搜档网
当前位置:搜档网 › 测量系统分析计划表(doc5个)

测量系统分析计划表(doc5个)

测量系统分析计划表(doc5个)
测量系统分析计划表(doc5个)

测量系统分析计划表(doc5个)

部门: xxx

时间: xxx

整理范文,仅供参考,可下载自行编辑

客诉案件登记追踪表

测量系统分析(MSA)控制程序

程序文件 标题:潜在失效模式及后果分析(FMEA)控制程序文件编号: 版本: 页数: 生效日期: 拟制:日期: 审核:日期: 批准:日期: 分发编号:受控印章: 分发日期:

1 目的 通过MSA,了解测量变差的来源,测量系统能否被接受,测量系统的主要问题在哪里,并针对问题适时采取纠正措施。 2适用范围 适用于公司产品质量控制计划中列出的测量系统。 3职责 3.1 品管部计量室负责编制MSA计划并组织实施。 3.2各相关部门配合品管部计量室做好MSA工作。 4工作程序 4.1 测量系统分析MSA的时机 4.1.1 初次分析应在试生产中且在正式提交PPAP之前进行。 4.1.2 一般每间隔一年要实施一次MSA。 4.1.3 在出现以下情况时,应适当增加分析频次和重新分析: (1)量具进行了较大的维修; (2)量具失准时; (3)顾客需要时; (4)重新提交PPAP时; (5)测量系统发生变化时。 4.2测量系统分析(MSA)的准备要求 4.2.1 制定MSA计划,包括以下内容: (1)确定需分析的测量系统; (2)确定用于分析的待测参数/尺寸或质量特性; (3)确定分析方法:对计量型测量系统,可采用极差法和均极差法;对计数型测量系统,可采用小样法。 (4)确定测试环境:应尽可能与测量实际使用的环境条件相一致。 (5)对于破坏性测量,对于不能进行重复测量,可采用模拟的方法并尽可能使其接近真实分析(如不可行,可不做MSA分析); (6)确定分析人员和测量人员; (7)确定样品数量和重复读数次数。 4.2.2 量具准备 (1)应针对具体尺寸/特性选择有关作业指导书指定的量具,如有关作业指导书未明确规定某种编号的量具,则应根据实际情况对现场使用的一个或多个量具作 MSA分析; (2)确保要分析的量具是经校准合格的; (3)仪器的分辨力I一般应小于被测参数允许差T的1/10,既I 小于T/10。在仪器读数中,如果可能,读数应取最小刻度的一半。 4.2.3 测试操人员和分析人员的选择 (1)在MSA分析时,测试操作人员和分析人员不能是同一个人,测试操作人员实施测量并读数,分析人员作记录彬变完成随后的分析工作。 (2)应优先选择通常情况下实际使用所选定的量具实施测试的操作工/检验员作为测试操作人员,以确保测试方法和测试结果与日后的正式生产或过程更改的实 际情况相符; (3)应选择熟悉测试和MSA分析方法的人员作为分析人员。

测量系统分析指导书

测量系统分析指导书 1目的 本规定具体明确进行“测量系统分析”的方法,以确定测量系统是否具有恰当的统计特性,并根据对研究结果的分析来评估所使用的量具或设备的测量能力是否能达到预期的要求。 2 适用范围: 本规定适用于由控制计划规定的量具或测试设备并指出其相对应的关键特性。 3 术语或缩语 3.1重复性Repeatability:是用一个评价人,使用相同测量仪器,对同一零件上的同一特性进行多次测量所得到的测量变差。 3.2再现性Reproducibility:是用不同的评价人,使用相同的测量仪器,对同一零件上的同一特性进行测量所得的平均值的变差。 3.3重复性和再现性(GRR):测量系统重复性和再现性联合估计值。 3.4Cg:检具能力指数。 4 程序 4.1流程图 4.2 职责 4.2.1 质量保证部负责对本工作规定的建立,保持和归口管理。 4.2.2 使用部门按控制计划要求,编制测量系统分析计划,上报质量保证部批准,使用部门准备样件,实施,提供报告。质量保证部负责结果评价。 4.2.3 人力资源部负责人员培训。

4.2.4 量具使用部门归档保存相应记录。 5 测量系统分析: 5.1 根据客户的要求来确定MSA,现场使用的计量器具,用于大众产品用Cg值来评估,用于通用的产品的用GRR来评估,其余的产品根据客户要求来定,客户无要求的采用GRR分析。 5.2 计量仪器的MSA,采用GRR来分析。测量仪器按对应的测量产品来做评估,但对同一大类的产品,同一种工艺允许只选取一种零件作为代表性的来做GRR分析。 5.2.1 CMM的MSA,可从控制计划中选取具有代表性的零件进行,项目包括位置尺寸、几何尺寸进行GRR分析。 5.2.2 齿轮测量中心的MSA,可根据齿轮加工特性,选取对最终的齿轮精度有影响加工工艺(如插齿、剃齿、珩齿、磨齿、成品)进行GRR分析。项目选取:周节累积误差、相邻齿距误差、平均齿向角度误差、平均齿形角度误差。 5.2.3 圆柱度仪的MSA,在控制计划中涉及到使用圆柱度仪的根据加工特性可分为车加工、磨加工和零件特性分为轴类和盘类,对其分别进行圆度、圆柱度和母线平行度的GRR分析。 5.2.4 轮廓仪的MSA,根据加工特性,可在控制计划中选取具有代表性的如倒角、R圆角、距离等进行GRR分析。 5.2.5 粗糙度仪的MSA,按控制计划中规定的项目(Ra、Rz、Rt),每一类评定标准选一种公差小的,分别进行GRR分析。 5.2.6 卡板的MSA,进行GRR分析。 5.3对在控制计划中出现的万能量具,由使用部门按控制计划组织MSA,对同一类万能量具用于同一大类的产品、同一工艺、同一精度允许只选取一种作为代表性的来做GRR分析分析方法,根据客户要求分为GRR和Cg。 5.4 对带表检具全部实施MSA,但对一台多参数专用检具,允许只对最小公差的检测项进行MSA。分析方法根据客户要求分为GRR和Cg。周期为检具六个月。 5.5对卡板、塞规等专用量具,首次使用前由使用部门按控制计划组织MSA,分析方法为计数型。对同一大类的产品、同一工艺、同一精度允许只选取一种作为代表性的来做GRR分析评估。 5.6专用量检具首次使用前应进行MSA。对用于SPC过程控制点的专用量检具需定期做MSA,原则上参照检定周期。 6. MSA的实施方法: 6.1 计量仪器、带表检具及万能量具的GRR实施方法和结果评估。 6.1.1带表检具及万能量具由使用部门组织并确定三位测量者,并从过程中抽取有代表性的10个零件(选定的零件应考虑到零件加工过程中可能波及的范围),同时做好标记。每个测量者代号(A,B,C)测量10个零件三次,并分别记录在JJ/SQC-69“测量系统分析数据采集卡”输入电脑,电脑需计算的数据有: 测量者A,B,C各自的对各零件的第一至第三次的测量值及其对应的极差(最大值--最小值)R; 计算测量者A,B,C各自的第一次,第二次和第三次的测量值总和与平均值、、,以及极差的总和与平均值、和。 计算各零件测量值的平均值Xp。 计算极差的值和、、的极差,以及零件平均值Xp的均值和极差Rp。 计算重复性,即由量具变化而造成波动的变差EV,系数K1按每测量者重复测量次数而定。系数K1见附表《量具重复性和再现性报告》。 计算再现性,由于测量者变化而造成波动的变差A V,系数K2按测量人数而定。式中,n为零件数量,r为测量次数。系数K2见附表《量具重复性和再现性报告》。 计算重复性与再现性,GRR。

测量系统分析(MSA)2

一.稳定性: 1.定义:稳定性——测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。 2.使用均值和极差控制图,该控制图可提供方法以分离影响所有测量结果的原因产生的变差(普通变差)和特殊条件产生的变差(特殊 原因变差)。凡信号出现在控制值外点均表现“失控”或“不稳定”。 3.研究:绘出标准(样件)重复读数X或R,图中失控信号即为需核准测量系统的标志。 4.操作要领:必须仔细策划控制图技术(如取样时间、环境等),以防样本容量、频率等导致失误信号。 5.稳定性改进 ①从过程中排除特殊原因——由超出的点反应。 ②减少控制限宽度——排除普通原因造成的变差。 图2测量系统特性图

二.偏倚 1.定义:偏倚——测量结果的观察平均值与基准的差值。 2.操作方式: ①对一件样件进行精密测量。 ②由同一评价人用被评价单个量具测量同一零件至少十次。 ③计算读数平均值。 ④偏倚=基准值-平均值 3.产生较大偏倚的原因 ①基准误差 ②磨损的零件 ③制造的仪器尺寸不对 ④测量错误的特性 ⑤仪表未正确校准 ⑥评价人使用仪器不正确。 三.重复性 1.定义:重复性——由一个评价人采用一种测量器具,多次测量同一零件的同一特性时获得的差值。 2.测量过程的重复性意味着测量系统自身的变异是一致的。重复性可用极差图显示测量过程的一致性。 3.重复性或量具变差的估计: σe=5.15×R/d2 d2——常数(查表得)与零件数量、试验次数有关。

5.15——代表正态分布的90%的测量结果。 四.再现性 1.定义:再现性——由不同评价人采用相同测量器具测量同一零件的同一特性时测量平均值的变差。 2.测量过程的再现性表明评价人的差异性是一致的。若评价人变异存在,则每位评价人所有平均值将会不同,可采用均值图来显示。 3.估计评价人标准偏差 σo=5.15×R o/d2 d2——常数(查表得)与零件数量、试验次数有关。 5.15——代表正态分布的90%的测量结果。 R o=R MAX-R MIN 由于量具变差影响该估计值,必须通过减去重复性来纠正 校正过的再现值=√〔5.15×R o/d2〕-〔(5.15σe)2/nr〕n—零件数量 r—试验次数 五.线性 1.定义:线性——在量具预期的工作范围内,偏倚值的差值。 2.非线性的原因: ①测量系统上限和下限没有正确校准。 ②最大和最小值校准量具的误差 ③磨损的仪器 ④仪器固有的设计特性

测量系统分析程序

测量系统分析程序 1 目的 应用“均值——极差法”和“比较限值法”来进行测量系统分析,以评定测量系统的质量。 2 适用范围 适于新产品和三大公司配套产品加工过程所使用计量器具的评估。 3 引用标准 3.1 QS-9000《质量体系要求》第三版 3.2QG/LB-2001《质量手册》第二版 3.3 术语解释 3.3.1 量具:任何用来获得测量结果的装置;经常用来特指用在车间的装置;包括用来测量合格/不合格的装置。 3.3.2 测量系统:用来对被测特性赋值的操作、程序、量具、设备、软件以及操作人员的集合;用来获得测量结果的整个过程。 3.3.3 偏倚:是测量结果的观测平均值与基准值的差值。 3.3.4 重复性:是指由一个评价人,采用一种测量仪器多次测量同一零件的同一特性时获得的测量值变差。 3.3.5 再现性:是指由不同的评价人,采用相同的仪器,测量同一零件的同一特性时测量平均值的变差。 3.3.6 稳定性:是指测量系统在某连续时间内测量同一基准

或零件的单一特性时获得的测量值总变差。 3.3.7 线性:是指在量具预期的工作范围内,偏倚值的差值。 4 职责 4.1 品保部是测量系统分析、评定的归口管理部门。 4.2 品保部技术人员的职责 4.2.1 负责对选择样品(量具)、数量及评价人重复读数的次数预先确定。 4.2.2 负责检查测量设备的分辨力是否满足预期使用要求。 4.2.3 负责做好记录,并进行计算。 4.2.4 负责对测量结果进行正确分析。 4.3 评价人的职责 4.3.1 如果量具在使用前需要校准,由评价人负责事先提出。 4.3.2 评价人负责正确使用量具,并按规定的测量步骤测量特征尺寸。 4.3.3 负责正确读数。 5 管理程序 5.1 测量系统分析前的准备 a按MSA参考手册和控制计划的要求编制测量“系统分析计划”,并提交技术部一份; b确定采用哪一级的计量标准,是否可以追溯到国家标准; c选择“盲测”,即在操作者不知道正在对该测量系统进行评

测量系统分析方法82638

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 质管部负责测量系统分析的归口管理; 公司计量室负责每年对公司在用测量系统进行一次全面的分析; 各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 偏倚(Bias):指测量结果的观测平均值与基准值的差值。 稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量平均值总变差,即偏倚随时间的增量。 重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为。有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于有效分辨率,在99%置信水平时其标准估计值为GR&R。 分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。 盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所测为那一只产品的条件下,获得的测量结果。 计量型与计数型测量系统:测量系统测量结果可用具体的连续的数值来表述,这样的测量系

MSA测量系统分析作业指导书

1、目的提供一种评定测量系统质量的方法,从而对必要的测量系统进行评估,以保证本公司所使用的测量系统均能满足于正常的质量评定活动。 2、围适用于证实产品符合规定要求的所有测量系统。 3、职责品质部负责确定MSA项目,定义测量方法及对数据的处理和对结果的分析。APQP小组负责协助质量管理员完成测量系统的分析和改进。 4、定义 4.1 测量设备:实现测量过程所必需的测量仪器,软件,测量标准,标准样品或辅助设备或 它们的组合。 4.2 测量系统:是对被测特性赋值的操作、程序、量具、设备、软件、环境以及操作人员 的集合。 4.3 偏倚:对相同零件上同一特性的观测平均值与真值(参考值)的差异。 4.4 稳定性:经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行 测量所获得的总变差。 4.5 线性:在测量设备预期的工作(测量)量程,偏倚值的差异。 4.6重复性:用一位评价人使用相同的测量仪器对同一特性,进行多次测量所得到的测量 变差。 4.7 再现性:不同评价人使用相同的测量仪器对同一产品上的同一特性,进行测量所得的 平均值的变差。 4.8零件间变差:是指包括测量系统变差在的全部过程变差。 4.9评价人变差:评价人方法间差异导致的变差。 4.10总变差:是指过程中单个零件平均值的变差。 4.11量具:任何用来获得测量结果的装置,包括判断通过/不通过的装置。 5、工作程序 5.1 测量系统分析实施时机 5.1.1新产品在生产初期,参见“产品实现策划控制程序”HNFH QP-08。 5.1.2控制计划中指定的检验项目每年需做MSA。 5.1.3客户有特殊要求时,按客户要求进行。 5.1.4测量系统不合格改善后需重新进行分析。

测量系统分析(MSA)

测量系统分析(MSA) 1目的和围 规测量系统分析,明确实施方法、步骤及对数据的处理、分析。 2规性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。 3.2稳定性:是测量系统在某持续时间测量同一基准或零件的单一特性时获得的测量值总变差。 稳定性是整个时间的偏倚的变化。 3.3分辨率:为测量仪器能够读取的最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)的十分之一。Minitab中常用的分辨率指标:可区分的类别数ndc=(零件的标准偏差/ 总的量具偏差)* 1.41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总的标准差 3.5准确性(准确度):测量的平均值是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:是指对相同零件上同一特性的观测平均值与真值的差异。%偏倚=偏倚的平均绝对值/TV。 3.5.3线性:在测量设备预期的工作量程,偏倚值的差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据的波动。测量系统分析的重点,包括:重复性和再现性 3.6.1重复性:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。再现性又被称为“评价人之间”的波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:是测量系统的重复性和再现性波动与被测对象质量特性 σ/ (USL-LSL) *100%。 公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

测量系统分析工作计划

测量系统分析计划 测量系统中的量检具选配,是做控制计划时进行的,普遍的选配原则是被测特性公差值的1/10(或被测特性制造过程变差的1/10——这个变差一般要等初始能力研究之后才得到,因此在做控制计划时,用被测特性公差值的1/10比较普遍)。按此普遍原则选配的测量系统,是否满足再现性(操作者)和重复性(量具)10%以下的要求,需要对测量系统进行分析。 测量系统进行分析的结果: 1、双性在10%以下表明此测量系统可用于此过程的分析;数值分级大于2可用于过程控制。 2、若双性在10%到30%之间,不能用于过程分析;数值分级大于2可用于过程控制(等于2为计数型数据)。 3、若双性大于30%不能用于过程分析,数值分级小于2,不能用于过程控制。 过程策划的目的是开发出能力充分、稳定产品的过程,以生产出符合图样要求(其中含有顾客的要求)的产品。当过程能力不充分、不稳定时,最起码要能将合格、不合格的产品能分辨出来(数值分极等于2)。按“被测特性公差值的1/10”这个量检具选配原则,从我们进行的MSA结果来看,按此原则来选配量检具,数值分级大于2机会很多。因此这次我们要进行的测量系统分析工作,首先,了解各生产线有多少个特性满足按“被测特性公差值的1/10”这个量检具普遍选配原则来选配量检具的。 其次,是对特性分类——初步分为轴类和孔类两大类,在此基础上按公差值大小分档,暂分三档:如≥0.2;0.1~0.2;0.01~0.1。 再次,量检具也按用途进行分类(轴用类和孔用类)和分辨力分档0.02:0.01:0.001或0.0001。 最后选轴类同一分档公差值内最小的特性,用同档次分辨力的轴类量检具(或孔类同一分档公差值内最小的特性,用同档次分辨力的孔类量检具)进行量检具的双性研究。 为了完成上述工作,请大家完成下面表1、表2的内容填写。

测量系统分析(MSA)

测量系统分析(MSA) 1目得与范围 规范测量系统分析,明确实施方法、步骤及对数据得处理、分析。 2规范性引用文件 无 3定义 3.1测量系统:用来对测量单元进行量化或对被测得特性进行评估,其所使用得仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设得集合;也就就是说,用来获得测量结果得整个过程。 3.2稳定性:就是测量系统在某持续时间内测量同一基准或零件得单一特性时获得得测量值总变差。 稳定性就是整个时间得偏倚得变化。 3.3分辨率:为测量仪器能够读取得最小测量单位。别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)得十分之一。Minitab中常用得分辨率指标:可区分得类别数ndc=(零件得标准偏差/ 总得量具偏差)* 1、41,一般要求它大于等于5才可接受,10以上更理想。 3.4过程总波动TV=6σ。σ——过程总得标准差 3.5准确性(准确度):测量得平均值就是否偏离了真值,一般通过量具计量鉴定或校准来保证。 3.5.1真值:理论正确值,又称为:参考值。 3.5.2偏倚:就是指对相同零件上同一特性得观测平均值与真值得差异。%偏倚=偏倚得平均绝对值/TV。 3.5.3线性:在测量设备预期得工作量程内,偏倚值得差值。用线性度、线性百分率表示。 3.6精确性(精密度):测量数据得波动。测量系统分析得重点,包括:重复性与再现性 3.6.1重复性:就是由一个评价人,采用一种测量仪器,多次测量同一零件得同一特性时获得得测量值变差。重复性又被称为设备波动(equipment variation,EV)。 3.6.2再现性:就是由不同得评价人,采用相同得测量仪器,测量同一零件得同一特性时测量平均值得变差。再现性又被称为“评价人之间”得波动(appraiser waration,AV)。 3.6.3精确性%公差(SV/Toler),又称为%P/T:就是测量系统得重复性与再现性波动与被测对象质量 σ/ (USL-LSL) *100%。 特性公差之比,%P/T=R&R/(USL-LSL)*100%=6 MS σ/6σ*100%。 3.6.4精确性%研究变异(%Gage R&R、%SV)= R&R/TV*100%=6 MS 线性

年测量系统分析计划

装置名称/编号测量产 品及特 性 分析项目 分析时间/月份(P为计划,d为 123456 千分尺0-25×0.01 FA1-25电线结 构尺寸 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-125×0.02 FC2-29电线结 构尺寸 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-125×0.02 LSO12095橡胶件 尺寸 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-125×0.02 LSO012060剥头尺 寸 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-125×0.02 FC2-42剥头尺 寸 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0012222尺寸□GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-200×0.02 LSO714004尺寸□GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法

150×0.02 FC3-29倚 □线性 □稳定性 □小样法□大样法 齿形检具ZD72-2齿形尺 寸 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-150×0.02 FC3-39尺寸□GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 三孔位置检具ZD72-1重要特 性尺寸 88/50 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 游标卡尺0-150×0.02 FC3-52尺寸□GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 洛式硬度计HR150 1538重要特 性 硬度 □GRR □偏 倚 □线性 □稳 定性 □小样法□大 样法 装置名称/编号测量产 品及特 性 分析项目 分析时间/月份(P为计划,d为 1234567

六西格玛管理工具的离散数据测量系统分析

六西格玛管理工具的离散数据测量系统分析 一、离散数据测量系统的重复性和再现性 1、重复性 当某个检验员两次判断同一部品的外观缺陷,判断结果之间可能存在差异。这称作离散数据测量系统的重复性误差。 2、再现性 两个检验员判断同一部品的外观缺陷,可能得出不同的结论,这称作离散数据测量系统的再现性误差。 3、离散数据的测量 是将被测量对象与某个标准做比较、并根据其是否满足标准做出“接受”或“不接受”的过程,离散数据测量系统有效性是确认该测量系统鉴别被测量对象“好”与“坏”的能力。 4、根据离散数据测量系统的特点,在对离散数据测量系统进行分析 分析时应同时选择“好”、“坏”、和“边缘状态”的样本进行分析。 二、离散数据测量系统分析的目的 离散数据测量系统分析的目的有以下几个: 1、确认单个检验员重复检验的一致程度即确认重复性误差的大小。 2、确认多个检验员检验结果之间的一致性即确认再现性误差的大小。 3、确认检验员的检验结果与标准之间的一致性。 4、确认离散数据测量系统总的测量误差。 三、离散数据测,系统分析的条件和要求 1、需要最少30个以上的样品,包括良品、不良品及边缘品。 2、两个以上的检验员。 四、离散数据测量系统分析的方法与步骤 1、由两个检验员抽取30个样品 首先由每个检验员随机测量(检验)每个样品1次,记录测量结果,间隔3天后每个检验员重新测量每个样品一次,记录测量结果。 2、对测量数据进行分析 ①需要确认的项目为: ·重复性百分比--量化检验员个人误差 ·再现性百分比--量化检验员之间的误差 ·一致性百分比--量化测量系统总误差 ·与标准一致性的百分比--量化测量准确度 注意,在连续数据测量系统分析中,一般并不需要评估测量准确度,因为连续数据测量系统分析有个前提条件,就是测量仪器必须在校正有效期内,这保证了测量系统的测量准确度,故不需评价。

测量系统分析控制程序

测量系统分析控制程序 1.目的 通过MSA,了解测量变差的来源,测量系统能否被接受,测量系统的主要问题在哪里,并针对问题适时采取纠正措施。 2.适用范围 适用于公司产品质量控制计划中列出的测量系统。 3.职责 3.1 品管部计量室负责编制MSA计划并组织实施。 3.2 各相关部门配合品管部计量室做好MSA工作。 4.工作程序 4.1 测量系统分析(MSA)的时机 4.1.1 初次分析应在试生产中且在正式提交PPAP之前进行。 4.1.2 一般每间隔一年要实施一次MSA。 4.1.3 在出现以下情况时,应适当增加分析频次和重新分析: (1)量具进行了较大的维修; (2)量具失准时; (3)顾客需要时; (4)重新提交PPAP时。 (5)测量系统发生变化时。

4.2 测量系统分析(MSA)的准备要求 4.2.1 制订MSA计划,包括以下内容: (1)确定需分析的测量系统; (2)确定用于分析的待测参数/尺寸或质量特性; (3)确定分析方法:对计量型测量系统,可采用极差法和均值极差法;对计数型测量系统,可采用小样法; (4)确定测试环境:应尽可能与测量系统实际使用的环境条件相一致; (5)对于破坏性测量,由于不能进行重复测量,可采用模拟的方法并尽可能使其接近真实分析(如不可行,可不做MSA分析); (6)确定分析人员和测量人员; (7)确定样品数量和重复读数次数。 4.2.2 量具准备 (1)应针对具体尺寸/特性选择有关作业指导书指定的量具,如有关作业指导书未明确规定某种编号的量具,则应根据实际情况对现场使用的一个或多个量具作MSA分析。 (2)确保要分析的量具是经校准合格的。 (3)仪器的分辨力i一般应小于被测参数允许差T的1/10,即i<T/10。在仪器读数中,如有可能,读数应取至最小刻度的一半。 4.2.3 测试操作人员和分析人员的选择 (1)在MSA分析时,测试操作人员和分析人员不能是同一个人,测试操作人员实施测量并读数,分析人员作记录并完成随后的分析工作。

测量系统分析

一、第二阶段(M 测量阶段)总结 定义阶段已经产生了一个项目章程和项目团队,并对需要改进的过程进行了概述,列出了顾客关心的关键质量特性CTQs 。在测量阶段,需要从数据的角度来理解流程的现状,从而寻找问题的源头或位置,即寻找聚焦的问题。测量阶段的知识将有助于您缩小范围进入分析阶段寻找影响CTQ 的潜在根本原因。测量阶段一项重要部分就是要建立项目过程能力水平的基线。 M 阶段已经完成,A 阶段工作正在有条理的进行着,针对M 阶段项目所遇到的相关分析工具以及技术性问题,我做了如下的总结讨论。 的内容。 量具的重复性和再现性研究(Gage R&R),实际上就是执行一系列的实验,来研究测量系统的重复性和再现性相对于被测对象而言是否足够。实验包括:(1)多个操作者、多个样品、多次测量实验;(2)数据必须均衡,每个操作者须测量每个样品相同次数;(3)例:3个操作者分别测量7个样品,每个测量2次;(4)样品就能代表过程中的变化范围;(5)操作者应随机盲目地进行测试,最好不要知道自己是在做实验,不能带有“偏见性”;同时在记录结果时,操作者不应知道在测量哪个样品。 (1) MSA 测量系统的分类:(1)1人多机的MSA ——自动监测,人的干预较少;(2)多人1 机的MSA ——手动监测,人工干预较多;(3)多人多机的MSA ——自动、手动同时监测,人工干预较多;(4)人机混合的MSA ——难度最大,属于连贯性监测;(5)PT 与PTV 的区别——在进行MSA 时,PTV 很容易就满足条件,而PT 则不容易被满足。

(2)例1:测量某工件的长度分别为200mm、220mm、240mm、260mm,长度的规格值在±2mm之间,对所测量的数据进行PT及PTV的分析。①PTV1:长度测量仪器可以分开,指200mm、220mm、240mm、260mm能够被测量仪器识别的参数;②PT1:200mm±2mm、220mm±2mm、240mm±2mm、260mm±2mm,指能够分辨出具体长度的仪器识别参数(3)例2:假设工件的跨度从20mm改变为40mm,则PT及PTV将如何改变,测量仪器的精确度不变①PTV2:200mm、240mm、280mm、320mm,用同样精密的仪器测量,PTV2比PTV1更容易合格;②PT2:200mm±2mm、240mm±2mm、280mm±2mm、320mm ±2mm,采用同样精密度的仪器,PT2比PT1更容易合格 总体而言,观测到的过程偏差(σ Total)往往由过程的真正偏差(σ part-to-part )和测 量系统的重复性和再现性(σ R&R )两部分组成,测量系统研究就是要评估:测量系统的重复性和再现性偏差相对于观测到的过程偏差而言是否足够小。 测量系统指标判断准则 (1) (2) (3) 测量系统往往存在一下问题: (1)偏差或准确性差——测量平均值与被测件真值有很大差异 (2)精确性差—同样过程、同一被测件,多次测量值很大差异;“重复性不好”、“再现性不好” (3)量具不稳定——测量值随着时间的变化产生较大差异 (4)分辨率不够——般要求分辨率至少是被测件公差范围的1/10或更高 《一》连续数据的测量系统分析 1、基础知识介绍 (1)期望特性与测试方法 (2)重复性与再现性的试验方法

测量系统分析(MSA)实施方法简述

冠卓咨询-测量系统分析(MSA)实施方法简述 1.测量数据的类型 在我们实施六西格玛改善项目中,会用到各种测量数据。从统计学的角度来讲,这些数据按测量方式分为连续型数据和非连续型数据(也叫离散型数据、计数数据)。用连续坐标进行测量并得出的数据是连续型数据也称计量值数据。如物体长度、重量、直径等。非连续型数据对反映过程变化不如连续型数据敏感。比如合格/不合格、好/中/差、男/女、1~3个字符错误/4~10个字符错误/大于10个字符错误等。【冠卓咨询专家团队为您分享】 2.连续型数据测量系统分析实施方法 这里主要讲系统的重复性与再现性。首先,安排测量系统分析试验。选定测量对象、测量人员、测量样品等。一般选择20件以上待测量样品并编号,但测量过程中编号不能让测量人员知道。选择2名以上操作熟练的测量人员。然后让所有测量人员对所有样品随机的测量一遍,改变随机顺序,所有测量人员对所有样品再测量一遍以上。Minitab软件可以帮助我们生成试验安排。

设计好试验安排后严格按照试验顺序进行试验并记录数据。将整理好的测量结果复制到Minitab软件中自动计算结果。 判定测量系统是否合格的标准是:合计量具R&R两者都小于30%

且可区分的类别数大于等于5。 3.离散型数据测量系统分析实施方法 离散型数据测量系统分析步骤与连续型数据测量系统分析类似。 选择20件以上待测量样品并编号,选择2名以上操作熟练的测量人员对每件样品重复测量2次以上,所有测量顺序都是随机化且测量人员不知道样品编号。记录试验数据如下: 将数据整理后输入到Minitab软件中,查看计算结果如下: 一般要求所有检验员与标准整体一致性比率在85%以上。否则,需对测量系统进行改进。 除了上述方法以外,还有一种通用方法同样适用于离散型数据测量系统分析。

测量系统分析”第三版”

四\测量系统分析(MSA)”第三版” (一)手册概貌 1.MSA含义 MSA是英文名称Measurement Systems Anelysis 的缩写,中译名为测量系统分析。有时为了简略,常用MSA来代之。 2.本手册性质和目的 本手册性质属指南性的,故对测量系统所述及的术语和评定测量系统质量的方法均作了介绍,特不是适用于工业界的评定测量系统质量多种方法作了详情介绍。 其目的为评定测量系统(要紧是关注对每个零件能重复读数的)质量提供指南,是为工业界正确使用测量系统提供方法。 3.本手册的版本讲明 ▲本手册是由北美三大汽车公司联合编写而成,原是供执行QS9000质量标准的供货商使用,现应用范围已扩展到执行ISO/TS16949技术规范的供应商也可使用。 ▲因此其内容也随着时刻的推演而不断扩充,因此其版本也不断更新,现已从1990年10月第一版通过1995年2月的第二版演变为2002年3月第三版。 ▲随着版本的变换,对使用者的知识要求和使用工具也有变化。初版时专门明确讲明“本手册是应用了统计学方法来阐述测量系统的分析,但非统计学领域的人同样能够使用。”但第三版对测量系统分析方法的叙述,使不具备一些统计学方法的差不多知识者专门难理解,同时强调了计算机软件的使用。 4.本手册的要紧内容:

1)详情的术语解释 2)强调了测量系统变异性对决策(产品、过程、新过程同意、过程设定/操纵)的阻碍 3)提出了对测量过程要进行策划和量具来源选择的流程 4)明确提出了测量系统分析方法的分类: ▲简单测量系统分析方法 ▲复杂测量系统分析方法 ▲其它测量系统分析方法 5.为了便于使用,对简单测量系统分析的多种方法作了详细介绍。 (二)测量系统分析的起因 1.由测量系统对被测特性赋值而得到的测量数据,过去一直用于产品操纵,近 来已用于过程操纵,用来确定二个或多个变量之间是否存在重要关系的研究。随着应用范围的扩大和次数的增加,发觉从同一测量系统获得的测量数据,其使用范围不能无限扩大,也确实是讲,不同的使用范围对提供测量数据的测量系统的质量有一定要求。到底如何样的测量系统的质量才能满足使用要求呢?此要通过测量系统分析才能知晓。此确实是测量系统分析的起因。 2.同时,在探究测量数据质量时,感到适应叫法例误差、精度等等,有时有些 词不达意,感到用测量数据的统计特性来描述测量数据有时更确切、方便。故在进行测量系统分析时采纳了数据统计的术语和方法。(三)测量系统的特性

测量系统分析

测量系统分析 测量系统是指由测量仪器(设备)、测量软件、测量操作人员和被测量物所组成的一个整体。MSA(Measurement System Analysis)是指检测测量系统以便更好地了解影响测量地变异来源及其分布地一种方法。通过测量系统分析可把握当前所用测量系统有无问题和主要问题出在哪里,以便及时纠正偏差,使测量精度满足要求。] GageR&R=σm=√(EV2+AV2) σm=测量系统地标准偏差(Measurement system standard deviation) EV=设备(仪器)的变异(Equipment variation),即重复性(Repeatability).重复性是指同一测量仪器,同一检验者,对同一零部件进行数次测量,再对测量结果进行评价。 A V=评价变差(Appraisal Variation),即再现性(Reproducibility).再现性是指同一测量仪器,不同的检验者,对同一零部件进行多次测量,再对测量结果进行评价。 一、G ageR&R评价方法 1.首先界定此测量系统用于何处,如产品检验或工序控制 2.选处10个可代表覆盖整个工序变化范围的样品 3.从测试人员中选择2-3人对每个样品进行2-3次随机测量 4.记录测量结果并用重复性和再现性表进行计算 5.用判别标准进行判断,确定此系统是否合格 6.对不合格之测量系统进行适当处理 二、测量系统分析标准 1.测量系统的精度(分辩率)需比被测量体要求精度高一个数量级,即如要求测量精度是, 测量仪器的精度要求须是. 2.如果GageR&R小于所测零件公差的10%,则此系统物问题。 3.如果GageR&R大于所测零件公差的10%而小于20%,那么此测量系统是可以接受的。 4.如果GageR&R大于所测零件公差的20%而小于30%,则接受的依据是数据测量系统 的重要程度和商业成本。 5.如果GageR&R大于所测零件公差的30%,那么此测量系统是不可以接受的,而且需 要进行改善。 三、应用事例 例1.某公司在加工一个新产品是,拟作测量系统分析,随机抽取10个样本,用游标卡尺进行测量,由3个人测试,每个零件测3次,其测试结果如下表(1),其GageR &R分析结果列于表(2)。 结论:其结果GageR&R=%<20%﹔故该测量系统合格,可继续使用。 说明:%EV.%A V.%PV分别表明了测量仪器变异,测量人差异及被测样品变异在总变异中所占比例,可据此把现有测量系统所存主要问题。本例中,超龄仪器变异占总变异的%,是主要变异点,须分析原因。依此类推,如测量系统不合要求,可从各因素所占比例中找处主要问题予以解决。 例2.两个QC测试5部机进行评价功能测试的GageR&R,其中各参数规格分别为:V SS=±V disp=±

《MSA测量系统分析作业指导书》

《MSA测量系统分析作业指导书》 题目: 测量系统分析MSA作业指导书分发号: xxxxxx 页码:第9页共9页编号:xxxxxxxxxxxxxxx xxxxxxx 1、目的提供一种评定测量系统质量的方法,从而对必要的测量系统进行评估,以保证本公司所使用的测量系统均能满足于正常的质量评定活动。 2、范围适用于证实产品符合规定要求的所有测量系统。 3、职责品质部负责确定MSA项目,定义测量方法及对数据的处理和对结果的分析。APQP小组负责协助质量管理员完成测量系统的分析和改进。 4、定义 4、1 测量设备:实现测量过程所必需的测量仪器,软件,测量标准,标准样品或辅助设备或它们的组合。 4、2 测量系统:是对被测特性赋值的操作、程序、量具、设备、软件、环境以及操作人员的集合。 4、3 偏倚:对相同零件上同一特性的观测平均值与真值(参考值)的差异。 4、4 稳定性:经过一段长期时间下,用相同的测量系统对同一基准或零件的同一特性进行测量所获得的总变差。 4、5 线性:在测量设备预期的工作(测量)量程内,偏倚值的差异。

4、6 重复性:用一位评价人使用相同的测量仪器对同一特性,进行多次测量所得到的测量变差。 4、7 再现性:不同评价人使用相同的测量仪器对同一产品上的同一特性,进行测量所得的平均值的变差。 4、8 零件间变差:是指包括测量系统变差在内的全部过程变差。 4、9 评价人变差:评价人方法间差异导致的变差。 4、10 总变差:是指过程中单个零件平均值的变差。 4、11 量具:任何用来获得测量结果的装置,包括判断通过/不通过的装置。 5、工作程序 5、1 测量系统分析实施时机 5、1、1 新产品在生产初期,参见“产品实现策划控制程序”HNFH QP-08。 5、1、2 控制计划中指定的检验项目每年需做MSA。 5、1、3 客户有特殊要求时,按客户要求进行。 5、1、4 测量系统不合格改善后需重新进行分析。 5、2 测量设备的选择 a) 有关人员在制定控制计划及作业指导书时,应选择适宜的测量设备,既要经济合理,又要确保测量设备具有足够的分辩率,使用测量结果真实有效。b )

测量系统分析全集

测量系统分析(MSA) 目录 通用测量系统指南 - 引言、目的和术语 - 测量系统的统计特性 评价测量系统的程序

- 测量系统变差的类型:偏倚、重复性、再现性、稳定性和线性 - 测量系统的分析 - 测量系统研究的预备 - 计量型测量系统分析: 1.稳定性分析方法 2.重复性和再现性分析方法 3. 线性分析方法 - 量具特性曲线 - 计数型量具研究 Measurement System Analysis – MSA 测量系统分析 测量系统的特性 ◆测量: -通过把零件与已定的标准进行比较,确定出该零件有多少单位的过程。 -有数值与标准测量单位 -是测量过程的结果 测量数据的质量 ◆基准值 -确定比较的基准

- 关于理解“测量的准确性”专门重要 - 能够在实验条件下,使用更准确的仪器以建立准确的测量来获得 测量数据的质量 ◆ 高质量 - 关于某特性,测量接近基准值 ◆ 低质量 - 关于某特性,测量远离基准值 过程 ◆ ★人 ★装置★ ★方法★环境 输入 过程/系统过程模式 质量循环中的测量系统

测量系统必须具有的性能 ◆测量系统必须处于统计操纵中 ◆测量系统的变差小于制造过程的变差 ◆测量系统的变差小于规定极限或同意的公差 ◆测量变差小于过程变差或公差带中较小者 ◆测量最大(最坏)变差小于过程变差或公差带中较小者 定义 ◆量具 -用来猎取测量的任何设备 ◆测量系统 - 用来给被测特性赋值的操作、程序、量具及其他设备、软件和操作人员的集合 ◆公差 -零件特性同意的变差 ◆受控 - 变差在过程中表现稳定且可预测 ◆不受控 -所有专门缘故的变差都不能消除 -有点超出操纵图的操纵限,或点在操纵限内呈非随机分布形状 受控过程

测量系统分析

测量系统分析 Measurement Systems Analysis 一、测量系统所应具有之统计特性 测量系统必须处于统计控制中,这意味着测量系统中的变差只能是由于普通原因而不是由于特殊原因造成的。这可称为统计稳定性。 测量系统的变差必须比制造过程的变差小。 变差应小于公差带。 测量精度应高于过程变差和公差带两者中精度较高者,一般来说,测量精度是过程变差和公差带两者中精度较高者的十分之一。 测量系统统计特性可能随被测项目的改变而变化。若真的如此,则测量系统的最大的变差应小于过程变差和公差带两者中的较小者。 二、标准 国家标准 第一级标准(连接国家标准和私人公司、科研机构等) 第二级标准(从第一级标准传递到第二级标准) 工作标准(从第二级标准传递到工作标准) 三、测量系统的评定 测量系统的评定通常分为两个阶段,称为第一阶段和第二阶段 第一阶段:明白该测量过程并确定该测量系统是否满足我们的需要。第一阶段试验主要有二个目的: 确定该测量系统是否具有所需要的统计特性,此项必须在使用前进行。 发现哪种环境因素对测量系统有显着的影响,例如温度、湿度等,以决定其使用之空间及环境。 第二阶段的评定

目的是在验证一个测量系统一旦被认为是可行的,应持续具有恰当的统计特性。 常见的就是―量具R&R‖是其中的一种型式。 四、各项定义 量具: 任何用来获得测量结果的装置,包括用来测量合格/不合格的装置。 测量系统:用来获得表示产品或过程特性的数值的系统,称之为测量系统。测量系统是与测量结果有关的仪器、设备、软件、程序、操作人员、环境的集合。 量具重复性:指同一个评价人,采用同一种测量仪器,多次测量同一零件的同一特性时获得的测量值(数据)的变差。 量具再现性:指由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。 稳定性:指测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。 偏倚:指同一操作人员使用相同量具,测量同一零件之相同特性多次数所得平均值与采用更精密仪器测量同一零件之相同特性所得之平均值之差,即测量结果的观测平均值与基准值的差值,也就是我们通常所称的―准确度‖ 线性:指测量系统在预期的工作范围内偏倚的变化。 五、分析时机 新生产之产品PV有不同时 新仪器,EV有不同时 新操作人员,AV有不同时 易损耗之仪器必须注意其分析频率。 R&R之分析 决定研究主要变差形态的对象. 使用「全距及平均数」或「变差数分析」方法对量具进行分析. 于制程中随机抽取被测定材料需属统一制程. 选2-3位操作员在不知情的状况下使用校验合格的量具分别对10个零

相关主题