11 (↑) P F 16 5 (↑) 11√ hl t EI 2 3? α (↑) hl t EI 2 3? α (↓) 12√ ql (↑) 13 P F (↑) 14√ P F (↑) 15√ P F (↑) P L QBA F F= (↓)

0=R QBA F 16 √ 17 M l ab 36 (↓) M l ab 36 (↑) 18√ l M 23 (↓) l M 23 (↑) 表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺 时针转动为正) 序 号 计算简图及挠度图 弯矩图及固端弯矩 固端剪力 F QAB F QBA 19 3 222)(3l M b l - (↓) 3 222)(3l M b l - (↑) 20√ l M 89 (↓) l M 89 (↑) 21√ l M 23 (↓) l M 23 (↑) 22 0 0

结构力学 形常数和载常数表

序号 计算简图及挠度图 弯矩图及固端弯矩 固端剪力 F QAB F QBA 1 √ 2 ql (↑) 2 ql (↑) 2 ql 20 3 (↑) ql 20 7 (↑) 3 3 2) 2(l a l b F P +(↑) 3 2) 2(l b l a F P +(↑) 4 √ 2 P F (↑) 2 P F (↑) 5 √ 6 √ 8 5ql (↑) 8 3ql (↑) 7 5 2ql (↑) 10 ql (↑) 8 40 9ql (↑) 40 11ql (↑) 9 3 222) 3(l b l b F P -(↑) 3 22) 3(l a l a F P - (↑)

序号计算简图及挠度图弯矩图及固端弯矩 固端剪力 F QAB F QBA 10√ P F 16 11 (↑) P F 16 5 (↑) 11√ hl t EI 2 3? α (↑) hl t EI 2 3? α (↓) 12√ ql (↑) 13 P F (↑) 14√ P F (↑) 15√ P F (↑) P L QBA F F= (↓) = R QBA F 16 √ 0 0 17 M l ab 3 6 (↓) M l ab 3 6 (↑) 18√ l M 2 3 (↓) l M 2 3 (↑)

序号计算简图及挠度图弯矩图及固端弯矩 固端剪力 F QAB F QBA 19 32 2 2) (3 l M b l- (↓) 3 2 2 2 ) (3 l M b l- (↑) 20√ l M 8 9 (↓) l M 8 9 (↑) 21√ l M 2 3 (↓) l M 2 3 (↑) 22 0 0 23 √ 0 0 24 2 ql (↑) 0 25 2 ql (↑) 26 - 3 3 2( 2 l l qa ) 23 2a la+ (↑) ) 2( 23 3 a l l qa - (↑)

统计过程控制SPC程序

统计过程控制(SPC)程序 1 目的 为了解和改善过程,通过对过程能力的分析、评估使其有量化资料,为设计、制造过程的改进,选择材料,操作人员及作业方法,提供依据和参考。 2 范围 本程序适用于*****有限公司做统计过程控制(P P K、C P K、CmK 、PPM)的所有产品。 3 术语和定义 SPC:指统计过程控制。 CpK:稳定过程的能力指数。它是一项有关过程的指数,计算时需同时考虑过程数的趋势及该趋势接近于规格界限的程度。 PpK:初期过程的能力指数。它是一项类似于C P K的指数,但计算时是以新产品的初期过程性能研究所得的数据为基础。 C a:过程准确度。指从生产过程中所获得的资料,其实际平均值与规格中心值之间偏差的程度。 C p:过程精密度。指从生产过程中全数抽样或随机抽样(一般样本在50个以上)所计算出来的样本标准差(σ×),以推定实际群体的标准差(σ)用3个标准差(3σ)与规格容许差比较。 PPM:质量水准,即每百万个零件不合格数。指一种根据实际的缺陷材料来反映过程

能力的一种方法。PPM数据常用来优先制定纠正措施。 Cmk:设备能力指数:是反映机械设备在受控条件下,当其人/料/法不变时的生产能力大小。 4 职责 质量部负责统计过程控制的监督、管理工作。 5 PPM、Cp、Cpk、Pp、Ppk过程能力计算及评价方法 1.质量水准PPM的过程能力计算及评值方法: 当产品和/或过程特性的数据为计数值时,制造过程能力的计算及等级评价方法如下:(1)计算公式: 不良品数 PPM = ×1000000 检验总数 (2)等级评价及处理方法:

2.稳定过程的能力指数Cp、Cpk计算及评价方法: (1)计算公式: A)Ca = (x-U)/ (T / 2)×100% 注:U = 规格中心值 T = 公差= SU - SL = 规格上限值–规格下限值 σ= 产品和/或过程特性之数据分配的群体标准差的估计值 x = 产品和/或过程特性之数据分配的平均值 B)Cp = T / 6σ(当产品和/或过程特性为双边规格时)或 CPU(上稳定过程的能力指数)= (SU-x)/ 3σ(当产品和/或过程特性为单 边规格时) CPL(下稳定过程的能力指数)= (x-SL)/ 3σ(当产品和/或过程特性为单边规格时)Z1 = 3Cp(1+Ca)……根据Z1数值查常(正)态分配表得P1%; Z2 = 3Cp(1-Ca)……根据Z2数值查常(正)态分配表得P2%

常用物理基本常数表

常用物理基本常数表 物理常数符号最佳实验值供计算用值真空中光速 c 299792458±1.2m·s-1 3.00×108m·s-1 引力常数G0(6.6720±0.0041)×10-11m3·s-2 6.67×10-11m3·s-2阿伏加德罗(Avogadro)常 数 N0(6.022045±0.000031) ×1023mol-1 6.02×1023mol-1 普适气体常数R (8.31441±0.00026)J·mol-1·K-18.31 J·mol-1·K-1 玻尔兹曼(Boltzmann)常 数 k (1.380662±0.000041) ×10-23J·K-1 1.38×10-23J·K-1理想气体摩尔体积V m(22.41383±0.00070) ×10-322.4×10-3m3·mol-1基本电荷(元电荷) e (1.6021892±0.0000046) ×10-19 C 1.602×10-19 C 原子质量单位u (1.6605655±0.0000086)×10-27kg 1.66×10-27kg 电子静止质量m e(9.109534±0.000047)×10-31kg 9.11×10-31kg 电子荷质比e/m e (1.7588047±0.0000049)×10-11C· kg -2 1.76×10-11C· kg-2 质子静止质量m p(1.6726485±0.0000086)×10-27kg 1.673×10-27kg 中子静止质量m n(1.6749543±0.0000086)×10-27kg 1.675×10-27kg 法拉第常数 F (9.648456±0.000027 )C·mol-196500 C·mol-1 真空电容率ε0(8.854187818±0.000000071)×10-12 F·m-2 8.85×10-12F·m-2 真空磁导率μ012.5663706144±10-7H·m-14πH·m-1 电子磁矩μe(9.284832±0.000036)×10-24J·T-1 9.28×10-24J·T-1 质子磁矩μp (1.4106171±0.0000055)×10-23J·T- 1 1.41×10-23J·T-1 玻尔(Bohr)半径α0(5.2917706±0.0000044)×10-11m 5.29×10-11m 玻尔(Bohr)磁子μB(9.274078±0.000036)×10-24J·T-1 9.27×10-24J·T-1核磁子μN(5.059824±0.000020)×10-27J·T-1 5.05×10-27J·T-1普朗克( Planck)常数h (6.626176±0.000036)×10-34J·s 6.63×10-34J·s精细结构常数 a 7.2973506(60)×10-3 里德伯(Rydberg)常数R 1.097373177(83)×107m-1 电子康普顿(Compton)波长 2.4263089(40)×10-12m 质子康普顿(Compton)波长 1.3214099(22)×10-15m 质子电子质量比m p/m e1836.1515

PCB术语中英文对照表

Adhesion 附着力 Annular Ring 孔环 AOI(automatic optical inspection)自动光学检测 AQL(acceptable quality level)可接受的质量等级 B²it(buried bump interconnection technology) 埋入凸块焊点互连技术 BBH(buried blind hole) 埋盲孔 BGA(ball grid array) 球栅阵列 Blister 起泡 Board Edges 板边 Burr 毛头/毛刺 BUM(Build-up multilayer) 积层式多层板 BVH(buried/blind via hole)埋/盲导通孔 CAD(computer aided design) 计算机辅助设计

CAM(computer aided manufacturing) 计算机辅助制造 Carbon oil 碳油 CEM(composite epoxy material) 环氧树脂复合板材 chamfer 倒角 Characteristic impedance 特性阻抗 CNC(computerized numerical control)计算机化数字控制Conductor Crack 导体破裂 Conductor Spacing 导线间距 connector 连接器 Copper foil 铜箔(皮) Crazing 微裂纹(白斑) Delamination 分层 Dewetting 半润湿(缩锡) DFM(design for manufacturing)可制造性设计

SPC和MSA考试试题答案.doc

SPC和 MSA 培试考试试题 部门:姓名:成绩 一、判断题(每题 1 分,共10 分) 1、在任何工作过程中都有可能应用统计技术。(√) 2、全数检验可以清除批中的全部不合格产品。() 3、稳定性是偏移随时间的变化,也就是漂移;(√) 4、测量系统分析的样品必须是选自于过程并且代表整个的生产的范围;() 5、 ANOVA 分析中的方差被分解成零件、评价人、量具,以及评价人与量具的交互作用所造成的重复误差 四部份;() 6、测量系统分析要求必须要用到图解法;() 7、研究重复性再现性时每人必须至少测量三次。 8、做测量系统分析的零件应产生于稳定的生产过程。 9、必须对每个生产过程进行SPC的控制。(√ 10、测量系统分析就是对检具自身的分析。(( ) (√ ) ) ) 二、选择题 (20 X 2 分,共 40 分 ) 1、重复性是由(A)个以上评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测量变差。 A 、 1 B 、 2 C、 3 D、 4 2、位置误差通常是通过分析( A )和线形来确定。 A、偏倚 B、精密度 C、重复性 D、再现性 3、以下哪种分析方法不是用于基本计量型的测量系统。(C) A极差法B均值和极差法C假设检验分析 D ANOVA 4、测量仪器分辨力的第一准则应该至少是:(B) A 公差的 1/5 B公差的1/10C过程变差的1/5 D过程变差的1/10 5、(A)是指重复性随时间的变化程度; A 、稳定性B、一致性C、均一性D、线性 6、测量系统的稳定性分析不能通过( D )控制图来实现的。 A、平均值极差 B、 P C、单值移动极差图 D、 U 7、 a 随机误差就是由于普通原因造成的误差; b 系统误差是由于特殊原因造成的误差; a 和b 中D。 A、只有 a 正确 B、只有 b 正确 C、 a\ b 均正确 D、 a\b 均不正确 8、测量系统的重复性和再现性相对于公差的百分比可以接受的标准是A。 A、必须小于10%; B、必须小于5%; C、可以大于30%; D、必须小于30% 9、()是指重复性随测量的预期量程的变化程度;( C )

SPC案例分析(1)

统计过程控制(SPC )案例分析 一. 用途 1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。 2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品 产生。 3.查明生产设备和工艺装备的实际精度,以便作出正确的技术 决定。 4.为评定产品质量提供依据。 二、控制图的设计原理 1. 正态性假设:绝大多数质量特性值服从或近似服从正态分 布。 2. 3σ准则:99。73%。 3. 小概率事件原理:小概率事件一般是不会发生的。 4. 反证法思想。 四. 控制图的种类 1. 按产品质量的特性分(1)计量值(S X R X R X R X S ----,,~ ,) (2)计数值(p ,pn ,u ,c 图)。 2. 按控制图的用途分:(1)分析用控制图;(2)控制用控制 图。 五. 控制图的判断规则 1. 分析用控制图: 规则1 判稳准则-----绝大多数点子在控制界限线内(3种情况);

规则2 判异准则-----排列无下述现象(8种情况)。 2.控制用控制图: 规则1 每一个点子均落在控制界限内。 规则2 控制界限内点子的排列无异常现象。 [案例2]为控制某无线电元件的不合格率而设计p图,生产过程质量

要求为平均不合格率≤2%。 解:一.收集收据 在5M1E 充分固定并标准化的情况下,从生产过程中收集数据,见下表所表示: 某无线电元件不合格品率数据表 二.计算样本中不合格品率:k i n k p i i i ,.....,2,1,==,列在上表. 三.求过程平均不合格品率:

%14017775/248=== ∑∑i i n k p 四.计算控制线 p 图:i i n p p p UCL n p p p UCL p CL /)1(3/)1(3% 140--=-+=== 从上式可以看出,当诸样本大小i n 不相等时,UCL,LCL 随i n 的变化而变化,其图形为阶梯式的折线而非直线.为了方便,若有关系式: 2 /2min max n n n n ≥≤ 同时满足,也即i n 相差不大时,可以令n n i =,,使得上下限仍为常数,其图形仍为直线. 本例中,711=n , 诸样本大小i n 满足上面条件,故有控制线为: p 图:% 08.0/)1(3/)1(3%72.2/)1(3/)1(3% 140=--=--==-+=-+===n p p p n p p p UCL n p p p n p p p UCL p CL i i 五.制作控制图: 以样本序号为横坐标,样本不合格品率为纵坐标,做p 图. 六.描点:依据每个样本中的不合格品率在图上描点. 七.分析生产过程是否处于统计控制状态

高中物理常用基本物理常数

20楼 物理常数符号最佳实验值供计算用值 真空中光速 c 299792458±1.2m·s-1 3.00×108m·s-1 万有引力常数 G0 (6.6720±0.0041)×10-11m3·s-2 6.67×10-11 m3·s-2 阿伏加德罗(Avogadro)常数 N0 (6.022045±0.000031)×1023mol-1 6.02×1023 mol-1 普适气体常数 R (8.31441±0.00026)J·mol-1·K-1 8.31 J·mol-1·K-1 玻尔兹曼(Boltzmann)常数 k (1.380662±0.000041)×10-23J·K-1 1.38×10-23 J·K-1 理想气体摩尔体积 Vm (22.41383±0.00070)×10-3 22.4×10-3 m3·mol-1 基本电荷(元电荷) e (1.6021892±0.0000046)×10-19 C 1.602×10-19 C 原子质量单位 u (1.6605655±0.0000086)×10-27 kg 1.66×10-27 kg 电子静止质量 me (9.109534±0.000047)×10-31kg 9.11×10-31kg 电子荷质比 e/me (1.7588047±0.0000049)×10-11 C· kg-2 1.76×10-11 C· kg-2 质子静止质量 mp (1.6726485±0.0000086)×10-27 kg 1.673×10-27 kg 中子静止质量 mn (1.6749543±0.0000086)×10-27 kg 1.675×10-27 kg 法拉第常数 F (9.648456±0.000027)C·m ol-1 96500 C·mol-1 真空电容率ε0 (8.854187818±0.000000071)×10-12F·m-2 8.85×10-12F·m-2 真空磁导率μ0 12.5663706144±10-7H·m-1 4πH·m-1 电子磁矩μe (9.284832±0.000036)×10-24 J·T-1 9.28×10-24 J·T-1 质子磁矩μp (1.4106171±0.0000055)×10-23 J·T-1 1.41×10-23 J·T-1 玻尔(Bohr)半径α0 (5.2917706±0.0000044)×10-11 m 5.29×10-11 m 玻尔(Bohr)磁子μB (9.274078±0.000036)×10-24 J·T-1 9.27×10-24 J·T-1 核磁子μN (5.059824±0.000020)×10-27 J·T-1 5.05×10-27 J·T-1 普朗克( Planck)常数 h (6.626176±0.000036)×10-34 J·s 6.63×10-34 J·s 精细结构常数 a 7.2973506(60)×10-3 里德伯(Rydberg)常数 R 1.097373177(83)×107m-1 电子康普顿(Compton)波长 2.4263089(40)×10-12m 质子康普顿(Compton)波长 1.3214099(22)×10-15m 质子电子质量比 mp/me 1836.1515

基本物理常量大全

基本物理常量表1 基本物理常数1986年国际推荐值 量符号数值单位不确定ppm 光速c299,792,458 m/s (精确)真空磁导率μ04π× 10-7N·A (精确)真空介电常量,1/μ0 c ε08.854 187 817…10-12 F/m (精确)牛顿引力常量G 6.672 59(85) 10-11 m kg·s 128 普朗克常量h 6.626 075 5(40) 10-34J·s 0.60 基本电荷e 1.602 177 33(49) 10-19C 0.30 电子质量me9.10 938 97(54) 10-31kg 0.59 电子荷质比-e/ me-1.758 819 62(53) 1011C / kg 0.30 质子质量mp 1.672 623 1(10) 10-27 kg 0.59 里德伯常量R∞10 973 731.534(13) 107 m-10.0012 精细结构常数a7.297 353 08(33) 10 0.045 阿伏伽德罗常量NA,L 6.022 136 7(36) 1023 mol 0.59 气体常量R8.314 510(70) J mol K 8.4 玻耳兹曼常量k 1.380 658(12) 10-23 J/K 8.4 摩尔体积(理想气体) T=273.15K p=101325Pa Vm22.414 10(29) L/mol 8.4 圆周率π 3.141 592 65 自然对数底 e 2.718 281 83 对数变换因子loge10 2.302 585 09 注:摘自《物理》,1987年,Nol,P7-12.

表2 20℃时常见固体和液体的密度 物质密度 ρ(kg / m3) 物质 密度 ρ(kg / m3) 铝2698.9窗玻璃2400~2700铜8960冰(0℃)800~920铁7874石蜡792 银10500有机玻璃1200~1500金19320甲醇792 钨19300乙醇789.4 铂21450乙醚714 铅11350汽油710~720锡7298弗利昂-121329 水银13546.2变压器油840~890钢7600~7900甘油1260 石英2500~2800食盐2140 水晶玻璃2900~3000表3 标准大气压下不同温度的纯水密度 温度密度ρ 3 温度密度ρ 3 温度密度ρ 3 0999.84117.0998.77434.0994.371 1.0999.90018.0998.59535.0994.031 2.0999.94119.0998.40536.099 3.68 3.0999.96520.0998.20337.0993.33 4.0999.97321.0997.99238.0992.96 5.0999.96522.0997.77039.0992.59 6.0999.94123.099 7.53840.0992.21 7.0999.90224.0997.29641.0991.83 8.0999.84925.0997.04442.0991.44 9.0999.78126.0996.783 10.0999.70027.0996.51250.0998.04 11.0999.60528.0996.23260.0983.21 12.0999.49829.0995.94470.0977.78 13.0999.37730.0995.64680.0975.31 14.0999.24431.0995.34090.0965.31 15.0999.09932.0995.025100958.35 16.0999.94333.0994.702 第2页共2 页

统计过程控制SPC案例分析

统计过程控制S P C案例 分析 Document number:PBGCG-0857-BTDO-0089-PTT1998

统计过程控制(SPC)案例分析一.用途 1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。 3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。 4.为评定产品质量提供依据。 二.控制图的基本格式 1.标题部分 X-R控制图数据表 2

质 量 特 性 在方格纸上作出控制图: 横坐标为样本序号,纵坐标为产品质量特性。图上有三条平行线:实线CL:中心线 虚线UCL:上控制界限线 LCL:下控制界限线。 三.控制图的设计原理

1. 正态性假设:绝大多数质量特性值服从或近似服从正态分 布。 2. 3σ准则:99。73%。 3. 小概率事件原理:小概率事件一般是不会发生的。 4. 反证法思想。 四. 控制图的种类 1. 按产品质量的特性分(1)计量值 (S X R X R X R X S ----,,~ ,) (2)计数值(p ,pn ,u ,c 图)。 2. 按控制图的用途分:(1)分析用控制图;(2)控制用控 制图。 五. 控制图的判断规则 1. 分析用控制图: 规则1 判稳准则-----绝大多数点子在控制界限线内(3种情况); 规则2 判异准则-----排列无下述现象(8种情况)。 2. 控制用控制图: 规则1 每一个点子均落在控制界限内。 规则2 控制界限内点子的排列无异常现象。 [案例1] p 控制图

某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率0389 p,作控制图对其进行控制. .0 数据与p图计算表 [解] 步骤一 :预备数据的取得,如上边表所示.

基本物理常数表

Preface Fundamental Physical Constants: 1998 Peter J. Mohr and Barry N. Taylor National Institute of standards and Technology, Gaithersburg, MD 20899-8401 This table gives the 1998 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the subset of constants on which the complete 1998 set of recommended values is based. The 1998 set replaces its immediate predecessor recommended by CODATA in 1986. The new adjustment, which takes into account all of the data available through 31 December 1998, is a significant advance over its 1986 counterpart. The 1998 adjustment was carried out by P. J. Mohr and B. N. Taylor of the National Institute of Standards and Technology (NIST) under the auspices of the CODATA Task Group on Fundamental Constants. The standard uncertainties (i.e., estimated standard deviations) of the new recommended values are in most cases about 1/5 to 1/12 and in some cases 1/160 times the standard uncertainties of the corresponding 1986 values. Moreover, in almost all cases the absolute values of the differences between the 1998 values and the corresponding 1986 values are less than twice the standard uncertainties of the 1986 values. The Task Group was established in 1969 with the aim of periodically providing the scientific and technological communities with a self-consistent set of internationally recommended values of the fundamental physical constants based on all applicable information available at a given point in time. The first set was published in 1973 and was followed by a revised set first published in 1986; the current 1998 set first appeared in 1999. In the future, the CODATA Task Group plans to take advantage of the high level of automation developed for the current set in order to issue a new set of recommended values at least every four years.

相关主题