搜档网
当前位置:搜档网 › 蒲丰投针与蒙特卡洛(MonteCarlo)方法

蒲丰投针与蒙特卡洛(MonteCarlo)方法

蒲丰投针与蒙特卡洛(MonteCarlo)方法
蒲丰投针与蒙特卡洛(MonteCarlo)方法

基于MATLAB的布丰投针实验仿真

系统建模与仿真题目:Buffon实验的仿真 院系: 电子工程学院 专业:信息对抗技术 班级:021231 姓名:余颖智 学号:02123021 指导老师:刘洋 完成时间:2015年4月 西安电子科技大学

基于MATLAB的投针实验仿真 摘要 在求证圆周率的过程中经过割圆术后,出现的投针试验以求出圆周率,目前利用MATLAB数学建模的仿真实验,运用到计算机中,简化其随机实验的操作量大,运算慢等特点。不同针距相同实验量运算后得出不同的π,其针距与线间距离相等,所得值接近于π。

目录 摘要 (2) 二、实验内容 (4) 三、建模流程图 (5) 四、程序主要代码 (6) 五、运行结果 (6) 六、结论 (7)

一、实验原理 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的布丰投针问题。该投针实验主要有如下三个步骤:(一)取一张白纸,在上面画许多条间距为a的平行线;(二)取一根长度为l(l

三、建模流程图

四、程序主要代码 str(handles.edit1,'string'); %取得变量,定义变量,变量初始化 n = str2double(str); str = get(handles.edit2,'string'); l = str2double(str); str = get(handles.edit3,'string'); a = str2double(str); counter = 0; %变量初始化 phi = 0; frequency = 0; Pi = 0; x = unifrnd(0,a/2,1,n);%产生n个(0,a/2)之间均匀分布的随机数,这里a/2是投针的中点到最近的平行线的距离 phi = unifrnd(0,pi,1,n);% 产生n个(0,pi)之间均匀分布的随机数,这里pi是投针与最近平行线的角度 for i=1:n if x(i)

蒙特卡罗方法的应用【文献综述】

文献综述 信息与计算科学 蒙特卡罗方法的应用 在解决实际问题的时候, 为了模拟某一过程, 产生各种概率分布的随机变量和对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题, 我们应该怎么办? 蒙特·卡罗是一种十分有效的求出数值解的方法. 蒙特卡罗法( monte-carlo method )简称M -C 法 通过构造概率模型并对它进行随机试验来解算数学问题的方法. 以计算函数的定积分()()1 0I f x d x =?, ()01f x ≤≤为例, 首先构造一个概率模型: 取一个边长分别为和-的矩形, 并在矩形内随机投点M , 假设随机点均匀地落在整个矩形之内, 当点的掷点数N 充分大时, 则落在图中阴影区内的随机点数与投点总数N 之比M N 就近似等于积分值I . 蒙特卡罗法历史悠久. 1773年法国G.-L.L.von 布丰曾通过随机投针试验来确定圆周率π的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年 J.von 诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一. 蒙特卡罗法的步骤是: 构造实际问题的概率模型; ②根据概率模型的特点, 设计和使用降低方差的各类方法, 加速试验的收敛; ③给出概率模型中各种不同分布随机变量的抽样方法; ④统计试验结果, 给出问题的解和精度估计. 概率模型用概率统计的方法对实际问题或系统作出的一种数学描述. 例如对离散事件系统中临时实体的到达时间、永久实体的服务时间的描述(见离散事件系统仿真方法)就是采用概率模型. 虽然由这些模型所确定的到达时间、服务时间可能与具体某一段时间内实际到达时间、服务时间有出入, 但它是通过多次统计获得的结果, 所以从概率分布的规律来说还是相符的. 概率模型不仅可用来描述本身就具有随机特性的问题或系统, 也可用来描述一个确定型问题. 例如参数寻优中的随机搜索法(见动力学系统参数寻优)就是将参数最优化问题构造为一个概率模型, 然后用随机投点、统计分析的方法来进行搜索.

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

布丰投针实验模拟

系统建模与仿真 基于MATLAB的布丰实验模拟 姓名:石星宇 学号: 02123010 指导教师:刘洋 2015年4月9日

目录 基于MATLAB的布丰实验模拟 .................................................................... - 1 - 一、实验原理......................................................................................... - 1 - 二、编程模拟......................................................................................... - 1 - 1、程序流程图............................................................................... - 1 - 2、程序代码................................................................................... - 2 - 三、实验结果......................................................................................... - 2 -

基于MATLAB 的布丰实验模拟 一、实验原理 找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离a 。可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n 次,那么相交的交点总数必为n 2。现在设想把圆圈拉直,变成一条长为a π的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。由于圆圈和直线的长度同为a π,根据机会均等的原理(即等概率事件),当它们投掷次数较多,且相等时,两者与平行线组交点的总数期望也是一样的。这就是说,当长为a π的铁丝扔下n 次时,与平行线相交的交点总数应大致为n 2。现在转而讨论铁丝长为l 的情形。当投掷次数n 增大的时候,这种铁丝跟平行线相交的交点总数k 应当与长度l 成正比,因而有:l k λ=,式中λ是比例系数。为了求出λ来,只需注意到,对于a l π=的特殊情形,有n k 2=。于是求得a n πλ2=。代入前式就有:a m πln 2≈从而ak nl 2≈π。 二、编程模拟 1、程序流程图 参数初始化 产生位置随机数; 产生角度随机数 判断相交 1+=k k 1+=n n 是 否 判断结束

蒲丰氏投针问题的模拟过程

蒲丰氏投针问题的模拟过程,随机数发生器也是自编的,以供大家参考和提出建议。谢谢。(seed1和seed2最好选择3和5,为了使投针次数达到1000000,CVF进行如下设置Project->settings->link-> output,将stack allocations reserve:设为1000000000) program getpi implicit none real,parameter::a=5,L=4,pi=3.14159 integer::n1,i,counter=0 real,allocatable::R1(:),R2(:) real::theta,x,pi1 write(*,*) 'input the size of the array:' read(*,*) n1 allocate(R1(n1)) allocate(R2(n1)) call random(n1,R1,R2) do i=1,n1 x=a*(2*R1(i)-1) theta=pi*R2(i) if(abs(x)

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

蒲丰投针问题

蒲丰投针问题 1.蒲丰简介 蒲丰有的时候翻译成布丰,是18世纪法国著名 的博物学家。他喜欢研究数学和生物学。主要的贡献 有:(1)翻译了牛顿的《流数法》,流数法按现在的 说法就叫微积分。(2)写了一本巨著,这部巨著的名 字叫《自然史》,因为他特别喜欢研究生物。这个自 然史一共有44卷,其中他生前写了36卷,后来他学 生又完成了。这本书对后来的世界有很大的影响,尤 其影响到一个人叫达尔文,所以蒲丰这个人其实是很 厉害的。 2.蒲丰投针 1777年,在蒲丰晚年的时候,他有一次举行了一 个家庭宴会。邀请了一大堆他的朋友来帮他做实验。 做什么实验呢,就“投针”。那朋友来了之后发现,就 是桌子上有很多根间距相等的平行线。然后蒲丰就说 了,给你们同样大的针,你把这些针随机扔到这个桌子上。然后宾客就随便扔吗,有可能这样,有可能 这样……,随便扔是吧,这都有可能,什么情况都 有可能。有的针就没有跟平行线相交,比如这个, 这个,这个,就没有相交,也有相交的,比如这个, 这个,这个,这是相交的,对吧,然后他就数,他 说这个针一共投了多少个呢?一共投了n =2212个。 其中与这个平行线相交的针有多少 个,数了一下有m =704个。然后他说, 我现在可以计算圆周率了,别人都不 信,他说你看我圆周率怎么算,我只 要把这两个数相除就行了。我用n 除 以m ,这个数除完了大概是3.142,这个就是圆周率了。别人说好神奇,这怎么回事儿,蒲丰说我给你解释解释这个原理是什么?其实这个原理并不复杂,我们来看一下它的原理是什么。 3. 蒲丰投针原理 (1)首先,它这个平行线是严格平行的,那平行线之间的距离是固定的,是a 。然后我随意地把一根针投上去,也许相交,也许不相交,这不一定。比如说这个针投上去了,投上去了之后,针的总长是b ,针有一个中点叫M ,对吧,这个M 到它比较近的平行线之间的距离我们设为x ,大家注意,这个是针的中点到比较近的平行线的距离是x ,所以我们应该知道x 的范围。x 的最小值就是这个终点正好落在平行线上,那最小值是0,对吧。最大值就 是针的中点正好在两条平行线中间,那最大值是a 2 ,不会再大了。因为我这个x 的定义是针的终点到比较近的平行线的距离,对吧!所以x ∈[0,a 2 ]。 (2)其次就是我想知道这个针与这个平行线的夹角是多少?令夹角为α,α的范围是什么呢,如果你完全跟这个平行线平行的话,那么这个夹角是00,对吧。如果你往上竖过来,

蒲丰投针实验模拟

概率论与数理统计实验 蒲丰投针与蒙特卡罗法 班级应数12级01班 学号2012444086 姓名张旭东

蒲丰投针与蒙特卡罗法 张旭东2012444086 (重庆科技学院数学与应用数学,重庆沙坪坝) 【摘要】通过设计一个投针实验使这个事件的概率和未知量π有关,然后通过重复实验,以频率估计概率,即可求得未知参数π的近似解。这种方法称为随机模拟法,也称为蒙特卡罗法。一般来说,实验次数越多所得的近似值就越接近真值。可以利用MATLAB来大量重复地模拟所设计的随机实验。 【关键词】随机模拟;投针实验;重复实验

1 引言 蒲丰投针问题是由法国科学家蒲丰(Buffon)在1777年提出的,它是概率中非常有代表性的问题,它是第一个用几何形式表达概率问题的例子,其结论具有很强的理论与实际意义。蒲丰针问题的解决不仅较典型的反应了集合概率的特征及处理方法,而且还可以由此领略到从“概率土壤”上开出的一朵瑰丽的鲜花——蒙特卡洛(Monte-Carlo)方法。 蒙特卡罗(Monte Carlo)方法,也称计算机模拟方法,是一种基于“随机数”的计算方法,大数定律为近年来发展迅速的随机计算机和随机模拟方法提供了理论基础。 MATLAB是一个适合多学科,具有多种工作平台的功能强大的大型软件。MATLAB已经成为线性代数、自动控制理论、数理统计、数字信号处理、时间序列分析、动态系统仿真等高级课程的进本教学工具,Matlab随机数发生器的种类丰富且用法简便。 本文介绍了利用随机模拟方法和大数定律的相关理论解决蒲丰投针问题计算π的近似值。

2 有关数学实验的有关基础 定理(贝努力大数定律) 设n μ是n 重贝努力实验中事件A 出现的次数,P 是事件A 每次实验中出现的概率,即P(A)=p,则对任意的 ε>0,有 3 实验 蒲丰投针问题 在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l(l

蒙特卡罗方法及其在中子输运问题中得应用

蒙特卡罗方法及其在中子输运问题中得应用 目录 蒙特卡罗方法及其在中子输运问题中得应用 (1) 1蒙特卡罗方法简介 (3) 1.1蒙特卡罗方法的基本原理 (3) 1.2 蒙特卡罗方法的误差 (4) 2 随机变量的抽样方法 (4) 2.1 直接抽样方法 (5) 2.1.1 离散型随机变量的抽样 (5) 2.1.2 连续型随机变量的抽样 (5) 2.2 挑选抽样法 (5) 2.3 复合抽样法 (6) 3 蒙特卡罗方法模拟中子输运过程 (6) 3.1 源抽样 (6) 3.2 输运距离的抽样 (7) 3.3 碰撞核素的抽样值 (7) 3.4 反应类型的抽样值 (7) 3.5 反应后中子状态的确定 (7) 3.5.1 弹性散射 (7) 3.5.2 非弹性散射 (8) 3.5.3 裂变反应 (8) 4 蒙特卡罗方法的减方差技巧 (8) 4.1 权 (8) 4.2 统计估计法 (9) 4.3 权窗 (10) 5 蒙特卡罗方法求解通量 (10) 5.1 通量的定义 (10) 5.2 点通量的计算 (11) 5.3 面通量的计算 (11) 5.3.1 统计估计法 (11) 5.3.2 加权法 (12) 5.4 体通量的计算 (12) 5.4.1 统计估计法 (12) 5.4.2 径迹长度法 (13) 5.4.3 碰撞密度法 (13) 5.4.4 几种体通量计算方法的比较 (14) 5.5 最终结果的统计 (14) 6 蒙特卡罗方法求解k eff (15) 6.1 有效增值因子k eff的定义 (15) 6.2 蒙特卡罗方法求解k eff (15)

6.2.1 吸收估计法 (15) 6.2.2 碰撞估计法 (15) 6.2.3 径迹长度估计法 (16)

蒲丰投针问题

蒙特卡罗方法概述 § 8.2 引例:蒲丰投针问题 在用传统方法难以解决的问题中,有很大一部分可以用概率模型进行描述.由于这类模型含有不确定的随机因素,分析起来通常比确定性的模型困难.有的模型难以作定量分析,得不到解析的结果,或者是虽有解析结果,但计算代价太大以至不能使用.在这种情况下,可以考虑采用Monte Carlo 方法。下面通过例子简单介绍Monte Carlo 方法的基本思想. Monte Carlo 方法是计算机模拟的基础,它的名字来源于世界著名的赌城——摩纳哥的蒙特卡洛,其历史起源于1777年法国科学家蒲丰提出的一种计算圆周π的方法——随机投针法,即著名的蒲丰投针问题。这一方法的步骤是: 1) 1) 取一张白纸,在上面画上许多条间距为d 的平行线,见图8.1(1) 2) 2) 取一根长度为)(d l l <的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为 m 3)计算针与直线相交的概率. 由分析知针与平行线相交的充要条件是 ?sin 21≤ x 其中 π?≤≤≤≤0,2 0d x 建立直角坐标系),(x ?,上述条件在坐标系下将是曲线所围成的曲边梯形区域,见图 8.l (2). 由几何概率知 (*)22 sin 210d l d d G g p ππ??π===?的面积的面积 4)经统计实验估计出概率,n m P ≈由(*)式即?2=?=ππd l n m Monte Carlo 方法的基本思想是首先建立一个概率模型,使所求问题的解正好是该模型的参数或其他有关的特征量.然后通过模拟一统计试验,即多次随机抽样试验(确定m 和n ),统计出某事件发生的百分比.只要试验次数很大,该百分比便近似于事件发生的概率.这实际上就是概率的统计定义.利用建立的概率模型,求出要估计的参数.蒙特卡洛方法属于试验数学的一个分支. ************************************************************************* 提示:设x 是一个随机变量,它服从区间[0,d/2]是的均匀分布,同理,?是一个随机变量,它服从区间],0[π上的均匀分布。按照某种抽样法,产生随机变量的可能取值,例如

蒙特卡洛方法及其在风险评估中的应用

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失,以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

Buffon投针实验的理论证明

Buffon投针实验的理论证明 我们知道,当正多边形的边数无限增多时,它的极限是圆。所以“圆”这种图形可以代表弯曲得最厉害的小针。现在假定圆形小针的直径恰好与纸上两条相邻的平行线间的距离相等,那末这个圆形小针投掷下来时,不是和一条直线相交两次,就是和两条相邻的平行线相切。不管怎样,它的相交次数是2。因此,当投掷的次数为n时,碰线的次数便是2n。 现在小针的长度只有两条相邻平行线间距离的一半,所以针的长度只有上述圆形小针长度(即圆周长)的。但是可能碰线的次数是与针的长度成正比的,因此小针的可能碰线的次数k就必须满足下面的比例式: 1:(1/2π) =2n: k 于是就得到π=n/k,也就是 π=投掷总次数/碰线次数 这就是上面“投针实验”的理论根据。它又叫莆丰氏实验,在概率论中是很出名的,也可以说是近代的“统计试验法”(又叫“蒙特卡罗法”)的滥觞。 蒲丰(Buffon)投针求π 蒲丰(Buffon)投针问题:在平面上画有等距离的一些平行线,平行线间的距离为a(a>0),向平面上随机投一长为l (l

我们也可以来做这个实验,而且希望做更多次,但是投针又比较费时费力,于是,可以采用另一种设计随机实验的方法,随机模拟的办法来模拟蒲丰投针实验。从而求得π的近似值。 二、实验方法 可以采用MatLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。 1.基本原理:由于针投到纸上的时候,有各种不同的方向和位置(图a),但是,每一次投针时,其位置和方向都可以由两个量唯一确定,那就是针的中点和偏离水平的角度(图b)。 随机投针图

蒲丰投针及蒙特卡罗模拟电子教案模拟

概率模型的随机模拟与蒲丰投针实验 第1章模拟 1.1 模拟的概念 每一个现实系统外部环境之间都存在着一定的数学的或者逻辑的关系,这些关系在系统内部的各个组成部分之间也存在。对数学、逻辑关系并不复杂的模型,人们一般都可用解析论证和数值计算求解。但是,许多现实系统的这种数学、逻辑模型十分复杂,例如大多数具有随机因素的复杂系统。这些系统中的随机性因素很多,一些因素很难甚至不可以用准确的数学公式表述,从而无法对整个系统采用数学解析法求解。这类实际问题往往可以用模拟的方法解决。 模拟主要针对随机系统进行。当然,也可以用于确定性系统。本文讨论的重点是其中的随机模拟。采用模拟技术求解随机模型,往往需要处理大批量的数据。因此,为了加速模拟过程,减少模拟误差,通常借助于计算机进行模拟,因此又称为计算机模拟。 计算机模拟就是在已经建立起的数学、逻辑模型的基础之上,通过计算机试验,对一个系统按照一定的决策原则或作业规则,由一个状态变换为另一个状态的行为进行描述和分析。 1.2 模拟的步骤 整个模拟过程可以划分为一定的阶段,分步骤进行。 (1)明确问题,建立模型。 在进行模拟之前,首先必须正确地描述待研究的问题,明确规定模拟的目的和任务。确定衡量系统性能或模拟输出结果的目标函数,然后根据系统的结构及作业规则,分析系统各状态变量之间的关系,以此为基础建立所研究的系统模型。为了能够正确反映实际问题的本质,可先以影响系统状态发生变化的主要因素建立较为简单的模型,以后再逐步补充和完善。 (2)收集和整理数据资料。 模拟技术的正确运用,往往要大量的输入数据。在随机模拟中,随机数据仅靠一些观察值是不够的。应当对具体收集到的随机性数据资料进行认真分析。确定系统中随机性因素的概率分布特性,以此为依据产生模拟过程所必需的抽样数

投针实验计算圆周率的数学分析

投针实验计算圆周率的数学分析 王向东 投针实验计算圆周率的数学证明方法,初中一般是采取假设针弯成直径等于平行线距离的方法巧妙证明。这个方法是基于不管针弯成什么形状,针上的每一个部位与平行线相交的概率相同,但这是感观上的认识,要把其中原因解释清楚不是很容易。笔者从纯数学的角度来推导这个公式。 一、投针问题的由来 1777年法国科学家布丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。 这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d 的平行线。 2) 取一根长度为()l l d <的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为m 3)计算针与直线相交的概率. 18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d 的平行线,将一根长度为()l l d <的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。”布丰本人证明了,这个概率是: 2l p d π=,π为圆周率。 二、投针实验的数学证明 投针这个动作是由两个事件构成的。 事件1:针投下后与平行线构成一定的夹角。 我们来分析一下针投下后与平行线之间的成某一特定夹角时的概率。 设针投下后与平行线之间的夹角为θ,则θ在0与π之间。针与平行线之间的夹角在θ到θ+θ?之间的概率为1p θ π?=,当0θ?→时,可看作针投下后与平行线之 间成某一特定夹角为θ的概率。 事件2:针投下后会在平行线垂直的方向形成一个投影,针与平行线相交等于它的垂直投影与平行线相交。这个投影的长度'l 在0到l 之间。

蒙特卡洛方法在中子输运中的应用

《中子输运理论与数值方法》课程作业 ——蒙特卡洛方法

目录 1. 前言 (3) 2. 蒙特卡洛方法概述 (3) 2.1 蒙特卡洛方法的基本思想 (4) 2.2 蒙特卡洛方法的收敛性、误差 (4) 2.2.1 蒙特卡洛方法的收敛性 (4) 2.2.2 蒙特卡洛方法的误差 (5) 2.3 蒙特卡洛方法的特点 (6) 2.4 蒙特卡洛方法的主要应用范围 (7) 3. 随机数 (7) 3.1 线性乘同余方法 (9) 3.2 伪随机数序列的均匀性和独立性 (9) 3.2.1 伪随机数的均匀性 (9) 3.2.2 伪随机数的独立性 (10) 4. 蒙特卡洛方法在粒子输运上的应用 (10) 4.1 屏蔽问题模型 (10) 4.2 直接模拟方法 (11) 4.2.1 状态参数与状态序列 (11) 4.2.2 模拟运动过程 (12) 4.2.3 记录结果 (15) 4.3 蒙特卡洛方法的效率 (16) 5. 蒙特卡洛方法应用程序—MCNP (17) 5.1 MCNP简述 (17) 5.2 MCNP误差的估计 (18) 5.3 MCNP效率因素 (19) 6. 结论 (19)

参考文献 (20) 1.前言 半个多世纪以来,由于科学技术的发展和电子计算机的发明,蒙特卡洛(Monte Carlo)方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡洛方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡洛方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。蒙特卡洛模拟计算是解决中子在介质中输运较为成熟、有效的方法,对于原子能、辐射防护、剂量学和辐射生物物理学等研究领域实际问题的计算,都可以利用蒙特卡洛方法予以实现。 粒子输运过程可以用玻耳兹曼方程加以描述,然而,以此基础上发展起来的近似数值方法如扩散近似法、离散坐标方法在处理截面与能量相关以及散射各向异性介质、复杂几何条件问题时碰到了较大困难。而蒙特卡洛方法在处理这类问题时得心应手,有很强的解题能力,并且近似较少,接近于真实情况。 粒子辐射问题计算通常有输运方程法、蒙特卡洛法(MC法)、实验测量法以及经验法等几种方法。蒙特卡洛计算法又称随机抽样法或统计试验法,是基于计算机模拟的思想,抓住物理过程的数量和几何特征,进行数字模拟试验,该方法是求解辐射输运问题的一种相当成熟和有效的方法,而且它对于各种复杂问题,具有良好的通用性,实用性相当广泛,几乎涉及核科学的各个领域。本文主要介绍蒙特卡洛的概念、原理和应用及研究现状。 2. 蒙特卡洛方法概述 蒙特卡洛方法又称随机抽样技巧或统计试验方法。半个多世纪以来,由于科学技术的发展和电子计算机的发明,这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡洛方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡洛方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。 蒙特卡洛方法的主要组成部分有:

蒲丰投针――MonteCarlo算法

蒲丰投针――Monte Carlo 算法 背景: 蒙特卡罗方法(Monte Carlo),也称统计模拟方法,是在二次世界大战期间随着科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的一类非常重要的数值计算方法。蒙特卡罗方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。 蒙特卡罗方法的名字来源于世界著名的赌城——摩纳哥的蒙特卡罗。其历史起源可追溯到1777年法国科学家蒲丰提出的一种计算圆周的方法——随机投针法,即著名的蒲丰投针问题。 问题: 设在平面上有一组平行线,间距为d,把一 根长L的针随机投上去,则这根针和平行线相交 的概率是多少?(其中L < d ) 分析:由于L < d,所以这根针至多只能与一条平行线相交。设针的中点与最近的平行线之间的距离为y,针与平行线的夹角为θ (0 ≤θ≤π)。 相交情形不相交情形 易知针与平行线相交的充要条件是: sin 2 L y xθ ≤= 由于 1 [0,],[0,] 2 y dθπ ∈∈,且它们的取值均 满足平均分布。建立直角坐标系,则针与平行线 的相交条件在坐标系下就是曲线所围成的曲边梯 形区域(见右图)。所以有几何概率可知针与平行 线相交的概率是 sin d2 2 1 2 L L p d d π θθ π π == ?

Monte Carlo 方法: 随机产生满足平均分布的 y 和 θ,其中1 [0, ], [0, ]2 y d θπ∈∈,判断 y 是否在曲边梯形内。重复上述试验,并统计 y 在曲边梯形内的次数 m ,其与试验次数 n 的比值即为针与平行线相交的概率的近似值。 clear; n = 100000; L = 1; d = 2; m = 0; for k = 1 : n theta = rand(1)*pi; y = rand(1)*d/2; if y < sin(theta)*L/2 m = m + 1; end end fprintf('针与平行线相交的概率大约为 %f\n', m/n) 计算π的近似值 利用该方法可以计算 π 的近似值: sin d 22 2 2 1n L L m p d m d L d n π θθπππ?≈= =≈? 下面是一些通过蒲丰投针实验计算出来的 π 的近似值: 蒲丰投针问题的重要性并非是为了求得比其它方法更精确的π值,而是在于它是第一个用几何形式表达概率问题的例子。计算π的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。

蒲丰氏投针计算圆周率

用C语言计算蒲丰氏投针计算圆周率 #include #include main() { int n1=0,n,i;double rand_num1,rand_num2; printf(" input the n:"); printf("%d"); for(i=0;i1)rand_num1-=2; rand_num2=(double)time(0)*rand(); while(rand_num2>1)rand_num2-=2; if(rand_num1*rand_num1+rand_num2*rand_num2<1) n1++; } printf("π=%f\n",4*n1/n); /* n1/n=π/4 距离小于1就是在圆里,取点范围在(-1,-1)到(1,1)的正方形里*/ }

MATLAB计算蒲丰氏投针计算圆周率(蒙特卡罗方法) clear a=1; l=0.6; counter=0; n=10000000;% 投掷次数 x=unifrnd(0,a/2,1,n);%产生n个(0,a/2)之间均匀分布的随机数,这里a/2是投针的中点到最近的平行线的距离 phi=unifrnd(0,pi,1,n);% 产生n个(0,pi)之间均匀分布的随机数,这里pi是投针到最近的平行线的角度 for i=1:n if x(i)> test Pi = 3.1416

蒙特卡洛方法在经济和社会问题中的应用

蒙特卡洛方法在经济与金融问题上的应用 本文我们关注经济和社会问题的求解问题,也即社会科学。由于许多至关重要的复杂社会过程无法象其它自然科学过程那样还原分析,因此,社会科学被称作真正的“硬”科学(Hard Sciences)。用自然科学的方法审视社会科学问题是一种新的尝试,在此基础上诞生了金融物理学、经济物理学econophysics和社会物理学sociophysics。 经济物理学是一个跨学科的研究领域,应用最初由物理学家开发的理论和方法(通常是那些包括不确定性或随机因素和非线性动力学),来解决经济问题。 经济物理学的例子包括:利用渗流模型来解释股市的波动;使用自组织临界性的模型来理解和解释股票市场的崩盘现象。 这一分析的基本工具是复杂性理论,它与由盖尔曼和申农分别开发的信息理论紧密相关。经济现象是许多经纪人(代理商)微观层面上的相互作用的宏观结果,而物理模型必须充分反映这一点。当然,物理学其他领域的方法和工具,比如流体动力学,量子力学和统计力学的路径积分方法等也在经济物理学中有重要应用。 经济物理学是1990年代中期由几个统计物理学家开创的。对经济特别是金融市场运行规律的解释通常来自经济学家,他们往往采用与物理学截然不同的方法。上面提到的几位物理学家对经济学家的解释不够满意,他们决定采用物理学的方法和工具给出一个全新的理论。当时,他们找到了大量的财经数据,如何从这些数据中找到规律成为他们最初的尝试方向。很显然,传统的平衡态的分析方法是不够的,因为金融市场比较有趣的现象,从根本上来说发生在远离平衡态的情形。 下面我们从以下四个方面简要介绍金融物理学或经济物理学的基本概念,主要内容包括:?复杂系统和经济物理学 ?基于复杂网络的金融物理模型的研究新方向 ?利用统计力学来建立经济模型 ?蒙特卡洛模拟价格的实例。 1 复杂系统和经济物理学 社会经济现象非常复杂,可以用数学上的复杂系统描述。 1.1复杂系统的主要特征 复杂系统是一个开放的巨系统。系统由大量相似的个体组成。复杂系统的结构与网络(network)相对应,而个体就是网络中的节点(node)。个体在单独存在的行为与在整体中的行为很不一样(在整体中各个体行为变得相似)。全局行为不依赖于个体的精确细节,但个体间的相互作用或者单元之间的耦合非常关键。因此必须合理定义,并且为了计算方便不能太复杂。这种相互作用一般为非线性,相互作用的类型有吸引、抗拒、对齐等。复杂系统的行为时一种集体行为,主要的集体现象包括:相变、模式形成、群组运动、同步等。上述特点决定了复杂系统的研究手段只能是统计物理、多主体计算机模拟。 1.2为什么要研究复杂系统和经济物理学? 目前,不断出现的经济风潮的影响和日益显著的经济波动的全球化趋势已使预测并控制大的金融风险成为各国政府和金融机构严重关注的问题。将物理学方法应用于各种金融价格的统计分析和经济复杂系统的动力学模拟将对金融市场的预测和经济系统的宏观调控有直接的指导意义。寻求适应性复杂系统的动力学模型,模拟金融市场经纪人之间的自适应竞争行为,构造金融市场的微观物理模型,将开拓新的经济学研究方法,并对复杂性科学的探索有深远的理论意义。 1.3研究社会经济复杂系统的挑战

相关主题