搜档网
当前位置:搜档网 › 数模转换原理及应用

数模转换原理及应用

数模转换原理及应用
数模转换原理及应用

数模(D/A)转换器及模数(A/D)转换器

一、实验目的

1.熟悉D / A转换器的基本工作原理。

2.掌握D / A转换集成芯片DAC0832的性能及其使用方法。

3.熟悉A / D转换器的工作原理。

4.掌握A / D转换集成芯片ADC0809的性能及其使用方法。

二、实验原理

1.数模(D / A)转换

所谓数模(D / A)转换,就是把数字量信号转换成模拟量信号,且输出电压与输入的数字量成一定的比例关系。图47为D / A 转换器的原理图,它是由恒流源(或恒压源)、模拟开关、以及数字量代码所控制的电阻网络、运放等组成的四位D/ A转换器。

四个开关S0 ~ S3由各位代码控制,若―S‖代码为1,则意味着接VREF ,代码―S‖= 0,则意味着接地。

由于运放的输出值为V0= -I∑?Rf ,而I∑为I0、I1、I2、I3的和,而I0 ~ I3的值分别为(―S‖代码全为1):

I0 =,I1 =,I2 =,I3 =

若选

R0 =,R1 =,R2 =,R3 =

则I0 ==?20 ,I1 =?21 ,I2 =?22 ,I3 =?23

若开关S0 ~ S3不全合上,则―S‖代码有些为0,有些为1(设4位―S‖代码为D3D2DlD0),则I∑ =D3I3 + D2I2 + DlIl + D0I0 =(D3?23 + D2?22 + D1?21 + D0?20)= B?

所以,V0 = -Rf ? B,B为二进制数,即模拟电压输出正比于输入数字量B ,从而实现了数字量的转换。

随着集成技术的发展,中大规模的D / A转换集成块相继出现,它们将转换的电阻网络和受数码控制的电子开关都集成在同一芯片上,所以用起来很方便。目前,常用的芯片型号很多,有8位的、12位的转换器等,这里我们选用8位的D / A转换器DAC0832进行实验研究。

DAC0832是CMOS工艺,共20管引脚,其管脚排列如图48所示。

图47 D / A转换原理图

图48 DAC0832管脚排列图

各管脚功能为:

D7 ~ D0:八位数字量输入端,D7为最高位,D0为最低位。

I0l:模拟电流输出1端,当DAC寄存器为全1时,I0l最大;全0时,I0l最小。

I02:模拟电流输出2端,I0l + I02 = 常数=,一般接地。

Rf:为外接运放提供的反馈电阻引出端。

VREF:是基准电压参考端,其电压范围为–10 ~ +l0V 。

VCC:电源电压,一般为+5V ~ +15V 。

DGND:数字电路接地端。

AGND:模拟电路接地端,通常与DGND相连。

CS:片选信号,低电平有效。

ILE:输入锁存使能端,高电平有效。它与WR1、CS信号共同控制输入寄存器选通。

WR1:写信号1,低电平有效。当CS= 0 ,ILE = 1时,WR1 此时才能把数据总线上的数据输入寄存器中。

WR2:写信号2,低电平有效。与XFER配合,当二者均为0时,将输入寄存器中当前的值写入DAC寄存器中。

XFER:控制传送信号输入端,低电平有效。用来控制WR2选通DAC寄存器。

由于DAC0832转换输出是电流,所以,当要求转换结果不是电流而是电压时,可以在DAC0832的输出端接一运算放大器,将电流信号转换成电压信号。如实验接线图49中所示。在图49中,当VREF接+5V(或l ~ 5V)时,输出电压范围是0 ~ -5V(或0 ~ +5V)。如果VREF接+10V (或-l0V)时,输出电压范围是0 ~ -10V(或0 ~ +10V)。

图49 DAC0832实验测试接线图

DAC0832通常和计算机系统相连进行有关操作,本实验中仅用直通工作方式进行实验,来研究DAC0832的某些功能特点。

2.模数(A / D)转换

所谓模数(A / D)转换,就是把模拟量信号转换成数字量信号。A / D转换的方法很多,本实验中用到的是逐次逼近式A / D转换集成块,其原理图如图50所示。它是将一个待转换的模拟信号Vi,与一个―推测‖的数字信号经D / A转换成VI相比较,根据―推测‖信号是大于还是小于输入信号,即比较器输出0或1来决定减小还是增大该―推测‖信号。然后,再进行比较,以便向模拟输入信号逐渐逼近。―推测‖信号是从二进制的最高位起,依次置1,逐位比较,直到最后一位。D / A的数字输入即对应输入模拟量,为A / D的输出,图50中,START为启动转换信号输入端,EOC为转换完成信号输出端。

图50 逐次逼近式A / D转换器

ADC0809是8位A / D转换器,它的转换方法为逐次逼近法。ADC0809为CMOS工艺,其管脚为28

脚,管脚排列如图51所示。各个管脚的功能如下:

Ino ~ IN7:八个模拟量输入端。

START:启动A / D转换,当START为高电平时,开始A / D转换。

EOC:转换结束信号。当A / D转换完毕之后,发出一个正脉冲,表示A / D转换结束,此信号可用做

A / D转换是否结束的检测信号或中断申请信号(加一个反相器)。

C、B、A:通道号地址输入端,C、B、A为二进制数输入,C为最高位,A为最低位,CBA从000~111分别选中通道IN0 ~ IN7。

ALE:地址锁存信号,高电平有效。当ALE为高电平时,允许C、B、A所示的通道被选中,并把该

通道的模拟量接入A / D转换器。

CLOCK:外部时钟脉冲输入端,改变外接R、C可改变时钟频率。

D7~D0:数字量输出端。

VREF(+),VREF(—):参考电压端子,用来提供D / A转换器权电阻的标准电平。一般

VREF(+)=5V,

VREF(—)= 0V

Vcc:电源电压,+5V。

GND:接地端。

图51 ADC0809管脚排列图

ADC0809可以进行八路A / D转换,并且这种器件使用时无需进行调零和满量程调整,转换速度和精度属中高档,售价又不贵。所以,一般控制场合采用这些ADC0809(或0800 系列)的

A / D转换片是比较理想的。

三、实验内容与步骤

1.数模(D / A)转换

把DAC0832、μA741 等插入IC空插座中,按图49接线,不包括虚线框内。即D7 ~ D0接实验系统的数据开关,CS、XFER、WR1、WR2均接0,AGND和DGND相连接地,ILE接+5V,参考电压接+5V,运放电源为±15V,调零电位器为10KΩ。

(1)接线检查无误后,置数据开关D7 ~ D0为全0,接通电源,调节运放的调零电位器,使输出电压V o=0。

(2)再置数据开关全1,调整Rf,改变运放的放大倍数,使运放输出满量程。

(3)数据开关从最低位逐位置1,并逐次测量模拟电压输出V0填入表21中。

(4)再将用74LS161触发器构成的二进制计数器对应的4位输出Q4、Q3、Q2、Q1分别接DAC0832的D7、D6、D5、D4,低四位接地(这时和数据开关相连的线全部断开)。(5)输入CP脉冲,用示波器观测并记录输出电压的波形。

(6)如计数器输出改接到DAC的低四位,高四位接地,重复上述实验步骤,结果又如何? (7)采用八位二进制计数器,再进行上述实验。

表21实验记录

2.模数(A / D)转换

(1)将ADC0809IC芯片插入IC空插座中,按图52接线。其中D7 ~ Do分别接八只发光二

极管

LED,CLK接连续脉冲,地址码A、B、C接数据开关或计数器输出,其余的按图52接线。(2)接线完毕,检查无误后,接通电源。调CP脉冲至最高频(频率大于1kHZ以上),再置数据开关为000,调节Rw,并用万用表测量Vi为4V,再按一次单次脉冲(注意单脉冲接START 端,平时处于电平,开始转换时为1),观察输出D7 ~ D0发光二极管(LED显示)的值,并记录下来。

(3)再调节RW,使Vi为+3V,按按一下单次脉冲,观察输出D7 ~ D0的值,并记录下来。

图52 ADC0809实验原理接线图

(4)按上述实验方法,分别调Vi为2V、1V、0.5V、0.2V、0.lV、0V进行实验,观察并记录每次输出D7 ~ D0的状态。

(5)调节Rw,改变输入Vi,使D7 ~ D0全1时,测量这时的输入转换电压值为多少。

(6)改变数据开关值为001,这时将Vi从IN0改接到IN1输入,再进行从(2)—(5)的实验操作。

(7)按(6)办法,可分别对其余的六路模拟量输入进行测试。

(8)将C、B、A三位地址码接至计数器(计数器可用JK、D触发器构成或用74LS161)的三个输出端,再分别置IN0 ~ IN7电压为0V、0.lV、0.2V、0.5V、lV、2V、3V、4V,单次脉冲接START,并将平时处于0电平,改接为平时处于―高电平‖(即一直转换)信号。再把单次脉冲接计数器的CP端。

(9)按动单次脉冲计数,观察输出D7 ~ D0的输出状态,并记录下来。

如果我们要进行16路的A / D转换,则可以用二片ADC0809组成,地址码C、B、A都连起来,如图53所示,这样在0 ~ 7时,选IN0 ~ IN7;8 ~ 15时,选IN8 ~ IN15。

图53 ADC0809组成16路A/ D转换器接线图

数模及模数转换器习题解答

数模及模数转换器习题解答

————————————————————————————————作者: ————————————————————————————————日期: ?

自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A /D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D转换器两个最重要的指标是分辨率和转换速度。 6.8位D /A 转换器当输入数字量只有最低位为1时,输出电压为0.02V ,若输入数字量只有最高位为1时,则输出电压为 V 。 A.0.039 B .2.56 C .1.27 D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D.参考电压 8.图T7.8所示R-2R网络型D/A 转换器的转换公式为 。 R R R I V REF 2R 2R 2R 2R 2R S 3 S 2 S 1 S 0 D 3 D 2 D 1 D 0 R F =R A + -v O i ∑ 图T 7.8 A .∑ =?- =3 3 REF o 22 i i i D V v ??B .∑=?- =3 4 REF o 2 232i i i D V v ??C .∑=?- =3 4 REF o 2 2 i i i D V v ??D .∑=?= 3 4 REF o 2 2 i i i D V v 9.D/A 转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R -2R 网络型、权电流型等D/A 转换器的特点,结合制造工

什么是DAC(数模转换器)

什么是DAC(数模转换器) 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模 拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。将模拟信号转换 成数字信号的电路,称为模数转换器(简称A/D 转换器或ADC,Analog to DigitalConverter);将数字信号转换为模拟信号的电路称为数模转换器(简称 D/A 转换器或DAC,Digital toAnalog Converter);A/D 转换器和D/A 转换器已成为计算机系统中不可缺少的接口电路。为确保系统处理结果的精确度,A/D 转换器和D/A 转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D 与D/A 转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D 与D/A 转换器的重要技术指标。随着集成技术的发展,现 已研制和生产出许多单片的和混合集成型的A/D 和D/A 转换器,它们具有愈 来愈先进的技术指标。本章将介绍几种常用A/D 与D/A 转换器的电路结构、 工作原理及其应用。数模(D/A)转换器转换原理数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的位权。为了将数字量转换成模拟量,必须将每1 位的代码按其位权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是组成D/A 转换器的基本指导思想。图11.1.1 表示了4 位二进制数字量与经过D/A 转换后输出的电压模拟量之间的对应关系。由图11.1.1 还可

7数模及模数转换器习题解答

7数模及模数转换器习题解答119 自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D转换器类似于编码器。 2.电压比较器相当于1位A/D转换器。 3.A/D转换的过程可分为采样、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D转换器而言,双积分型的抗干扰能力强,逐次逼近型的转换速度快。 5.A/D 6.8位D/A转换器当输入数字量只有最低位为1时,输出电压为0.02V,若输入数字量只有最高位为1时,则输出电压为V。 A.0.039 B.2.56 C.1.27 D.都不是 7.D/A转换器的主要参数有、转换精度和转换速度。 A.分辨率B.输入电阻C.输出电阻D.参考电压 8.图T7.8所示R-2R网络型D/A转换器的转换公式为。 V REF v O 图T7.8 A.∑ = ? - = 3 3 REF o 2 2i i i D V v B.∑ = ? - = 3 4 REF o 2 2 3 2 i i i D V v D.∑ = ? = 3 4 REF o 2 2i i i D V v 9.D/A转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R-2R网络型、权电流型等D/A转换器的特点,结合制造工艺、转换的精度和转换的速度等方面比较。

第8章-数模和模数转换习题解答

思考题与习题 8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. 1.5 S D. 2 S 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 A.4路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 0.5s 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。

数模转换原理及应用

数模(D/A)转换器及模数(A/D)转换器 一、实验目的 1.熟悉D / A转换器的基本工作原理。 2.掌握D / A转换集成芯片DAC0832的性能及其使用方法。 3.熟悉A / D转换器的工作原理。 4.掌握A / D转换集成芯片ADC0809的性能及其使用方法。 二、实验原理 1.数模(D / A)转换 所谓数模(D / A)转换,就是把数字量信号转换成模拟量信号,且输出电压与输入的数字量成一定的比例关系。图47为D / A 转换器的原理图,它是由恒流源(或恒压源)、模拟开关、以及数字量代码所控制的电阻网络、运放等组成的四位D/ A转换器。 四个开关S0 ~ S3由各位代码控制,若―S‖代码为1,则意味着接VREF ,代码―S‖= 0,则意味着接地。 由于运放的输出值为V0= -I∑?Rf ,而I∑为I0、I1、I2、I3的和,而I0 ~ I3的值分别为(―S‖代码全为1): I0 =,I1 =,I2 =,I3 = 若选 R0 =,R1 =,R2 =,R3 = 则I0 ==?20 ,I1 =?21 ,I2 =?22 ,I3 =?23 若开关S0 ~ S3不全合上,则―S‖代码有些为0,有些为1(设4位―S‖代码为D3D2DlD0),则I∑ =D3I3 + D2I2 + DlIl + D0I0 =(D3?23 + D2?22 + D1?21 + D0?20)= B? 所以,V0 = -Rf ? B,B为二进制数,即模拟电压输出正比于输入数字量B ,从而实现了数字量的转换。 随着集成技术的发展,中大规模的D / A转换集成块相继出现,它们将转换的电阻网络和受数码控制的电子开关都集成在同一芯片上,所以用起来很方便。目前,常用的芯片型号很多,有8位的、12位的转换器等,这里我们选用8位的D / A转换器DAC0832进行实验研究。 DAC0832是CMOS工艺,共20管引脚,其管脚排列如图48所示。

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

∑-△模数转换器工作原理

∑-△ADC工作原理 越来越多的应用,例如过程控制、称重等,都需要高分辨率、高集成度和低价格的ADC、新型∑-△转换技术恰好可以满足这些要求。然而,很多设计者对于这种转换技术并不十分了解,因而更愿意选用传统的逐次比较ADC。∑-△转换器中的模拟部分非常简单(类似于一个1bit ADC),而数字部分要复杂得多,按照功能可划分为数字滤波和抽取单元。由于更接近于一个数字器件,∑-△ADC的制造成本非常低廉。 一、∑-△ADC工作原理 要理解∑-△ADC的工作原理,首先应对以下概念有所了解:过采样、噪声成形、数字滤波和抽取。 1.过采样 首先,考虑一个传统ADC的频域传输特性。输入一个正弦信号,然后以频率fs采样-按照Nyquist 定理,采样频率至少两倍于输入信号。从FFT分析结果可以看到,一个单音和一系列频率分布于DC到fs /2间的随机噪声。这就是所谓的量化噪声,主要是由于有限的ADC分辨率而造成的。单音信号的幅度和所有频率噪声的RMS幅度之和的比值就是信号噪声比(SNR)。对于一个Nbit ADC,SNR可由公式:SNR=6.02N+1.76dB得到。为了改善SNR和更为精确地再现输入信号,对于传统ADC来讲,必须增加位数。 如果将采样频率提高一个过采样系数k,即采样频率为Kfs,再来讨论同样的问题。FFT分析显示噪声基线降低了,SNR值未变,但噪声能量分散到一个更宽的频率范围。∑-△转换器正是利用了这一原理,具体方法是紧接着1bit ADC之后进行数字滤波。大部分噪声被数字滤波器滤掉,这样,RMS噪声就降低了,从而一个低分辨率ADC, ∑-△转换器也可获得宽动态范围。 那么,简单的过采样和滤波是如何改善SNR的呢?一个1bit ADC的SNR为7.78dB(6.02+1.76),每4倍过采样将使SNR增加6dB,SNR每增加6dB等效于分辨率增加1bit。这样,采用1bit ADC进行64倍过采样就能获得4bit分辨率;而要获得16bit分辨率就必须进行415倍过采样,这是不切实际的。∑-△转换器采用噪声成形技术消除了这种局限,每4倍过采样系数可增加高于6dB的信噪比。 2.噪声成形 通过图1所示的一阶∑-△调制器的工作原理,可以理解噪声成形的工作机制。 图1 ∑-△调制器 ∑-△调制器包含1个差分放大器、1个积分器、1个比较器以及1个由1bit DAC(1个简单的开关,可以将差分放人器的反相输入接到正或负参考电压)构成的反馈环。反馈DAC的作用是使积分器的平均输出电压接近于比较器的参考电平。调制器输出中“1”的密度将正比于输入信号,如果输入电压上升,比较器必须产生更多数量的“1”,反之亦然。积分器用来对误差电压求和,对于输入信号表现为一个低通滤波器,而对于量化噪声则表现为高通滤波。这样,大部分量化噪声就被推向更高的频段。和前面的简单过采样相比,总的噪声功率没有改变,但噪声的分布发生了变化. 现在,如果对噪声成型后的∑-△调制器输出进行数字滤波,将有可能移走比简单过采样中更多的噪声。这种调制器(一阶)在每两倍的过采样率下可提供9dB的SNR改善。

模数转换器原理

模数(A/D)转换器工作原理A/D转换器(Analog-to-Digital Converter)又叫模/数转换器,即是将模拟信号(电压或是电流的形式)转换成数字信号。这种数字信号可让仪表,计算机外设接口或是微处理机来加以操作或胜作使用。 A/D 转换器 (ADC)的型式有很多种,方式的不同会影响测量后的精准度。 A/D 转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D 转换芯片。 A/D 转换器按分辨率分为4 位、6 位、8 位、10 位、14 位、16 位和BCD码的31/2 位、51/2 位等。按照转换速度可分为超高速(转换时间=330ns),次超高速(330~3.3μS),高速(转换时间3.3~333μS),低速(转换时间>330μS)等。 A/D 转换器按照转换原理可分为直接A/D 转换器和间接A/D 转换器。所谓直接A/D 转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型A/D 转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D 芯片采用逐次逼近型者多;间接A/D 转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。其中积分型A/D 转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D 转换功能,使用十分方便。 ADC 经常用于通讯、数字相机、仪器和测量以及计算机系统中,可方便数字讯号处理和信息的储存。大多数情况下,ADC 的功能会与数字电路整合在同一芯片上,但部份设备仍需使用独立的ADC。行动电话是数字芯片中整合ADC 功能的例子,而具有更高要求的蜂巢式基地台则需依赖独立的ADC 以提供最佳性能。 ADC 具备一些特性,包括: 1. 模拟输入,可以是单信道或多信道模拟输入; 2. 参考输入电压,该电压可由外部提供,也可以在ADC 内部产生; 3. 频率输入,通常由外部提供,用于确定ADC 的转换速率; 4. 电源输入,通常有模拟和数字电源接脚; 5. 数字输出,ADC 可以提供平行或串行的数字输出。在输出位数越多(分辨率越好)以及转换时间越快的要求下,其制造成本与单价就越贵。 一个完整的A/D转换过程中,必须包括取样、保持、量化与编码等几部分电路。 AD转换器需注意的项目: 取样与保持 量化与编码

数模和模数转换器

第九章:数模和模数转换器 一、单选题 1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 2:下面抑制电网公频干扰能力强的A/D转换器是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 3:不适合对高频信号进行A/D转换的是()。 A 并联比较型B逐次逼近型 C双积分型D不能确定 4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。 A一样大B前者大于后者C后者大于前者D不确定 5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。A一样大B前者大于后者C后者大于前者 D 不确定 6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。 A一样大B前者大于后者C后者大于前者 D 不确定 7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。 A并联比较型B逐次逼近型 C双积分型D不能确定 8.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题 1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。()2:D/A转换器的转换精度等于D/A转换器的分辨率。() 3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。() 4:在A/D转换过程中量化误差是可以避免的。() 5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。() 6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。() 7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。() 8.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。()

数模与模数转换

第8章数模与模数转换 随着科学技术的迅速发展,尤其是在自动控制、自动检测通信等领域中,广泛采用数字电子计算机处理各种模拟信号,这样,必须先把这些模拟信号转换成相应的数字信号,计算机系统才能进行分析、处理,处理后的数字信号还需再转换为模拟信号才能实现对执行机构的控制。从模拟信号到数字信号的转换称为模—数转换,简写为A/D。把能完成A/D转换功能的电路称为模数转换器,简称为ADC(Analog to Digital Converter)。从数字信号到模拟信号的转换称为数—模转换,简写为D/A,把能完成D/A转换功能的电路称为数模转换器,简称DAC(Digital to Analog Converter)。模拟信号和数字信号之间的转换可用图8-1所示,由此可见,ADC和DAC就是连接模拟系统和数字系统的“桥梁”—接口电路。 图8-1 模拟信号与数字信号的转换过程 8.1 数模转换 数模转换的基本思想是,把数字量中的每一位代码按对应权的大小转换成相应的模拟量,这些模拟量之和与数字量成正比。 数模转换器由输入寄存器、电子模拟开关、解码网络、基准电压源和求和电路组成,其组成的方框图如图8-2所示。 图8-2 DAC构成框图 DAC电路的工作过程为:数字量以并行或串行方式输入并存储在输入寄存器中,寄存器输出的每位数码驱动对应数位上的电子模拟开关,解码网络就能获得相应的模拟量,再将这些模拟量送到求和电路相加即得到与数字量相对应的模拟量。 数模转换器按解码网络结构分为T形及倒T形电阻网络D/A转换器,权电阻网络D/A 转换器,权电流D/A转换器等。按模拟开关电路的不同可分为CMOS开关型和双极开关型D/A转换器,下面介绍常见的两种即倒T形电阻网络型和权电流型D/A转换器。 8.1.1 倒T形电阻网络D/A转换器

数模和模数转换习题解答

8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. S D. 2 S 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。 8-3 要求某DAC 电路输出的最小分辨电压LSB V 约为5m V,最大满度输出电压m U =10V,试求该电路输入二进制数字量的位数N应是多少?

数模转换器(DAC)原理研究

数字-模拟转换器(DAC> 原理研究 电子0801 班 08214014 08214013 一题目简述随着科学技术地发展, 我们常常要用模拟系统来处理数字信号. 这就需要数字-模拟地转换. DAC 地作用是将计算机或控制器产生地二进制数字转换成与之成比例地模拟电压. 其意义相当于一种译码电路. 本次地数模原理研究主要介绍全电阻网络D/A 转换器和倒T 型电阻网络D/A 转换器, 利用等效方法和叠加原理推导输出电压, 比较两种转换器地特点. 并用EWB 软件来验证电路地工作原理.b5E2RGbCAP

二DAC 原理 1. D/A 数模转换器地设计思想 D/A 数模转换器在某种意义上说相当于一种译码电路,将给定地二进制码地量译成相应地模拟量地数值. 数字量是由二进制数位组合起来,而每位数字符号都有一定地权.例如,四位二进制数1101 每位地权对 应十进制数值从高位到底为排列依次为8,4,2,1<必须位置上是一才有效).所以二进制数1101代表十三.为了将数字量转换成模拟地量,可以将每一位数字量按权地大小装换成模拟量.然后将这些模拟量相加,所得到地总地模拟量就是数字量所必须转换成地模拟

.plEanqFDPw 2.权电阻网络D/A转换器 (1>数模转换地一种方法是使用电阻网络,网络中阻值表示数字码输入位地二进制权值?输入地电平决定电流地有无,开关接入相应电压V s时,输入电压为V s,二进制数位“ 1".开关接地时输入电压为0V,二进制数为“ 0".如下图给出了一个三位地DAC .DXDiTa9E3d 上面已经提及开关K n」,K T ……,K1,K。分别受输入代码D n 「D n“……,D1,D0地状态控制,由于虚地点地存在,其中某个开关K i接到“ 1"或“ 0"在电阻R支路产生地电流为RTCrpUDGiT I i V R Ri k i即I Z D. i Ri i V R R o D。I V R R1 支路电流总和 22R D o + V R 21R D1 + V R R2 D2 Ll i亠 V R 20R D2 R o D o + V R R1 D1+ V R R2 D2

模数转换器基本原理及应用

Σ-Δ模数转换器基本原理及应用 一、Σ-Δ ADC基本原理 Σ-Δ ADC以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化, 通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率, 然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-ΔADC的电路结构是由非常简单的模拟电路(一个比较器、一个开关、一个或几个积分器及模拟求和电路)和十分复杂的数字信号处理电路构成。要了解Σ-ΔADC的工作原理, 必须熟悉过采样、噪声整形、数字滤波和采样抽 取等基本概念 1.过采样 ADC是一种数字输出与模拟输入成正比的电路, 图1给出了理想3位单极性ADC的转换特性, 横坐标是输入电压U IN 的相对值, 纵坐标是经过采样量化的数字输出量, 以二进制000~111表示。理想ADC第一位的变迁发生在相当于1/2LSB的模拟电压值上, 以后每隔1LSB都发生一次变迁, 直至距离满度的1 1/2 LSB。因为ADC的模拟量输入可以是任何值, 但数字输出是量化的, 所以实际的模拟输入与数字输出之间存在±1/2LSB的量化误差。在交流采样应用中, 这种量化误差会产生量化噪声。 图1 理想3位ADC转换特性 如果对理想ADC加一恒定直流输入电压, 那么多次采样得到的数字输出值总是相同的, 而且分辨率受量化误差的限制。如果在这个直流输入信号上叠加一个交流信号, 并用比这交流信号频率高得多的采样频率进行采样, 此时得到的数字输出值将是变化的, 用这些采样结果的平均值表示ADC的转换结果便能得到比用同样ADC高得多的采样分辨率, 这种方法称作过采样(oversampling)。如果模拟输入电压本身就是交流信号, 则不必另叠加一个交流信号。采用过采样方法(采样频率远高于输入信号频率)也同样可提高ADC的分辨率。 由于过采样的采样速率高于输入信号最高频率的许多倍, 这有利于简化抗混叠滤波器的设计, 提高信噪比并改善动态范围。可以用频域分析方法来讨论过采样问题。由于直流信号转换具有的量化误差达1/2LSB, 所以数据采样系统具有量化噪声。一个理想的常规N位ADC的采样量化噪声有效值为q/12,均匀分布在奈奎斯特频带直流至fs/2范围内, 如图2所示。其中q为LSB的权重, fs为采样速率, 模拟低通滤波器将滤除fs/2以上的噪声。如果用Kfs的采样速率对输入信号进行采样(K

详细的模数转换原理讲解

A/D工作原理 一般的A/D转换过程是通过采样保持、量化和编码这三个步骤完成的,即首先对输入的模拟电压信号采样,采样结束后进入保持时间,在这段时间内将采样的电压量转换为数字量,并按照一定的编码给出转换结果,然后开始下一次采样。 可以这样理解,模数转换的过程就是分段量化,量化编码的过程。分段量化指的是找到根据转换器的输出位数,确定可以输出几段模拟量,然后给每一段模拟量赋给相应的值,该段的变量都用该值来表示。分段编码就是根据分的几段,编几个相应的二进制码来代替,以便机器识别。

在实验中用到的ADC0804就是这种类型的转换器,所以这里将原理讲述一下。 由图我们可以得到三个RS 触发器的RS 端输入:(图中给出了输入电压为6V 的相应分析)。 触发器 R/S Vb 开始设置为2.5V ,RS 触发器RS=01时为1。五个D 型触发器初始值定为00001。FFA R=Vb & Q2S=Q1FFB R=(Vb & Q3)||Q1S=Q2FFC R=(Vb & Q4)||Q1 S=Q3 比较器输入Vb D 型触发器RS 触发器 2.5/010000100 3.5/001000110 5.5/000100111 6.5/100010110 5.5/000001 110 通过上面的分析我们可以知道,ADC0804的工作流程就是将输入值与参考值相比较,然后根据比较的结果再调整参考值,直到得到最后的结果。基准电压决定了A/D 转换器的转换范围。 同时通过上面的分析我们可以知道,A/D 转换器实际上内部已经将分段量化,分段编码搞定了,我们需要做的只是 1)给转换器一个基准电压,告诉它每一段代表的具体电压值是多少 输入需要转换的电压,得到相应的数字值。

数模转换电路

数模转换电路 一、概述 数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器DAC。 二、D/A转换器的基本原理 基本原理:将输入的每一位二进制代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。这就是构成D/A转换器的基本思路。D/A转换器由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压几部分组成。数字量以串行或并行方式输入、存储于数码寄存器中,数字寄存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网络上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。 1、数模转换器的转换方式 (1)并行数模转换 通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。所谓“权”,就是二进制数的每一位所代表的值。例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。位数多的依次类推。图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。几路电流之和经过反馈电阻Rf产生输出电压。电压极性与参考量相反。输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。位数越多分辨率就越高,转换的精度也越高。工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。 (2)串行数模转换 将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。 三、D/A转换器的分类 1、电压输出型 电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOS D/A转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了运算放大器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。 2、乘算型 D/A转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。 四、D/A转换器的主要性能指标 1、分辨率 指最小输出电压(对应的输入数字量只有最低有效位为“1”)与最大输出电压(对应的输入数字量所有有效位全为“1”)之比。如N位D/A转换器,其分辨率为1/(2N-1)。 2、转换精度 D/A转换器的转换精度与D/A转换器的集成芯片的结构和接口电路配置有关。如果不考虑其他D/A 转换误差时,D/A的转换精度就是分辨率的大小,因此要获得高精度的D/A转换结果,首先要保证选择有足够分辨率的D/A转换器。同时D/A转换精度还与外接电路的配置有关,当外部电路器件或电源误差较大时,会造成较大的D/A转换误差,当这些误差超过一定程度时,D/A转换就产生错误。在D/A 转换过程中,影响转换精度的主要因素有失调误差、增益误差、非线性误差和微分非线性误差。 3、编辑本段温度系数 在满刻度输出的条件下,温度每升高1℃,输出变化的百分数定义为温度系数。 4、失调误差(或称零点误差)

数模转换器(DAC)原理研究

数字-模拟转换器(DAC)原理研究 电子0801班 08214014 08214013

一题目简述 随着科学技术的发展, 我们常常要用模拟系统来处理数字信号. 这就需要数字-模拟的转换. DAC的作用是将计算机或控制器产生的二进制数字转换成与之成比例的模拟电压. 其意义相当于一种译码电路. 本次的数模原理研究主要介绍全电阻网络D/A转换器和倒T型电阻网络D/A转换器, 利用等效方法和叠加原理推导输出电压, 比较两种转换器的特点. 并用EWB 软件来验证电路的工作原理. 二DAC原理 1. D/A数模转换器的设计思想 D/A数模转换器在某种意义上说相当于一种译码电路,将给定的二进制码的量译成相应的模拟量的数值。 数字量是由二进制数位组合起来,而每位数字符号都有一定的权。例如,四位二进制数1101每位的权对应十进制数值从高位到底为排列依次为8,4,2,1(必须位置上是一才有效)。所以二进制数1101代表十三。为了将数字量转换成模拟的量,可以将每一位数字量按权的大小装换成模拟量。然后将这些模拟量相加,所得到的总的模拟量就是数字量所必须转换成

的模拟量。 2.权电阻网络D/A 转换器 (1) 数模转换的一种方法是使用电阻网络,网络中阻值表示数字码输入位的二进制权值。输入的电平决定电流的有无,开关接入相应电压V s 时,输入电压为V s ,二进制数位“1”。开关接地时输入电压为0V ,二进制数为“0”. 如下图给出了一个三位的DAC 。 上面已经提及开关1 -n K , 2-n K ,……, 1K ,0K 分别受输入代码1-n D ,2-n D ,……,1D ,0D 的状态控制,由于虚地点的存在,其中某个开关i K 接到“1”或“0”在电阻i R 支路产生的电流为 i R i k Ri V I = 即 i R i D Ri V I = 000D R V I R = 11 1D R V I R = 222D R V I R = 支路电流总和 I=∑=20i i I =00D R V R +11D R V R +22 D R V R = 022D R V R +112D R V R +202D R V R =R V R 22[001122222?+?+?D D D ]

数模和模数转换

一、选择题 1.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 2.一个无符号10位数字输入的DAC,其输出电平的级数为。 10 A.4 B.10 C.1024 D.2 3.一个无符号4位权电阻DAC,最低位处的电阻为40KΩ,则最高位处电阻为。 A.4KΩ B.5KΩ C.10KΩ D.20KΩ 4.4位倒T型电阻网络DAC的电阻网络的电阻取值有种。 A.1 B.2 C.4 D.8 5.为使采样输出信号不失真地代表输入模拟信号,采样频率≥ B. ≤ C. ≥2 D. ≤2 和输入模拟信号的最高频率的关系是。 A. 6.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 7.用二进制码表示指定离散电平的过程称为。 A.采样 B.量化 C.保持 D.编码 8.将幅值上、时间上离散的阶梯电平统一归并到最邻近的指定电平的过程称为。 A.采样 B.量化 C.保持 D.编码 9.若某ADC取量化单位△=,并规定对于输入电压,在0≤<时,认为输入的模拟电压为0V,输出的二进制数为000,则≤<时,输出的二进制数为。 A.001 B.101 C.110 D.111 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题(正确打√,错误的打×)

1.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。() 2.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。() 3.D/A转换器的位数越多,能够分辨的最小输出电压变化量就越小。() 4.D/A转换器的位数越多,转换精度越高。() 5.A/D转换器的二进制数的位数越多,量化单位△越小。()6.A/D转换过程中,必然会出现量化误差。() 7.A/D转换器的二进制数的位数越多,量化级分得越多,量化误差就可以减小到0。() 8.一个N位逐次逼近型A/D转换器完成一次转换要进行N次比较,需要N+2个时钟脉冲。() 9.双积分型A/D转换器的转换精度高、抗干扰能力强,因此常用于数字式仪表中。() 10.采样定理的规定,是为了能不失真地恢复原模拟信号,而又不使电路过于复杂。() 三、填空题 1.将模拟信号转换为数字信号,需要经过、、、四个过程。 答案: 一、选择题 1. D 2. CD 3. B 4. B 5. C 6. A 7. D 8. B

数模转换器的选用

数模转换器的选用

————————————————————————————————作者:————————————————————————————————日期:

数模转换器的选用 随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。

为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。 如果CCD的质量能够满足一定色彩位数的要求,为了获得相应的输出效果,就要求有相应位数的数模转换实现数据采样,才能获得满意的效果,如果CCD可以实现36位精度,却使用了三个8位的数模转换器,结果输出出来就只剩下24位的数据精度了,这对于CCD是一种浪费,而如果使用三个16位的数模转换器,是实现了48位的数据输出,但效果与36位比较并无改善,对数模转换器就是一种浪费了。 1. 数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。

数模模数转换实验报告

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片内包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压范围为04.98V。 四、实验内容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下:

相关主题