搜档网
当前位置:搜档网 › 用柯西不等式解题的常用变形技巧

用柯西不等式解题的常用变形技巧

用柯西不等式解题的常用变形技巧

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

柯西不等式的变形公式的妙用

柯西不等式的变形公式的妙用 柯西不等式晌丝形公式的她用 湖北省襄阳市第一中学王勇龚俊峰441000 柯西不等式具有对称和谐的结构,应用的关键在 于抓住问题的结构特征,找准解题的正确方向,合理 地变形,巧妙地构造.作为新课程的选修内容,柯西不 等式(简记为"方和积不小于积和方")在数学的多个 领域都有着广泛的应用.课堂教学中,笔者与学生共 同探究了柯西不等式的一个变形公式的应用,方便快 捷,妙不可言,达到了化难为易,化繁为简,化陌生为 熟悉的目的. 柯西不等式的变形公式:设a,n,…,a为实 数,b,bz,…,为正数,则等+薏十…+筹≥ b1+62+…+ 等号. , 当且仅当一薏一?一时取 址明:田tⅡJ四个寺瓦,侍 ((22十~t2+…+等)(64.b24.…+) ()+(老)+..?+(老).][c,z +()4-…+()!] ≥(.+老'+...+老.) 一(口l十以2+…+甜). . . .bl,b2,…~b为正数,...bl4"b24-…+>O, .

? . 鲁+譬+…+譬≥. 当且仅当一-...一卿一… 时取等号. 下面分类例析,旨在探索题型规律,揭示解题方法. 1在代数中的妙用 例1设n,b,C均为正数,且不全相等,求证: ++>. 证明:由柯西不等式的变形公式,得 ++一:一 04.b6+f.f+n2(a+6).2(bq-一c) l2 .2(c+a) ,(2+2+2)0 2(n+6)+2(64-c)+2(f+0) 4(a+6+f) 一 —— a4"b4"c' 当且仅当一一,即6 —6+f:f+n,亦即a~b=c时,上述不等式取等号. 因题设a,b,c不全相等,于是9l_+赢9+?) >? ._..I◆ 点评:将十+变形为+

均值不等式的4种变形及应用yqh

均值不等式的四种变形及其应用 定理:如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号)。 这个定理至少有四种变式。 例如 一 第一种变式为2 2 2 2()()a b a b +≥+ 它是怎样用定理“如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号),”推导 出来的呢?只要在么222a b ab +≥的两边同时加上22 a b +可推出为2 2 2 2()() a b a b +≥+它可以用中文数学语言叙述成“两个非负数的平方和的2倍不小于这两个非负数的和的平方。”什么时候用这一均值不等式的变式呢?凡带有根号形式的不等式证明题可用此第一种变式。 例1设0,0a b >>,1a b +=≤ 证明:2 2(2121)22(1)8a b a b ≤+++=?++= ≤ 例2设x,y 均为正数,10=- y x 且,求证:x-2y 200 ≤(1987年列宁格勒数学奥林匹克试题).证明:用均值不等式的变形公式()(2)2 2 2 b a b a +≤+ y y y x y x y x 2200)100(2)10(10102+=+≤+=?+=?=- 移项得x-2y 200≤. 例3 若a,b,c + ∈R 且a+b+c=1,求证:21141414≤++++ +c b a . 证明:用三元均值不等式的变形公式)(3)(2 2 2 2 c b a c b a ++≤++ .21)141414(3)141414(2=+++++≤+++++c b a c b a 两边开方得出21141414≤++++ +c b a 例4 若a,b,c,d +∈R 且a+b+c+d=1求证:2414141414≤++++++ +d c b a 证明: 用四个变量均值不等式的变形公式)(4)(2 2 2 2 2 d c b a d c b a +++≤+++ 32]4)(4[4)14141414(2=++++≤+++++++d c b a d c b a . 两边开方得出所要证的结果.

如何进行柯西不等式的教学(含答案)

如何进行柯西不等式的教学 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用,教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用. 在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式接着借助二维形式的柯西不等式证明了三角不等式,在一般形式的柯西不等式的基础上,教科书安排了—个探究栏目,让学生通过探究得出一般形式的三角不等式. 由上可见,教材编写者对这部分内容的要求以便让学生在大学学习打下坚实的基础,但这部分教与学的难度是显而易见的. 柯西不等式∑∑∑===≥n i i i n i i n i i b a b a 1 21 2 1 2 )(是柯西在1931年研究数学分析中的“留数” 问题时得到的.表面上看,这一不等式并不难理解,也很容易验证它的正确性,特别是它的二阶形式22222)())((bd ac d c b a +≥++,几乎是不证自明的.但是,我们能看出这一平凡无奇的不等式成立,是因为事先已经知道两边是什么式子,而最先发现这样的不等关系,则是一个创造的过程,并不是那么容易的.柯西不等式不失为至善至美的重要不等式,以它的对称和谐的结构,简洁明快的解题方法等特点,深受人们的喜爱.而且和物理学中的矢量、高等数学中的内积空间等内在地联系在一起.柯西不等式的几种形式都有较为深刻的背景和广泛的应用,向量形式αβαβ≥?不仅直观地反映了这一不等式的本质,一般形式

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

柯西不等式的应用技巧修订稿

柯西不等式的应用技巧 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设12 12,,,R n n a a a b b b ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中 作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代 换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中 每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因 此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设 ,,R x y z ∈ ,求证:22 -≤≤. 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到 时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子 的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++

(汇总)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =u r ,(,)n c d =r ,则22||m a b =+u r 22||n c d +r . ∵ m n ac bd ?=+u r r ,且||||cos ,m n m n m n =<>u r r u r r u r r g g g ,则||||||m n m n ≤u r r u r r g g . ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 2222||a b c d ac bd +++g 或 2222||||a b c d ac bd +++g 2222a b c d ac bd ++≥+g . ④ 提出定理2:设,αβu r u r 是两个向量,则||||||αβαβ≤u r u r u r u r g . 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(βu r 是零向量,或者,αβu r u r 共线) ⑤ 练习:已知a 、b 、c 、d 222222()()a b c d a c b d ++≥-+- 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈22222211221212()()x y x y x x y y ++≥-+-分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+22222211221212()()x y x y x x y y ++≥-+- 3. 如何利用二维柯西不等式求函数12y x x =--? 要点:利用变式2222||ac bd a b c d +++g . 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数31102y x x =-- 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:31102y x x =-- → 推广:,(,,,,,)y bx c e fx a b c d e f R +=+-∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()[()()][()]22x y x y x y x y x y +=++=++≥…

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

柯西不等式常见题型解法例说

上海中学数学2014年第3期 柯西不等式常见题型解法例说315500浙江省奉化中学陈晴应向明 柯西不等式≥:d;≥:研≥f≥]ni.6。1‘是基本 百鬲、百7 而重要的不等式,是推证其他许多不等式的基础,不仅形式优美,而且还具有非常重要的应用价值.它原先只在数学竞赛中出现,但在2003年颁布的高中数学课程标准选修系列(4—5)《不等式选讲》里,已经加进了柯西不等式,也就是说它将成为选修学生的日常教学要求.用柯西不等式解决某些不等关系问题时往往比较简捷明了,但求解时灵活性较大,技巧性较强.其中一些常见的问题,其解决策略往往与其呈现方式直接相关.笔者就以其在近几年高考中的常见三维类型进行分类,例析对应的解决策略.三维的柯西不等式(盘;+丑;+口;)(躇+6;+鹾)≥(n。6,+口:6:+a。63)2揭示了任意两组数组即(n。,n。,n。)、(6,,6。,63)的平方和之积与实数积之和的平方的大小关系.应用时要解决的核心问题就是如何通过变换不等式,向柯西不等式“逼近”,构造出不等式所需要的两组数组(乜,,乜。,以。)、(6。,6:,6。),这也是运用柯西不等式解题的基本策略. 1一次与二次 例1(2013湖南高考)已知口、6、c∈R,盘+26 +3c一6,则n2+462+9c2的最小值为——.解:n+26+3c一6,由柯西不等式得(n2+462 +9c2)(12+12+12)≥(n+26+3c)2, 可知n。+462+9c。≥婺一12,即最小值为12. 例2设.r,y,z∈R,且满足T2+y2+z2—5,则Lr+2y+3z之最大值为——. 解:(.f r+2y+32)2≤(L z’2+y2+z2)(12+22+ 32)一70,.‘.Ir+2y+3z最大值为√而. 例3如啪2∈R且与≯+≮型+竖j翌一1,求T+y+z的最大值、最小值.解:与竽+≮型+半一,,由柯西不等式得 [4z+渺+22]『c孚)2+c警)2+c字,2]≥…孚)惭(害)+z.(字)]2 号25×1≥b+y+z一2)2≥5≥l L r+y+z一2 ≥一5≤z+y+z一2≤5. .‘.一3≤T+y+z≤7. 故T+y+z之最大值为7,最小值为一3. 评注:这类题型的最大特征就是条件与结论中分别出现了一次式与两次式,而要实现一次与两次不等关系的关键就是根据柯西不等式的形态进行构造,让其中一个数组为常数组,这样问题往往可以奏效. 2整式与分式 2.1两组数组对应的数分别为倒数型 例4(2012福建高考)已知函数厂(T)一m—z一2I,m∈R且,(z+2)≥o的解集为[一1,1]. (1)求m的值; (2)若口,6,c∈R,且丢+去+去一m,求证:n+26+3c≥9. 解:(1)厂(.r+2)一m—f.r},/(T+2)≥o等价于I T l≤m, 由I T l≤m有解,得m≥O,且其解集为{丁l —m≤z≤m1), 又,(z+2)≥o的解集为[一1,1],故m一1. (2)由(1)知丢+去+去一1,又&,6,c∈R, 由柯西不等式得 Ⅱ+26+3c一(n+26+3c)f丢+去+去)≥F‘去+何‘去+厄’去)2姐 评注:这类题型从结构来讲,两组数组分别是整式类型(口,,n z,n。)与分式类型(署,昙,去)(其中夕,q,,一为常数),其实属于对勾函数的范畴,运用均值不等式也能完成,但不如柯西不等式简洁、方便.2.2分式中分子的次数高于分母型 例5(2009浙江高考)已知正数T,y,2,z+y 忙1.掘彘+毫+彘≥专. V十Z Z z十Z.r.r十二V0证法1:利用柯西不等式 (惫+矗+南)№他川z+ 2.十r)+(z+2v)]≥(.r+v+z)2.

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

柯西不等式的应用(整理篇).doc

柯西不等式的证明及相关应用 摘要 :柯西不等式是高中数学新课程的一个新增容, 也是高中数学的一个重要知识点, 它不仅历史悠久, 形式优美, 结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词 :柯西不等式 柯西不等式变形式 最值 一、柯西( Cauchy )不等式: a 1 b 1 a 2 b 2 a n b n 2 a 12 a 22 a n 2 b 12 b 22 b n 2 a i ,b i R, i 1,2 n 等号当且仅当 a 1 a 2 a n 0 或 b i ka i 时成立( k 为常数, i 1,2 n ) 现将它的证明介绍如下: 方法 1 证明:构造二次函数 f ( x) a x b 2 a x b 2 a x b 2 1 1 2 2 n n = a 12 a 22 a n 2 x 2 2 a 1 b 1 a 2 b 2 a n b n x b 12 b 22 b n 2 由构造知 f x 0 恒成立 又 Q a 12 a 22 L a n n 4 a 1b 1 a 2 b 2 a n b n 2 4 a 12 a 22 a n 2 b 12 b 22 b n 2 即 a 1b 1 a 2 b 2 a n b n 2 a 12 a 22 a n 2 b 12 b 22 b n 2 当且仅当 a i x b i 0 i 1,2 n 即 a 1 a 2 L a n 时等号成立 b 1 b 2 b n 方法 2 证明 :数学归纳法 ( 1) 当 n 1 时 左式 = a 1b 1 2 2 右式 = a 1 b 1 显然 左式 =右式 当 n 2 时 a 12 a 22 b 12 b 22 a 1 b 1 2 a 2 b 2 2 a 12 b 22 右式 a 22 b 12 2 2 2a a bb 2 左式 a b a b 2 a b a b 1 1 2 2 1 2 1 1 2 2 2 故 n 1,2时 不等式成立 ( 2)假设 n k k, k 2 时,不等式成立 即 a 1b 1 a 2 b 2 a k b k 2 a 12 a 22 a k 2 b 12 b 22 b k 2 当 b i ma i , m 为常数, i 1,2 k 或 a 1 a 2 L a k 0 时等号成立 设 A= a 12 a 22 a k 2 B= b 12 b 22 b k 2 C a 1b 1 a 2b 2 L a k b k AB C 2

高中数学-公式-柯西不等式

第一课时 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. } ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈ ? 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y = 要点:利用变式222||ac bd c d ++. 二、讲授新课: % 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形 → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式 (注意对比 → 构造)

(完整版)常用均值不等式及证明证明

2 常用均值不等式及证明证明 Hn n 概念: 1、调和平均数: 1 1 1 a 1 a 2 a n 2、几何平均数: Gn a 1 a 2 1 a n n 3 、算术平均数: An a 〔 a ? a n n 4 、平方平均数: Qn 2 2 a 1 a 2 2 a n n 这四种平均数满足 Hn Gn An Qn 1 r 0 时); D x a i a ; a n n (当 r 0 时)(即 i D 0 a i a ; a n n 则有:当 r=-1、1、0、2 注意到 Hn w Gn< An w Qn 仅是上述不等式的特殊情 形,即 D(-1) w D(0) w D(1) w D(2) 由以上简化,有一个简单结论,中学常用 2 、ab 1 1 a b 均值不等式的变形: (1)对实数a,b ,有a 2 b 2 2ab (当且仅当a=b 时取“=”号),a 2,b 2 0 2ab 对非负实数a,b ,有a a 1> a 2、 、a n R ,当且仅当 a 1 a 2 a n 时取“=”号 均值不等式的一般形式:设函数 D x a i r a ; a n a b a 2 b 2 2 \ 2

⑶ 对负实数a,b ,有 a b -^ ab 0 ⑷ 对实数a,b ,有 a a - b b a - b 2 2 ⑸ 对非负实数a,b ,有 a b 2ab 0 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳) 、拉格朗日乘数 法、琴生不等式 法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设 A >0, B >0,则 A B n A n nA n-i B 注:引理的正确性较明显,条件 A > 0, B > 0可以弱化为 A > 0, A+B> 0 (用数学归纳法)。 当n=2时易证; 假设当n=k 时命题成立,即 ⑹ 2 . 2 对实数a,b ,有a b a b 2 2 ⑺ 2 对实数a,b,c ,有a b 2 2 c (8) 2 对实数a,b,c ,有 a b 2 c 2 (9) 2 对非负数a,b ,有a ab b 2 a b c (i0) 对实数a,b,c ,有 3 2ab abc 2 ab bc ac 3a b 2 3 abc 原题等价于: n a n a i a 2 a n k a k a i a 2 a k 那么当n=k+i 时,不妨设 a k i 是a i , a 2, ,a k i 中最大者, 则 ka k i a k 1 设 s a i a 2 a k

相关主题