搜档网
当前位置:搜档网 › 影响金属材料疲劳强度大小的因素.

影响金属材料疲劳强度大小的因素.

影响金属材料疲劳强度大小的因素.
影响金属材料疲劳强度大小的因素.

影响金属材料疲劳强度大小的因素

由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生, 因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。

为了提高机件的疲劳抗力, 防止疲劳断裂事故的发生, 在进行机械零件设计和加工时, 应选择合理的结构形状, 防止表面损伤, 避免应力集中。由于金属表面是疲劳裂纹易于产生的地方,而实际零件大部分都承受交变弯曲或交变扭转载荷, 表面处应力最大。因此, 表面强化处理就成为提高疲劳极限的有效途径。

由于工程实际的要求, 对疲劳的研究工作已逐渐从正常条件下的疲劳问题扩展到特殊条件下的疲劳问题,如腐蚀疲劳、接触疲劳、高温疲劳、热疲劳、微动磨损疲劳等。对这些疲劳及其测试技术还在广泛进行研究,并已逐步标准化

镀锌钢板的质量检验标准

优质品级镀锌板的质量要求包括规格尺寸、外观、镀锌量、化学成份、板形、机械性能和包装等几个方面。

1.包装

分为切成定尺长度的镀锌板和带卷镀锌板包装两种。一般铁皮包装, 内衬防潮纸, 外以铁腰子捆扎,捆扎牢靠,以防内装镀锌板相互摩擦

2.规格尺寸

有关产品标准 (以下述及都列明镀锌板推荐的标准厚度、长度和宽度及其允

许偏差。另外, 板的宽度和长度、卷的宽度也可按用户要求确定。

3.外观

表面状态:镀锌板由于涂镀工艺中处理方式不同,表面状态也不同,如普通锌花、细锌花、平整锌花、无锌花以及磷化处理的表面等。切成定尺长度的镀锌板及镀锌卷板不得存在影响使用的缺陷(以下详述 ,但卷板允许有焊接部位等若干不正常部分。

4.镀锌量

镀锌量标准值:镀锌量是表示镀锌板锌层厚度的一个普遍采用的有效方法。有两面镀锌量相同(即等厚镀锌和两面镀锌量不同(即差厚镀锌两种。镀锌量的单位为g/m2。 5.机械性能

(1抗拉试验:一般说来,只有结构用、拉伸用和深拉伸用镀锌板有抗拉性能要求。

(2弯曲试验:是衡量薄板工艺性能的主要项目。但各国标准对各种镀锌板的要求并不一致。一般要求镀锌板弯曲 180o 后, 外侧表面不得有锌层脱离, 板基不得有龟裂及断裂。 6.化学成份

对镀锌基板的化学成份的要求, 各国标准规定不同。如日本就不要求, 美国则要求。一般不作成品检验。

7.板形

衡量板形好坏有两个指标, 即平直度和镰刀弯。板的平直度和镰刀弯的最大允许值标准有一定规定。

下面列出有关镀锌板的国外主要标准,以作参考 [4, 5]:

JIS G3302 镀锌钢板

JIS G3313 电镀锌钢板及钢带

ASTM A525 热浸镀锌薄钢板的一般要求

ASTM A526 商业级热镀锌薄钢板

ASTM 527 咬合成型级热镀锌薄钢板

ASTM 528 深冲级热镀锌薄钢板

ASTM A361 屋面和墙板用热浸镀锌薄钢板

ASTM A444 沟渠用热浸镀锌薄钢板

ASTM A446 结构级热镀锌薄钢板

影响冲击韧性或冲击吸收功大小的因素

长期生产实践证明 AK 、ɑK 值对材料的组织缺陷十分敏感,能灵敏地反映材料品质、宏观缺陷和显微组织方面的微小变化, 因而冲击试验是生产上用来检验冶炼和热加工质量的有效办法之一。由于温度对一些材料的韧脆程度影响较大, 为了确定出材料由塑性状态向脆性状态转化趋势, 可分别在一系列不同温度下进行冲击试验, 测定出 AK 值随试验温度的变化。实验表明, AK 随温度的降低而减小;在某一温度范围,材料的 AK 值急剧下降,表明材料由韧性状态向脆性状态转变, 此时的温度称为韧脆转变温度。根据不同的钢材及使用条件, 其韧脆转变温度的确定有冲击吸收功、脆性断面率、侧膨胀值等不同的评定方法。

常温下钢材的冲击试验按 GB/T229— 94《金属夏比缺口冲击试验方法》和GB/T2778— 91《金属夏比冲击断口测定方法》的规定进行。金属低温和高温冲击试验具体要求参见 GB4159— 84和 GB5775— 86。

碳对不锈钢中的重要影响

碳是工业用钢的主要元素之一, 钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的形式,在不锈钢中碳的影响尤为显著。碳在不锈钢中对组织的影响主要表现在两方面, 一方面碳是稳定奥氏体的元素, 并且作用的程度很大 (约为镍

的 30倍 , 另一方面由于碳和铬的亲和力很大,与铬形成—系列复杂的碳化物。所以,从强度与耐腐烛性能两方面来看, 碳在不锈钢中的作用是互相矛盾的。

认识了这一影响的规律,我们就可以从不同的使用要求出发,选择不同含碳量的不锈钢。例如工业中应用最广泛的, 也是最起码的不锈钢—— 0Crl3~4Cr13这五个钢号的标准含铬量规定为 12~14%,就是把碳要与铬形成碳化铬的因素考虑进去以

后才决定的,目的即在于使碳与铬结合成碳化铬以后,固溶体中的含铬量不致低于11.7%这一最低限度的含铬量。就这五个钢号来说由于含碳量不同, 强度与耐腐蚀性能也是有区别的, 0Cr13~2Crl3钢的耐腐蚀性较好但强度低于 3Crl3和 4Cr13钢,多用于制造结构零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件。又如为了克服 18-8铬镍不锈钢的晶间腐蚀, 可以将钢的含碳量降至 0.03%以下, 或者加入比铬和碳亲和力更大的元素(钛或铌 ,使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们可以在增加钢的含碳量的同时适当地提高含铬量, 做到既满足硬度与耐磨性的要求, 又兼顾—定

的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢 9Cr18和 9Cr17MoVCo 钢,含碳量虽高达 0.85~0.95%,由于它们的含铬量也相应地提高了,所以仍保证了耐

腐蚀的要求。总的来讲, 目前工业中获得应用的不锈钢的含碳量都是比较低的, 大多数不锈钢的含碳量在 0.1~0.4%之间, 耐酸钢则以含碳 0.1~0.2%的居多。含碳量大于 0.4%的不锈钢仅占钢号总数的一小部分, 这是因为在大多数使用条件下,不锈钢总是以耐腐蚀为主要目的。此外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等。

如何通过锰和氮代替铬镍不锈钢中镍原理

铬镍奥氏体钢的优点虽然很多,但近几十年来由于镍基耐热合金与含镍 20%以下的热强钢的大量发展与应用, 以及化学工业日益发展对不锈钢的需要量越来越大, 而镍的矿藏量较少且又集中分布在少数地区, 因此在世界范围内出现了镍在供和需方面的矛盾。所以在不锈钢与许多其他合金领域(如大型铸锻件用钢、工具钢、热强钢等中,特别是镍的资源比较缺乏的国家, 广泛地开展了节镍和以其他元素代镍

的科学研究与生产实践, 在这方面研究和应用比较多的是以锰和氮来代替不锈钢与耐热钢中的镍。

锰对于奥氏体的作用与镍相似。但说得确切一些, 锰的作用不在于形成奥氏体, 而是在于它降低钢的临界淬火速度, 在冷却时增加奥氏体的稳定性, 抑制奥氏体的

分解, 使高温下形成的奥氏体得以保持到常温。在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从 0到 10. 4%变化,也不使钢在空气与酸中的耐腐蚀性能

发生明显的改变。这是因为锰对提高铁基固溶体的电极电位的作用不大, 形成的氧化膜的防护作用也很低, 所以工业上虽有以锰合金化的奥氏体钢(如

40Mn18Cr4,50Mn18Cr4WN 、 ZGMn13钢等 ,但它们不能作为不锈钢使用。锰在

钢中稳定奥氏体的作用约为镍的二分之一,即 2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大。例如,欲使含 18%铬的钢在常温下获得奥氏体组织, 以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢, 目前已在工业中获得应用, 有的已成功地代替了经典的 18-8铬镍不锈钢。

粉末冶金材料多孔的特点有哪些用途

多孔是粉末冶金材料的重要特点之一。利用这一特点,可以:

(1制造发汗材料。即在普通粉末冶金材料孔隙中含浸低熔点物质,在高温工作时,含浸物熔化渗出,使材料“发汗”散热。这样即可用普通材料替代昂贵的耐热合金,又进一步提高耐热零件的使用温度。

(2制造过滤材料。用以滤气、滤液和滤毒等。

(3含浸减磨剂,制造含油和无油润滑轴承;含浸香料,制造含香工艺品等。

(4在某些情况下用铁来代替铜、铅等有色金属。

(5制造减振、消音、绝热等材料。

(6增加材料比表面,用其充当物质的载体(如携带催化剂等。

粉末冶金摩擦材料重要工艺

粉末冶金既是制造高新材料的重要工艺, 有时还是惟一的方法, 同时也是多、快、好、省地制造形状复杂、高精度金属零件的先进金属成形技术。因此, 粉末冶金产业相继开发了三大领域, 一为难熔金属与硬质合金工具材料,二为永磁材料,特别是稀土永磁材料。这两大类材料基本上都只能用粉末冶金工艺生产。第三大领域是将材料制造与金属成形相结合,

逐渐形成的特种金属成形技术。以满足装备制造业对高性能钢铁粉末冶金产品的需求为重点发展粉末冶金。

用粉末冶金的方法制成的、具有高摩擦系数和高耐磨性的金属与非金属组成的材料, 也称烧结摩擦材料。这种材料通常由基体金属 (铜、铁或其合金、润滑组元 (铅、石墨、二硫化钼等、摩擦组元 (二氧化硅、石棉等 3部分组成。其组织特点是 :具有特殊性能的各种质点均匀地分布在连续的金属基体中。金属基体发挥良好

用粉末冶金的方法制成的、具有高摩擦系数和高耐磨性的金属与非金属组成的材料, 也称烧结摩擦材料。这种材料通常由基体金属 (铜、铁或其合金、润滑组元 (铅、石墨、二硫化钼等、摩擦组元 (二氧化硅、石棉等 3部分组成。其组织特点是 :具有特殊性能的各种质点均匀地分布在连续的金属基体中。金属基体发挥良好的导热性并承受机械应力, 均匀分布的质点保证所需的摩擦性能。与传统的石棉树脂或金属摩擦材料相比,它的优点是摩擦系数高, 摩擦系数随温度、压力和速度的变化而产生的变化小 , 耐高温、抗咬合性好,磨损小 , 寿命长等。

粉末冶金摩擦材料按基体成分可分为铜基和铁基两大类。铁基的比铜基的有稍高的硬度、强度、摩擦系数, 允许承受的工作比压和表面瞬时温度也较高; 而铜基的比铁基的有较好的导热性、耐腐蚀性和小的磨损。为了增加粉末冶金摩擦材料的强度, 通常将其粘结在钢背上而成为双金属结构。铜基摩擦材料大多用于离合器中, 尤其在湿式离合器中更显示其独特的优点。铁基摩擦材料多用于制动器中。

这两种材料已广泛用于飞机、坦克、汽车、船舶、拖拉机、工程机械和机床等的离合器或制动器中。

粉末冶金工艺成型技术

粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法, 既可制取用普通熔炼方法难以制取的特殊材料, 又可制造各种精密的机械零件, 省工省料。但其模具和金属粉末成本较高, 批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:

粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法, 既可制取用普通熔炼方法难以制取的特殊材料, 又可制造各种精密的机械零件, 省工省料。但其模具和金属粉末成本较高, 批量小或制品尺寸过大时不宜采用。粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:

1. 粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。

2. 提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。

3. 利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。

粉末冶金是一种先进的金属成型技术,是金属及其它粉末通过加工压制成型、烧结和必要的后续处理制成机械零部件和金属制品的高新技术。由于其具有节能、省材、高效、环保等诸多优点,已受到广泛采用,并具有很大的市场潜力和发展前景。近年来,粉末冶金行业发展很快, 特别是汽车行业、机械制造、金属行业、

航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展, 为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。同时对该行业的技术水平也提出了更高的要求。纵观国际新材料研究发展的现状,西方主要工业发达国家正集中人力、物力,寻求突破,美国、欧共体、日本和韩

国等在他们的最新国家科技计划中, 都把新材料及其制备技术列为国家关键技术之一加以重点支持。而随着中国的“入世” 及经济全球一体化进程的不断加快,粉末冶金行业面临着新的挑战。我国粉末冶金行业必须加速发展,才能在激烈的市场竞争中立于不败之地。

粉末冶金材料和制品的今后发展方向主要有:有代表性的铁基合金,将向大体积的精密制品, 高质量的结构零部件发展; 制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金; 用增强致密化过程来制造一般含有混合相组成的特殊合金; 制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成

分的复合零部件。

不锈钢酸洗钝化的方法与工艺应用范围

1. 酸洗钝化处理方法比较

方法适用范围优缺点

浸渍法用于可放入酸洗槽或钝化槽的零部件, 但不适于大设备酸洗液可较长时间使用, 生产效率较高、成本低;大容积设备充满酸液浸渍耗液太大

涂刷法适用于大型设备内处表面及局部处理物工操作、劳动条件差、酸液无法回收膏剂法用于安装或检修现场, 尤其用于焊接部处理手工操作、劳动条件差、生产成本高

喷淋法用于安装现场,大型容器内壁用液量低、费用少、速度快, 但需配置喷枪及扦环系统

循环法用于大型设备,如换热器、管壳处理施工方便,酸液可回用,俚需配管与泵连接循环系统

电化学法既可用于零部件, 又可用电刷法对现场设备表面处理技术较复杂, 需直流电源或恒电位仪

2酸洗钝化处理配方举例

2. 1一般处理

根据 ASTMA380— 1999,仅以 300系列不锈钢为例,

(1酸洗

药剂 HNO36%~25%+HF0. 5%~8%(体积分数 ;

温度 21~60℃;时间按需要;

或药剂柠檬酸铵 5%~10%(质量分数 ;

温度 49~71℃;时间 10~60min 。

(2钝化

药剂 HNO320%~50%(体积分数 ;

温度 49~71℃;时间 10~30min ;

或温度 2l ~38℃;时间 30~60min ;

或药剂 HNO320%~50%+Na2Cr207H2022%~6%(质量分数 ;

温度 49~54℃; 时间 15~30min ;

或温度 21~38℃;时间 30~60min 。

(3除鳞酸洗

药剂 H2SO48%~11%(体积分数 ;

温度 66~82℃; 6寸间 5~45min ;

及药剂 HNO36%~25%+HF 0. 5%~8%(体积分数 ;

温度 21~60℃;

或 HNO315%~25%+HFl%— 8%(体积分数。

2膏剂法处理

(1以广州石化尿素不锈钢新设备内表面焊缝及母材钝化和维修表面打磨焊缝的局部钝化为例

酸洗膏:

25%HNO~+4%HF+7l%冷凝水 (体积分数与 BaSO ,调至糊状。

钝化膏:

30%HNO3或 25%HNO3+1%(质量分数 K2Cr207与 BaSO7调至糊状。

涂覆表面 5~30min ,用冷凝水冲洗至 pH=7,对单台设备也可采用喷洒双氧水的化学钝化法。

(2以上海大明铁工厂专利 m 为例。

酸洗钝化膏:

HN038%~14%(作钝化剂 ;

HFl0%~15%(作腐蚀剂 ;

硬月 S 酸镁 2. 2%~2. 7%(作增稠剂

硝酸镁 60%~70%(作填料,提高粘附力与渗透性 ; [page]

多聚磷酸钠 2. 3%~2. 8%(作缓蚀剂 ;

水 (调节粘度。

3 电化学法处理

以厦门大学专利 [5]为例,其处理方法是:将待处理的不锈钢工件作阳极,控制恒电位进行阳极化处理, 或者将不锈钢工件先作阴极, 控制恒电位进行阴极化处理, 再将不锈钢工件作阳极, 控制恒电位进行阳极化处理, 并继续改变其恒电位进行钝化处理, 电解质溶液均采用 HN03。经这样处理后,不锈钢钝化膜性质得到改善,耐蚀性能大大提高。点蚀临界电位 (Eb提高约 1000mV(在 3%NaCl 中 ,抗均匀腐蚀性能提高三个数量级 (在 45℃的 20%~ 30%H2S04中。

我国钢号表示含义的分类说明

1、碳素结构钢和低合金高强度结构牌号表示方法

以上用钢通常分为通用钢和专用钢两大类。牌号表示方法, 由钢的屈服点或屈服强度的汉语拼音字母、屈服点或屈服强度数值, 钢的质量等级等部分组成, 还有的钢加脱氧程度,实际是 4个部分组成。

①通用结构钢采用代表屈服点的拼音字母“ Q ” 。屈服点数值 (单位为 MPa 和表 1中规定的质量等级(A 、 B 、 C 、 D 、 E 、脱氧方法(F 、 b 、 Z 、 TZ 等符号,按顺序组成牌号。例如:碳素结构钢牌号表示为:Q235AF , Q235BZ ; 低合金高强度结构钢牌号表示为:Q345C , Q345D 。

Q235BZ 表示屈服点值≥ 235MPa 、质量等级为 B 级的镇静碳素结构钢。

Q235和 Q345这两个牌号是工程用钢最典型 , 生产和使用量最大 , 用途最广泛的牌号。这两牌号几乎世界各国都有。

碳素结构钢的牌号组成中,镇静钢符号“ Z ”和特殊镇静钢符号“ TZ ”可以省略, 例如:质量等级分别为 C 级和 D 级的 Q235钢, 其牌号表示应为 Q235CZ 和

Q235DTZ , 但可以省略为 Q235C 和 Q235D 。

低合金高强度结构钢有镇静钢和特殊镇静钢, 但牌号尾部不加写表示脱氧方法的符号。

②专用结构钢一般采用代表钢屈服点的符号“ Q ” 、屈服点数值和表 1中规定的代

表产品用途的符号等表示,例如:压力容器用钢牌号表示为“ Q345R ” ;耐候钢其牌号表示为 Q340NH ; Q295HP 焊接气瓶用钢牌号; Q390g 锅炉用钢牌号; Q420q 桥梁用钢牌号。③根据需要,通用低合金高强度结构钢的牌号也可以采用两位阿拉伯数字 (表示平均含碳量, 以万分之几计和化学元素符号, 按顺序表示; 专用低合金高强度结构钢的牌号, 也可以采用两位阿拉伯数字 (表示平均含碳量,以万分之几计和化学元素符号,以及表 1中规定代表产品用途的符号,按顺序表示。

2、优质碳素结构钢和优质碳素弹簧钢牌号表示方法

优质碳素结构钢采用两位阿拉伯数字 (以万分之几计表示平均含碳量或阿拉伯数字和元素符号、表 1中规定的符号组合成牌号。

①沸腾钢和半镇静钢,在牌号尾部分别加符号“ F ”和“ b ” 。例如:平均含碳量为

0.08%的沸腾钢, 其牌号表示为“ 08F ” ; 平均含碳量为 0.10%的半镇静钢, 其牌号表示为“ 10b ” 。②镇静钢 (S、 P 分别≤ 0.035% 一般不标符号。例如:平均含碳量为0.45%的镇静钢,其牌号表示为“ 45” 。

③较高含锰量的优质碳素结构钢, 在表示平均含碳量的阿拉伯数字后加锰元素符号。例如:平均含碳量为 0.50%,含锰量为 0.70%~1.00%的钢,其牌号表示为

“ 50Mn ” 。④高级优质碳素结构钢 (S、 P 分别≤ 0.030% ,在牌号后加符号“ A ” 。例如:平均含碳量为 0.45%的高级优质碳素结构钢,其牌号表示为“ 45A ” 。

⑤特级优质碳素结构钢(S≤ 0.020%、P ≤ 0.025% ,在牌号后加符号“ E ” 。例如:平均含碳量为 0.45%的特级优质碳素结构钢,其牌号表示为“ 45E ” 。

优质碳素弹簧钢牌号的表示方法与优质碳素结构钢牌号表示方法相同 (65、70、 85、 65Mn 钢在 GB/T1222和 GB/T 699两个标准中同时分别存在。

3、合金结构钢和合金弹簧钢牌号表示方法

①合金结构钢牌号采用阿拉伯数字和标准的化学元素符号表示。

用两位阿拉伯数字表示平均含碳量 (以万分之几计 ,放在牌号头部。

合金元素含量表示方法为:平均含量小于 1.50%时, 牌号中仅标明元素, 一般不标明含量; 平均合金含量为 1.50%~2.49%、 2.50%~3.49%、 3.50%~4.49%、

4.50%~

5.49%、……时,在合金元素后相应写成 2、 3、 4、5……。

例如:碳、铬、锰、硅的平均含量分别为 0.30%、 0.95%、 0.85%、 1.05%的合金结构钢,当 S 、 P 含量分别≤ 0.035%时,其牌号表示为“ 30CrMnSi ” 。

高级优质合金结构钢 (S、 P 含量分别≤ 0.025% ,在牌号尾部加符号“ A ”表示。例如:“ 30CrMnSiA ” 。

特级优质合金结构钢(S≤ 0.015%、P ≤ 0.025% ,在牌号尾部加符号“ E ” ,例如:“ 30CrM nSiE” 。

专用合金结构钢牌号尚应在牌号头部 (或尾部加表 1中规定代表产品用途的符号。例如,铆螺专用的 30CrMnSi 钢,钢号表示为 ML30CrMnSi 。

②合金弹簧钢牌号的表示方法与合金结构钢相同。

例如:碳、硅、锰的平均含量分别为 0.60%、 1.75%、 0.75%的弹簧钢,其牌号表示为“ 60Si2Mn ” 。高级优质弹簧钢,在牌号尾部加符号“ A ” ,其牌号表示为

“ 60Si2MnA ” 。 4、易切削钢牌号表示方法

易切削钢采用标准化学元素符号、表 1规定的符号和阿拉伯数字表示。阿拉伯数字表示平均含碳量 (以万分之几计。

①加硫易切削钢和加硫、磷易切削钢,在符号“ Y ”和阿拉伯数字后不加易切削元素符号。

例如:平均含碳量为 0.15%的易切削钢,其牌号表示为“ Y15” 。

②较高含锰量的加硫或加硫、磷易切削钢在符号“ Y ”和阿拉伯数字后加锰元素符号。例如 :平均含碳量为 0.40%,含锰量为 1.20%~1.55%的易切削钢,其牌号表示为“ Y40Mn ” 。

③含钙、铅等易切削元素的易切削钢,在符号“ Y ”和阿拉伯数字后加易切削元素符号。例如:“ Y15Pb ” 、“ Y45Ca ” 。

5、非调质机械结构钢牌号表示方法

非调质机械结构钢,在牌号头部分别加符号“ YF ”和“ F ”表示易切削非调质机械结构钢和热锻用非调质机械结构钢,牌号表示方法的其他内容与合金结构钢相同。例如:“ YF35V ” 、“ F45V ”

6、工具钢牌号表示方法

工具钢分为碳素工具钢、合金工具钢和高速工具钢三类。

①碳素工具钢采用标准化学元素符号、表 1规定的符号和阿拉伯数字表示。阿拉伯数字表示平均含碳量 (以千分之几计。

a. 普通含锰量碳素工具钢,在工具钢符号“ T ”后为阿拉伯数字。例如:平均含碳量为 0.80%的碳素工具钢,其牌号表示为“ T8” 。

b. 较高含锰量的碳素工具钢,在工具钢符号“ T ”和阿拉伯数字后加锰元素符号。例如:“ T8Mn ” 。

c. 高级优质碳素工具钢,在牌号尾部加“ A ” 。例如:“ T8MnA ” 。

②合金工具钢和高速工具钢

合金工具钢、高速工具钢牌号表示方法与合金结构钢牌号表示方法相同。采用标准规定的合金元素符号和阿拉伯数字表示,但一般不标明平均含碳量数字,例如:平均含碳量为 1.60%,含铬、钼,钒含量分别为 11.75%、 0.50%、 0.22%的合金工具钢,其牌号表示为“ Cr12MoV ” ;平均含碳量为 0.85%,含钨、钼、铬、钒含量分别为6.00%、 5.00%、 4.00%、 2.00%的高速工具钢,其牌号表示为“ W6Mo5Cr4V2” 。

若平均含碳量小于 1.00%时,可采用一位阿拉伯数字表示含碳量 (以千分之几计。例如:平均含碳量为 0.80%,含锰量为 0.95%,含硅量为 0.45%的合金工具钢,其牌号表示为“ 8MnSi ” 。

低铬 (平均含铬量<1.00% 合金工具钢, 在含铬量 (以千分之几计前加数字

“ 0” 。例如:平均含铬量为 0.60%的合金工具钢,其牌号表示为“ Cr06” 。

7、塑料模具钢牌号表示方法

塑料模具钢牌号除在头部加符号“ SM ”外,其余表示方法与优质碳素结构钢和

合金工具钢牌号表示方法相同。例如:平均含碳量为 0.45%的碳素塑料模具钢,其牌号表示为“ SM45” ;平均含碳量为 0.34%,含铬量为 1.70%,含钼量为 0.42%的合金塑料模具钢, 其牌号表示为“ SM3Cr2Mo ” 。

8、轴承钢牌号表示方法

轴承钢分为高碳铬轴承钢、渗碳轴承钢、高碳铬不锈轴承钢和高温轴承钢等四大类。①高碳铬轴承钢,在牌号头部加符号“ G ” ,但不标明含碳量。铬含量以千分之几计,其他合金元素按合金结构钢的合金含量表示。例如:平均含铬量为 1.50%的轴承钢, 其牌号表示为“ GCr15” 。

②渗碳轴承钢,采用合金结构钢的牌号表示方法,另在牌号头部加符号“ G ” 。例如:“ G20 CrNiMo” 。

高级优质渗碳轴承钢,在牌号尾部加“ A ” 。例如:“ G20CrNiMoA ” 。

③高碳铬不锈轴承钢和高温轴承钢, 采用不锈钢和耐热钢的牌号表示方法, 牌号头部不加符号“ G ” 。例如:高碳铬不锈轴承钢“ 9Cr18”和高温轴承钢

“ 10Cr14Mo ” 。

9、不锈钢和耐热钢的牌号表示方法

不锈钢和耐热钢牌号采用标准规定的合金元素符号和阿拉伯数字表示, 为切削不锈钢、易切削耐热钢在牌号头部加“ Y ” 。

一般用一位阿拉伯数字表示平均含碳量 (以千分之几计 ; 当平均含碳量≥ 1.00%时, 用两位阿拉伯数字表示;当含碳量上限<0.10%时,以“ 0”表示含碳量;当含碳量上限≤ 0.03%,>0.01%时 (超低碳 ,以“ 03”表示含碳量;当含碳量上限(≤ 0.01%时极低碳 ,以“ 01”表示含碳量。含碳量没有规定下限时,采用阿拉伯数字表示含碳量的上限数字。合金元素含量表示方法同合金结构钢。例如:平均含碳量为 0.20%, 含铬量为13%的不锈钢, 其牌号表示为“ 2Cr13” ; 含碳量上限为 0.08%, 平均含铬量为 18%, 含镍量为 9%的铬镍不锈钢,其牌号表示为“ 0Cr18Ni9” ;含碳量上限为 0.12%,平均含铬量为 17%的加硫易切削铬不锈钢,其牌号表示为“ Y1Cr17” ;平均含碳量为 1.10%,含铬量为 17%的高碳铬不锈钢,其牌号表示为“ 11Cr7” ;含碳量上限为 0.03%,平均含铬量为 19%,含镍量为 10%的超低碳不锈钢,其牌号表示为“ 03Cr19Ni10” ;含碳量上限为 0.01%,平均含铬量为 19%,含镍量为 11%的极低碳不锈钢,其牌号表示为

“ 01Cr19Ni11” 。

国内现行不锈耐热钢标准是参照 JIS 标准修订的 , 但不锈耐热钢牌号表示方法与日本等国个标准不同。我们是用合金元素和平均含 C 量表示 , 日本是用表示用途的字母和阿拉伯数字表示。例如不锈钢牌号 SUS202、 SUS316、 SUS430, S-steel(钢 ,U-use(用途 ,S-stainless(不锈钢。例如耐热钢牌号 ,SUH309、 SUH330、SUH660、 H-Heatresistins 。牌号中不同数字表示各种不同类型的不锈耐热钢。日本表示不锈耐热钢各类不同产品 , 是在牌号后加上相应的字母 , 例如不锈钢棒SUS-B, 热轧不锈钢板 SUS-HP; 耐热钢棒 SUHB, 耐热钢板 SUHP 。英、美等西方国家 , 不锈耐热钢牌号表示方法与日本基本一致 , 主要是用阿拉伯数字表示 , 而且表示的数字是相同的 , 即牌号是相同的。因为日本的不锈耐热钢是采用美国的。

10、焊接用钢牌号表示方法

焊接用钢包括焊接用碳素钢、焊接用合金钢和焊接用不锈钢等, 其牌号表示方法是在各类焊接用钢牌号头部加符号“ H ” 。例如:“ H08” 、“ H08Mn2Si ” 、“ H1Cr18Ni9” 。

高级优质焊接用钢,在牌号尾部加符号“ A ” 。例如:“ H08A ” 、

“ 08Mn2SiA ” 。 11、电工用硅钢

钢号由数字、字母和数字组成。

无取向和取向硅钢的字母符号分别为” W ”和” Q ”

厚度放在前头,字母符号放在中间,铁损数值放在后头,例如 30Q113。取向硅钢中,高磁感的字母符号” G ”与” Q ”放在一起,例如 30QG113

字母之后的数字表示铁损值(W/kg的 100倍。

字母“ G ”者,表示在高频率下检验的;未加“ G ”者,表示在频率为 50周波下检验的。

30Q113表示电工用冷轧取向硅钢产品在 50赫频率时的最大单位重量铁损值为1.13W/kg。

冷轧硅钢表示方法与日本标准 (JISC2552-86一致,只是字母符号不同,例如取向硅钢牌号 27Q140, 与之相对应的 JIS 牌号为 27G140, 30QG110与之相应的 JIS 牌号为 30P110(G :表示普通材料, P :表示高取向性。无取向硅钢牌号 35W250, 与之相应的 JIS 牌号为 35A250。

直线运动轴承机械密封材料表面处理工艺

根据对断裂韧性和其它的关系及材料裂纹发展过程的研究分析,我们不难看出在 dn 值高且存在圆周应力的情况下, 高速钢的表面处理和含碳量低的高速钢硬化表面深度的变化

具有重要的意义。为此,研制了材料表面处理工艺,可增强表面硬度,并产生压应力。经表面处理的材料具有以下特点:有较好的抗疲劳裂纹性, 第二阶段, 已有裂纹的扩展速度较低和淬火不足或含碳量低导致的芯部材料的断裂韧性值较高等。

开发的这种表面处理加工方法包括:

用激光、电子束或感应淬火等方法对淬火不足的普通高速钢进行局部热处理, 以得到表面淬硬层。这里需要指出的是淬火不足是为了提高断裂韧性。

用化学热处理方法得到表面淬硬层。这种方法包括将碳或氮渗透到普通高速钢显微组织中,或小程度改变含碳量。

直线运动轴承密封资料的机能是保证有效密封的首要要素, 选择密封资料, 首如果依据密封元件的工作情况,如运用温度、工作压力、所运用的工作介质以及运动体式格局等。对密封资料的基本请求如下:

1. ntn轴承耐磨损,不侵蚀金属;

2. 耐氧性和耐老化性好,经久耐用;

3. ntn轴承耐高温柔低温,高温下不合成、软化,低温下不硬化;

4. 轴承与工作介质相适应,不发生溶胀、合成、硬化等;

5. 弹性和硬度得当,紧缩永世变形小;

6. 直线运动轴承具有一定的力学机能,如拉伸强度、伸长率等;

7. 易于成形加工,代价低廉;

造成不锈钢生锈的原因和处理方法

不锈钢为什么也生锈 ? 当不锈钢管表面出现褐色锈斑 (点的时候, 人们大感惊奇:认为“不锈钢是不生锈的,生锈就不是不锈钢了,可能是钢质出现了问题” 。其实,这是对不锈钢缺乏了解的一种片面的错误看法。不锈钢在一定的条件下也会生锈的。

不锈钢具有抵抗大气氧化的能力 ---即不锈性, 同时也具有在含酸、碱、盐的介质中乃腐蚀的能力 ---即耐蚀性。但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质类型而改变的。如 304钢管,在干燥清洁的大气中,有绝对优良的抗锈蚀能力,但将它移到海滨地区, 在含有大量盐份的海雾中,很快就会生锈了; 而 316钢管则表现良好。因此,不是任何一种不锈钢,在任何环境下都能耐腐蚀 , 不生锈的。

不锈钢是靠其表面形成的一层极薄而坚固细密的稳定的富铬氧化膜(防护膜 ,防止氧原子的继续渗入、继续氧化,而获得抗锈蚀的能力。一旦有某种原因, 这种薄膜遭到了不断地破坏,空气或液体中氧原子就会不断渗入或金属中铁原子不断地析离出来,形成疏松的氧化铁, 金属表面也就受到不断地锈蚀。这种表面膜受到破坏的形式很多, 日常生活中多见的有如下几种:

1. 不锈钢表面存积着含有其他金属元素的粉尘或异类金属颗粒的附着物, 在潮湿的空气中,附着物与不锈钢间的冷凝水,将二者连成一个微电池,引发了电化学反应,保护膜受到破坏,称之谓电化学腐蚀。

2. 不锈钢表面粘附有机物汁液(如瓜菜、面汤、痰等 ,在有水氧情况下,构成有机酸,长时间则有机酸对金属表面的腐蚀。

3. 不锈钢表面粘附含有酸、碱、盐类物质(如装修墙壁的碱水、石灰水喷溅 ,引起局部腐蚀。

4. 在有污染的空气中(如含有大量硫化物、氧化碳、氧化氮的大气 ,遇冷凝水, 形成硫酸、硝酸、醋酸液点,引起化学腐蚀。

以上情况均可造成不锈钢表面防护膜的破坏引发锈蚀。所以, 为确保金属表面永久

光亮,不被锈蚀,我们建议: 1.必须经常对装饰不锈钢表面进行清洁擦洗,去除附着物,消除引发修饰的外界因素。 2. 海滨地区要使用 316 材质不锈钢,316 材质能抵抗海水腐蚀。 3.市场上有些不锈钢管化学成分不能符合相应国家标准,达不到 304 材质要求。因此也会引起生锈,这就需要用户认真选择有信誉厂家的产品。推力调心滚子轴承材料的性能对使用的寿命的影响使用因素主要是指安装调整、使用保养、维护修理等是否符合技术要求。根据万向节轴承安装、使用、维护、保养的技术要求,对运转中的轴承所承受的载荷、转速、工作温度、振动、噪声和润滑条件进行监控和检查,发现异常立即查找原因,进行调整,使其恢复正常。进一步需要耐冲击的情况下,作为推力调心滚子轴承材料使用铬钢、铬钼钢、镍铬钼钢、采用渗炭淬火,使钢从表面至适当的深度有一个硬化层。具有适当的硬化深度、细密的组织、合适硬度的表面及心部硬度的渗炭轴承,比使用轴承钢的推力调心滚子轴承具有优良的耐冲击性,一般的渗炭轴承用钢的化学成分。冲压保持架的材料,使用低碳素钢。根据用途不同,也使用黄铜板、不锈钢板。切制保持架的材料,使用高强度黄铜、碳素钢,此外也还使用合成推力调心滚子轴承的制造一般要经过锻造、热处理、车削、磨削和装配等多道加工工序。各加工工艺的合理性、先进性、稳定性也会影响到轴承的寿命。其中影响成品万向节轴承质量的热处理和磨削加工工序,往往与轴承的失效有着更直接的关系。近年来对推力调心滚子轴承工作表面变质层的研究表明,磨削工艺与轴承表

案例分析

案例上海市高级人民法院审理的"中国技术进出口总公司诉瑞士工业资源公司"案 原告中国技术进出口总公司(以下简称中技公司)受浙江省温州市金属材料公司的委托,于1984年12月28日与美国旭日公司签订了一份购买9000吨钢材的合同。之后,旭日公司因无力履约,请求中技公司同意将卖方变更为瑞士工业资源公司(以下简称瑞士资源公司)。瑞士资源公司于1985年3月14日向中技公司发出电传:"货物已在装船港备妥待运","装船日期为1985年3月31日",并要求中技公司"将信用证开给挪威信贷银行(在卢森堡),以瑞士工业资源公司为受益人"。同年3月26日,瑞士资源公司又向原告发出电传:"所供钢材可能由我们的意大利生产厂或西班牙生产厂交货",并告知了钢材的价格、交货日期等。1985年4月1日,瑞士资源公司的法定代表人考赫授权旭日开发公司董事长孙道隆,由其代表瑞士资源公司与中技公司在原合同的基础上签订了《合同修改协议书》,约定将钢材的数量由原定的9000吨增至9180吨,价款为229.5万美元不变,瑞士资源公司应在接到信用证后两周内装船待运。 1985年4月19日,中技公司通知中国银行上海分行开出了以瑞士资源公司为受益人、金额为229.5万美元的不可撤销的信用证。信用证载明:钢材"从意大利拉斯佩扎装运至温州,最迟期限为1985年5月5日,不允许分批装运,不允许转船运输","受益人必须保证所发的每件货物都与合同中的约定完全一致。"随后,瑞士资源公司将全套单据通过银行提交中技公司。提单签发日期为1985年5月4日,载明装运人为瑞士资源公司,并由其在提单上背书。由瑞士资源公司开具的销货发票载明,钢材数量为9161吨,货款为2290250美元。同年6月1日,中国银行上海分行将上述货款汇付瑞士资源公司。此后,原告因未收到上述钢材,从1985年7月起连续十余次以电传、函件向瑞士资源公司催询和交涉。但瑞士资源公司拒不答复,或以种种托词进行搪塞。经原告一再催促,瑞士资源公司才于9月5日回电称:"中国港口拥挤,船舶将改变航线","最迟抵达日期预计为1985年10月20日。"届时,原告仍未收到钢材,遂去电指责被告(瑞士资源公司)的欺诈行为,并声言要"将此事公诸于众"。被告于同年10月30日致电原告,全盘推卸自己作为合同卖方和货款受益人的责任。为此,原告遂于1986年3月24日向上海市中级人民法院提起诉讼,要求被告返还货款2290252美元,赔偿银行货款利息951032.66美元,经营损失2048033.16美元,其他费用(包括律师费、调查费、佣金费等)301928.39美元,合计5591244.21美元,并申请诉讼保全。 上海市中级人民法院受理案件后,准许了原告的诉讼保全措施,裁定冻结被告在中国银行上海分行的托收货款4408249美元,查封了上述托收项下的全套单据。后经审理查明,被告在意大利和西班牙既无钢厂,也无钢材;其向原告提交的意大利卡里奥托钢厂的钢材质量检验证书、重量证书和装箱单均系伪造的。以被告以托运人并经其背书的提单上载明的装运船"阿基罗拉"号,于1985年内并未在该提单所载明的装运港意大利拉斯佩扎停泊过,从而证明被告并未将钢材托运装船,所提交的提单也是伪造的。被告在答复原告催问的电函中所称"中国港口拥挤"和"船舶将改变航线"的情况也纯属虚构。因此,上海市中级人民法院依法作出判决:瑞士资源公司应偿还中技公司钢材货款2290250美元;并赔偿钢材货款的银行货款利息873784.58美元,经营损失1943588.25美元,国外公证和认证费、国内律师费29045.77美元,共计5136668.6美元。诉讼费13311美元,原告承担1082.18美元,被告承担12228.82美元。 瑞士资源公司不服一审判决,向上海市高级人民法院上诉称:双方签订的购销钢材合同中有仲裁条款,原审法院对本案无管辖权;原审法院裁定准许诉讼保全,冻结上诉人与本案无关的货款不当;上诉人被诉有欺诈行为并无事实依据;被上诉人在不同的法院对上诉人提出重复的诉讼不当;根据《中华人民共和国涉外经济合同法》的规定,禁止间接损失,

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

齿轮疲劳点蚀的特征及案例分析

齿轮疲劳点蚀的特征及相应案例分析 1 疲劳点蚀的定义及特征 点蚀又称接触疲劳磨损,是润滑良好的闭式传动的常见失效形式之一。齿轮在啮合过程中,相互接触的齿面受到周期性变化的接触应力的作用。若齿面接触应力超出材料的接触疲劳极限时,在载荷的多次重复作用下,齿面会产生细微的疲劳裂纹;封闭在裂纹中的润滑油的挤压作用使裂纹扩大,最后导致表层小片状剥落而形成麻点,这种疲劳磨损现象,齿轮传动中称为点蚀。节线靠近齿根的部位最先产生点蚀。润滑油的粘度对点蚀的扩展影响很大,点蚀将影响传动的平稳性并产生冲击、振动和噪音,引起传动失效。 点蚀又分为收敛性点蚀和扩展性点蚀。收敛性点蚀指新齿轮在短期工作后出现点蚀痕迹,继续工作后不再发展或反而消失的点蚀现象。收敛性点蚀只发生在软齿面上,一般对齿轮工作影响不大。扩展性点蚀指随着工作时间的延长而继续扩展的点蚀现象,常在软齿面轮齿经跑合后,接触应力高于接触疲劳极限时发生。硬齿面齿轮由于材料的脆性,凹坑边缘不易被碾平,而是继续碎裂成为大凹坑,所以只发生扩展性点蚀。严重的扩展性点蚀能使齿轮在很短的时间内报废[1]。 2 疲劳点蚀的实例 某重型车辆侧减速器主动齿轮发生了早期失效,失效齿轮与行星转向机相连,将全车动力传递到行动部分,是全车受载最大的齿轮,始终在大载荷、高转速、多冲击的复杂苛刻环境下工作。齿设计上采用整编为齿轮,传动比为5.9,润滑方式为油池飞溅润滑。实效齿轮材料为18Cr2Ni4W A钢。采用渗碳+淬火+低温回火热处理工艺。 失效齿轮发生严重的接触疲劳失效,使用寿命未达到规定时间。采用断口分析、金相分析、硬度测试及有限元接触应力分析等方法对齿轮进行失效分析,查找该齿轮实效的原因(由于篇幅有限以及结合自身知识面,仅列举出端口分析和金相分析两项结果)。 2.1 断口分析 通过对失效齿轮宏观观察发现.在啮合受力齿面的节线附近靠近齿根一侧,沿齿宽方向分布许多

影响零件疲劳强度的主要因素有

影响零件疲劳强度的主要 因素有 This model paper was revised by the Standardization Office on December 10, 2020

1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系: d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。5.紧螺栓连接中,螺栓刚度对 应力辐的影响:降低螺栓刚度 或增加被连接件刚度可减小应 力辐。 6.双键连接时,切向键两者夹 角120-130度,平键180 度。 7不完全液体润滑径向滑动轴 承,要进行验算轴承的平均压 力p、轴承的pv值、滑动速度 v条件性计算。液体润滑径向 滑动轴承。 8蜗杆传动中,蜗杆头数与传 动效率及自锁性关系:头数越 多,传动效率越高,自锁性越 不好。 9.带传动中其他参数不变,只 有小轮有两种速度,当传递功 率不变时应按低速设计该带传 动。按低速的,当功率不变 时,速度低的受力大,按力大 的选择带传动,保证带的强 度。 10.链传动中,为什么链条磨 损后更容易从大链轮上脱落: 磨损后节距变长,滚子沿大链 轮外移,大链轮容易发生掉链 爬高现象。设计时减少大链轮 齿数,减少滚子沿大链轮的外 移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时 应遵从力求缩短磨合期、延长 稳定磨损期、推迟剧烈磨损的 到来。 13.一对啮合的标准圆柱齿轮 传动,若齿轮齿数分别为z1 小于z2,这对齿轮的弯曲应力 1大于2. 14.普通紧螺栓连接受横向载 荷作用,螺栓中受拉伸应力作 用。 15.带传动有效拉力与预紧 力、包角、摩擦系数的关系: 正比关系。最小初拉力直接决 定临界摩擦力的大小,增加摩 擦系数和带轮的包角有利于增 大临界摩擦力,相应地降低最 小初拉力。 16单向规律性不稳定变应力的 疲劳强度计算依据:疲劳损伤 累积假说。 17.为什么小链轮齿数不能选 得过少、大链轮齿数不得过 多:齿数过少增加运动的不均 匀性和动载荷,链条在进入和 退出啮合时链接之间的相对转 角增大,链传动的圆周力增 大,从整体上加速铰链和链轮 的磨损。过大增大了传动的整 体尺寸、还容易发生跳链和脱 链的现象,从而影响链条使用 寿命。 18.带传动发生打滑的原因: 如果工作载荷增大,超过带传 动的有效拉力达到最大(临 界)值,则带与带轮间就将发 生显着的相对滑动。由于带在 大轮上的包角总是大于在小轮 上包角,所以打滑总是首先在 小带轮上发生。 1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。 5.紧螺栓连接中,螺栓刚度对应力辐的影响:降低螺栓刚度或增加被连接件刚度可减小应力辐。 6.双键连接时,切向键两者夹角120-130度,平键180度。 7不完全液体润滑径向滑动轴承,要进行验算轴承的平均压力p、轴承的pv值、滑动速度v条件性计算。液体润滑径向滑动轴承。 8蜗杆传动中,蜗杆头数与传动效率及自锁性关系:头数越多,传动效率越高,自锁性越不好。 9.带传动中其他参数不变,只有小轮有两种速度,当传递功率不变时应按低速设计该带传动。按低速的,当功率不变时,速度低的受力大,按力大的选择带传动,保证带的强度。 10.链传动中,为什么链条磨损后更容易从大链轮上脱落:磨损后节距变长,滚子沿大链轮外移,大链轮容易发生掉链爬高现象。设计时减少大链轮齿数,减少滚子沿大链轮的外移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时应遵从力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来。 13.一对啮合的标准圆柱齿轮传动,若齿轮齿数分别为z1小于z2,这对齿轮的弯曲应力1大于2. 14.普通紧螺栓连接受横向载荷作用,螺栓中受拉伸应力作用。 15.带传动有效拉力与预紧力、包角、摩擦系数的关系:正比关系。最小初拉力直接决定临界摩擦力的大小,增加摩擦系数和带轮的包角有利于增大临界摩擦力,相应地降低最小初拉力。 16单向规律性不稳定变应力的疲劳强度计算依据:疲劳损伤累积假说。 17.为什么小链轮齿数不能选得过少、大链轮齿数不得过多:齿数过少增加运动的不均匀性和动载荷,链条在进入和退出啮合时链接之间的相对转角增大,链传动的圆周力增大,从整体上加速铰链和链轮的磨损。过大增大了传动的整体尺寸、还容易发生跳链和脱链的现象,从而影响链条使用寿命。 18.带传动发生打滑的原因:如果工作载荷增大,超过带传动的有效拉力达到最大(临界)值,则带与带轮间就将发生显着的相对滑动。由于带在大轮上的包角总是大于在小轮上包角,所以打滑总是首先在小带轮上发生。 1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。 5.紧螺栓连接中,螺栓刚度对应力辐的影响:降低螺栓刚度或增加被连接件刚度可减小应力辐。 6.双键连接时,切向键两者夹角120-130度,平键180度。 7不完全液体润滑径向滑动轴承,要进行验算轴承的平均压力p、轴承的pv值、滑动速度v条件性计算。液体润滑径向滑动轴承。 8蜗杆传动中,蜗杆头数与传动效率及自锁性关系:头数越多,传动效率越高,自锁性越不好。 9.带传动中其他参数不变,只有小轮有两种速度,当传递功率不变时应按低速设计该带传动。按低速的,当功率不变时,速度低的受力大,按力大的选择带传动,保证带的强度。 10.链传动中,为什么链条磨损后更容易从大链轮上脱落:磨损后节距变长,滚子沿大链轮外移,大链轮容易发生掉链爬高现象。设计时减少大链轮齿数,减少滚子沿大链轮的外移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时应遵从力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来。 13.一对啮合的标准圆柱齿轮传动,若齿轮齿数分别为z1小于z2,这对齿轮的弯曲应力1大于2. 14.普通紧螺栓连接受横向载荷作用,螺栓中受拉伸应力作用。 15.带传动有效拉力与预紧力、包角、摩擦系数的关系:正比关系。最小初拉力直接决定临界摩擦力的大小,增加摩擦系数和带轮的包角有利于增大临界摩擦力,相应地降低最小初拉力。 16单向规律性不稳定变应力的疲劳强度计算依据:疲劳损伤累积假说。 17.为什么小链轮齿数不能选得过少、大链轮齿数不得过多:齿数过少增加运动的不均匀性和动载荷,链条在进入和退出啮合时链接之间的相对转角增大,链传动的圆周力增大,从整体上加速铰链和链轮的磨损。过大增大了传动的整体尺寸、还容易发生跳链和脱链的现象,从而影响链条使用寿命。 18.带传动发生打滑的原因:如果工作载荷增大,超过带传动的有效拉力达到最大(临界)值,则带与带轮间就将发生显着的相对滑动。由于带在大轮上的包角总是大于在小轮上包角,所以打滑总是首先在小带轮上发生。

影响金属材料疲劳强度的八大因素和预防措施

影响金属材料疲劳强度的八大因素和预防措施 材料的疲劳强度对各种外在因素和内在因素都极为敏感,外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分、组织状态、纯净度和残余应力等。 这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 01、应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。 这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt : 在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf: 光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。

疲劳缺口敏感度系数q: 疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算: q的数据范围是0~1,q值越小,表征材料对缺口越不敏感。 试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 02、尺寸因素的影响 由于材料本身组织的不均匀性以及内部缺陷的存在,尺寸增加造成材料破坏概率的增加,从而降低材料的疲劳极限。 尺寸效应的存在,是把试验室小试样测得的疲劳数据运用于大尺寸实际零件中的一个重要问题,由于不可能把实际尺寸的零件上存在的应力集中、应力梯度等完全相似地在小试样上再现出来,从而造成试验室结果与某些具体零件疲劳破坏之间的互相脱节。 03、表面加工状态的影响 机加工的表面总存在着高低不平的加工痕迹,这些痕迹就相

影响金属材料疲劳强度大小的因素.

影响金属材料疲劳强度大小的因素 由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生, 因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。 为了提高机件的疲劳抗力, 防止疲劳断裂事故的发生, 在进行机械零件设计和加工时, 应选择合理的结构形状, 防止表面损伤, 避免应力集中。由于金属表面是疲劳裂纹易于产生的地方,而实际零件大部分都承受交变弯曲或交变扭转载荷, 表面处应力最大。因此, 表面强化处理就成为提高疲劳极限的有效途径。 由于工程实际的要求, 对疲劳的研究工作已逐渐从正常条件下的疲劳问题扩展到特殊条件下的疲劳问题,如腐蚀疲劳、接触疲劳、高温疲劳、热疲劳、微动磨损疲劳等。对这些疲劳及其测试技术还在广泛进行研究,并已逐步标准化 镀锌钢板的质量检验标准 优质品级镀锌板的质量要求包括规格尺寸、外观、镀锌量、化学成份、板形、机械性能和包装等几个方面。 1.包装 分为切成定尺长度的镀锌板和带卷镀锌板包装两种。一般铁皮包装, 内衬防潮纸, 外以铁腰子捆扎,捆扎牢靠,以防内装镀锌板相互摩擦 2.规格尺寸 有关产品标准 (以下述及都列明镀锌板推荐的标准厚度、长度和宽度及其允 许偏差。另外, 板的宽度和长度、卷的宽度也可按用户要求确定。 3.外观

表面状态:镀锌板由于涂镀工艺中处理方式不同,表面状态也不同,如普通锌花、细锌花、平整锌花、无锌花以及磷化处理的表面等。切成定尺长度的镀锌板及镀锌卷板不得存在影响使用的缺陷(以下详述 ,但卷板允许有焊接部位等若干不正常部分。 4.镀锌量 镀锌量标准值:镀锌量是表示镀锌板锌层厚度的一个普遍采用的有效方法。有两面镀锌量相同(即等厚镀锌和两面镀锌量不同(即差厚镀锌两种。镀锌量的单位为g/m2。 5.机械性能 (1抗拉试验:一般说来,只有结构用、拉伸用和深拉伸用镀锌板有抗拉性能要求。 (2弯曲试验:是衡量薄板工艺性能的主要项目。但各国标准对各种镀锌板的要求并不一致。一般要求镀锌板弯曲 180o 后, 外侧表面不得有锌层脱离, 板基不得有龟裂及断裂。 6.化学成份 对镀锌基板的化学成份的要求, 各国标准规定不同。如日本就不要求, 美国则要求。一般不作成品检验。 7.板形 衡量板形好坏有两个指标, 即平直度和镰刀弯。板的平直度和镰刀弯的最大允许值标准有一定规定。 下面列出有关镀锌板的国外主要标准,以作参考 [4, 5]: JIS G3302 镀锌钢板 JIS G3313 电镀锌钢板及钢带 ASTM A525 热浸镀锌薄钢板的一般要求

常用的金属材料疲劳极限试验方法

常用的金属材料疲劳极限试验方法 疲劳试验可以预测材料或构件在交变载荷作用下的疲劳强度,一般该类试验周期较长,所需设备比较复杂,但是由于一般的力学试验如静力拉伸、硬度和冲击试验,都不能够提供材料在反复交变载荷作用下的性能,因此对于重要的零构件进行疲劳试验是必须的。 MTS 810 金属材料疲劳试验的一些常用试验方法通常包括单点疲劳试验法、升降法、高频振动试验法、超声疲劳试验法、红外热像技术疲劳试验方法等。 单点疲劳试验法

适用于金属材料构件在室温、高温或腐蚀空气中旋转弯曲载荷条件下服役的情况。该种方法在试样数量受限制的情况下,可近似测定疲劳曲线并粗略估计疲劳极限。试验所需的疲劳试验机一般为弯曲疲劳试验机和拉压试验机。 升降法疲劳试验 升降法疲劳试验是获得金属材料或结构疲劳极限的一种比较常用而又精确的方法,在常规疲劳试验方法测定疲劳强度的基础上或在指定寿命的材料或结构的疲劳强度无法通过试验直接测定的情况下,一般采用升降法疲劳试验间接测定疲劳强度。 主要用于测定中、长寿命区材料或结构疲劳强度的随机特性。所需试验机一般为拉压疲劳试验机。 高频振动疲劳试验法 常规疲劳试验中交变载荷的频率一般低于200Hz,无法精确测得一些零件在高频环境状态下的疲劳损伤。高频振动试验利用试验器材产生含有循环载荷频率为1000Hz左右特性的交变惯性力作用于疲劳试样上,可以满足在高频、低幅、高循环环境条件下服役金属材料的疲劳性能研究。

高频振动试验主要用于军民机械工程的需要。试验装置通常包括:控制仪、电荷适配器、功率放大器、加速度计、振动台等。 超声法疲劳试验 超声法疲劳试验是一种加速共振式的疲劳试验方法,其测试频率(20kHz)远远超过常规疲劳测试频率(小于200Hz)。超声疲劳试验可以在不同载荷特征、不同环境和温度等条件下进行,为疲劳研究提供了一个很好的手段。嘉峪检测网提醒超声疲劳试验一般用于超高周疲劳试验,主要针对10^9以上周次疲劳试验。高周疲劳时,材料宏观上主要表现为弹性的,所以在损伤本构关系中采用应力、应变等参量的弹性关系处理,而不涉及微塑性。 红外热像技术疲劳试验方法 为缩短试验时间、减少试验成本,能量方法成为疲劳试验研究的重要方法之一。金属材料的疲劳是一个耗散能量的过程,而温度变化则是研究疲劳过程能量耗散极为重要的参量。 红外热像技术是一种波长转换技术,即将目标的热辐射转换为可见光的技术,利用目标自身各部分热辐射的差异获取二维可视图像,用计

影响疲劳寿命的因素

影响橡胶疲劳寿命的因素 一环境条件 环境影响在疲劳过程中特别是在长寿命的橡胶材料中起着关键作用。橡胶应力-应变关系和疲劳老化性能发展的方式在很大程度上依赖于材料的温度以及橡胶成分周围化学反应物的存在和浓度 A温度 升高的温度对橡胶形核寿命和疲劳裂纹增长速率产生有害的影响,这种有害影响在无定形橡胶中表现的最为明显,对于纯的丁苯橡胶处于可控测试中,随着温度从0°到100°,疲劳寿命化降低10000倍,而对于纯的天然胶而言,在相同条件下,疲劳寿命降低4倍。填料的加入可能降低对温度的依赖性。在疲劳裂纹增长测试中类似的影响可能被观察到。 上述温度的影响与由于老化或进一步教交联所发生的化学变化无关。温度对这些化学过程的速率产生很大的影响这种影响能够在升温或长时间内导致附加分解。温度实际对长期行为地影响程度取决于配方设计;固化剂,抗氧化剂等这些因素以后讨论。 B臭氧 在一个长期的疲劳测试中,有臭氧存在很大程度上会增大裂纹的增长速率和缩短寿命。由于应力集中,弹性体网链在裂纹尖端很容易与臭氧反应,臭氧与主要聚合物分子链的碳-碳双键发生反应引起断链。 当瞬间的能量释放速率超过一个小的起点,就会发生由于臭氧袭击而引起的裂纹增长,这个起点由Gz表示,Gz通常比机械疲劳起点T更小,Gz的值恨得程度上取决于配方设计,特别是抗氧化剂和抗臭氧剂存在。对于没有加入任何这些物质的橡胶来说,Gz = 0.1J/m2,当有抗臭氧剂存在时,Gz会增大10倍或更多,相比较而言,机械疲劳起点大约为T = 50 J/m2,臭氧看起来不影响机械疲劳起点的值,其他化学物质能够以一种类似臭氧的方式侵袭橡胶。Gent和Mrath 研究了在一个很大的范围内温度对臭氧增长速的影响。两个物理量被发现可以控制列为裂纹增长率da/dt,在玻璃化转变温度附近裂纹增长速率是与v温度成比例的,而与臭氧无关。在足够高的温度下(Q-Tg >100°),裂纹增长速率完全依赖于臭氧浓度而与温度无关。总的裂纹增长速率由下列方程式近似的给出

第三章影响疲劳强度的因素.

第三章形响疲劳强度的因素 M料的5?N曲找和報時W限.WffeKMK准)t消试柑W披埒性能- 而实际母件的尺寸、形状利衣Si倘况是各天各样的.勺标准试桦有鞭大雄别. 砂响机械歩件楝劳强哎的WS存la*,只屮七SW猱参丸下衣. £Tr*rF工作温度、工作坏境 ?.待*评应力状态、循环特征、《?效蛊、裁衙交变频率 ?丹■几河彤秋尺寸效应.統口效应 xn-AvruA.袤面光洁度.袤面防AtSb表面强化 材料本■化学成分,金《ffl织,秆《方向.内部缺陷 3J应力集中的影响 在机W琴件中-曲于结构上的《^求-不叩e兔地%花槽河.轴肩.孔.拐你 W口等不连续部分致枝栈面尿默发生灾变,由F零件戒构件几何彤状的不违续而 -JlfeJltXM力大得毛的WffW力的現象称为’?瞰力集> 应力集中对銭芳《腹的影响兀.并H足各种影响W*中 忌上耍作出的W洽?它大大酵低了寧ft的披劳《度。 应力集中降低銭劳僅找的作用町以用载劳缺□集数耒杭征.

任静败荷低Wh-构件耳》应力《丈的严《卅?町以由-理论刈力集中系 ft- £表示,儿可被宣头为険口根誌的ft%应力与切面上的名义应力之比(或最 大fi 变号名义应变之比)即 <5 乂宾力?叩平坤麻R *宁电W?0mi ■“ C2b*2r) 5 A ?净 W 板 tf 2 ? F/2b d ?应力集中对破劳强度的影*9町以用?境劳》1」系ttKe 仪力t F 光淸试件的披劳强12 F ■缺口试件的疲劳强度 織把5SU 牛半均应力和长/fft <100 hftfjiQfte 为址本的披勞缺口系?? HJlQ 衣 ?股悄况N 缺H 韓救超大于1的. -"底劳蛊度"均指金对称《环卞人试样的疲劳强 (1)理论应力集中系数 w O £ Kj ■ ---- J

影响弹簧疲劳强度的六个因素

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/1318087313.html,)影响弹簧疲劳强度的六个因素 弹簧是一种利用弹性来工作的机械零件。用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状。亦作“弹簧”。一般用弹簧钢制成。弹簧的种类复杂多样,按形状分,主要有螺旋弹簧、涡卷弹簧、板弹簧、异型弹簧等。 1、屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈 服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2、表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度 的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3、尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性 愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。

4、冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5、腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6、温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.sodocs.net/doc/1318087313.html,/?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

金属材料疲劳研究综述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由J.V.Poncelet 于1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是

非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公式概括了塑性应变幅值和疲劳寿命之间的关系。Paris在1963年提出疲劳裂纹扩展速率da/dN和应力强度因子幅值?k之间的关系。1974年,美

影响弹簧疲劳强度的几个因素

影响弹簧疲劳强度的几个因素 阅读:2748人次更新时间:2011-5-23 9:09:19 1.屈服强度材料的屈服强度和疲劳极限之间有一定的关系,一般来说,材料的屈服强度越高,疲劳强度也越高,因此,为了提高弹簧的疲劳强度应设法提高弹簧材料的屈服强度,或采用屈服强度和抗拉强度比值高的材料。对同一材料来说,细晶粒组织比粗细晶粒组织具有更高的屈服强度。 2.表面状态最大应力多发生在弹簧材料的表层,所以弹簧的表面质量对疲劳强度的影响很大。弹簧材料在轧制、拉拔和卷制过程中造成的裂纹、疵点和伤痕等缺陷往往是造成弹簧疲劳断裂的原因。 材料表面粗糙度愈小,应力集中愈小,疲劳强度也愈高。材料表面粗糙度对疲劳极限的影响。随着表面粗糙度的增加,疲劳极限下降。在同一粗糙度的情况下,不同的钢种及不同的卷制方法其疲劳极限降低程度也不同,如冷卷弹簧降低程度就比热卷弹簧小。因为钢制热卷弹簧及其热处理加热时,由于氧化使弹簧材料表面变粗糙和产生脱碳现象,这样就降低了弹簧的疲劳强度。 对材料表面进行磨削、强压、抛丸和滚压等。都可以提高弹簧的疲劳强度。 3.尺寸效应材料的尺寸愈大,由于各种冷加工和热加工工艺所造成的缺陷可能性愈高,产生表面缺陷的可能性也越大,这些原因都会导致疲劳性能下降。因此在计算弹簧的疲劳强度时要考虑尺寸效应的影响。 4.冶金缺陷冶金缺陷是指材料中的非金属夹杂物、气泡、元素的偏析,等等。存在于表面的夹杂物是应力集中源,会导致夹杂物与基体界面之间过早地产生疲劳裂纹。采用真空冶炼、真空浇注等措施,可以大大提高钢材的质量。 5.腐蚀介质弹簧在腐蚀介质中工作时,由于表面产生点蚀或表面晶界被腐蚀而成为疲劳源,在变应力作用下就会逐步扩展而导致断裂。例如在淡水中工作的弹簧钢,疲劳极限仅为空气中的10%~25%。腐蚀对弹簧疲劳强度的影响,不仅与弹簧受变载荷的作用次数有关,而且与工作寿命有关。所以设计计算受腐蚀影响的弹簧时,应将工作寿命考虑进去。 在腐蚀条件下工作的弹簧,为了保证其疲劳强度,可采用抗腐蚀性能高的材料,如不锈钢、非铁金属,或者表面加保护层,如镀层、氧化、喷塑、涂漆等。实践表明镀镉可以大大提高弹簧的疲劳极限。 6.温度碳钢的疲劳强度,从室温到120℃时下降,从120℃到350℃又上升,温度高于350℃以后又下降,在高温时没有疲劳极限。在高温条件下工作的弹簧,要考虑采用耐热钢。在低于室温的条件下,钢的疲劳极限有所增加。 有关以上这些影响疲劳强度因素的具体数值,参看有关资料。 弹簧的强化工艺技术 阅读:2491人次更新时间:2011-5-23 9:07:26 (1)弹簧的热处理强化工艺技术 1)保护气氛热处理。在我国,线材小于 15mm的弹簧、油淬火回火钢丝及韧化处理钢的热处理都采用了保护气氛热处理。保护气氛热处理能够消除表面脱碳和氧化,提高材料的表面质量。

金属材料疲劳研究综述资料讲解

金属材料疲劳研究综 述

金属材料疲劳研究综述 摘要:人会疲劳,金属也会疲劳吗?早在100多年前,人们就发现了金属也是会疲劳的,并且发现了金属疲劳带给人们各个方面的危害,所以研究金属材料的疲劳是非常有必要的。本文主要讲述了国内外关于金属疲劳的研究进展,概述了金属产生疲劳的原因及影响因素,以及金属材料疲劳的试验方法。 关键词:金属材料疲劳裂纹疲劳寿命 一.引言 金属疲劳的概念,最早是由 J. V. Poncelet 于 1830 年在巴黎大学讲演时采用的。当时,“疲劳”一词被用来描述在周期拉压加载下材料强度的衰退。引述美国试验与材料协会( ASTM) 在“疲劳试验及数据统计分析之有关术语的标准定义”( EZ06-72) 中所作的定义: 在某点或某些点承受挠动应力,且在足够多的循环挠动作用之后形成裂纹或完全断裂时,材料中所发生的局部永久结构变化的发展过程,称为“疲劳”。金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。在材料结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。据统计金属材料失效80%是由于疲劳引起的,且表现为突然断裂,无论材

料为韧性材料还是塑性材料都表现为突然断裂,危害极大,所以研究金属的疲劳是非常有必要的。 由于金属材料的疲劳一般难以发现,因此常常造成突然的事故。早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。由于但是条件的限制,还不能查明疲劳破坏的原因。在第二次世界大战期间,美国的5000艘货船共发生1000多次破坏事故,有238艘完全报废,其中大部分要归咎于金属的疲劳。2002 年 5 月,华航一架波音747-200 型客机在由台湾中正机场飞往香港机场途中空中解体,19 名机组人员及 206名乘客全部遇难。调查发现,飞机后部的金属疲劳裂纹造成机体在空中解体,是导致此次空难的根本原因。直到出现了电子显微镜之后,人类在揭开金属疲劳秘密的道路上不断取得了新的成果,才开发出一些发现和消除金属疲劳的手段。 二.金属疲劳的有关进展 1839年巴黎大学教授在讲课中首先使用了“金属疲劳”的概念。1850一1860年德国工程师提出了应力-寿命图和疲劳极限的概念。1870一1890年间,Gerber研究了平均应力对疲劳寿命的影响。Goodman提出了考虑平均应力影响的简单理论。1920年Griffith发表了关于脆性材料断裂的理论和试验结果。发现玻璃的强度取决于所包含的微裂纹长度,Griffith理论的出现标志着断裂力学的开端。1945年Miner用公式表达出线性积累损伤理论。五十年代,力学理论上对提出应力强度因子K的概念。六十年代,Manson—Coffin公

金属疲劳

第10章金属材料的疲劳 材料或元件在交变应力(随时间作周期性改变的应力)作用下,经过一段时期后,在内部缺陷或应力集中的部位,局部产生细微的裂纹,裂纹逐渐扩展以致在应力远小于屈服点或强度极限的情况下,突然发生脆性断裂,这种现象称为疲劳,例如频繁进料、出料的周期性间歇操作的设备,往复式压缩机气缸,应考虑其疲劳失效的可能性. 疲劳分类: (1)高周疲劳 低应力,高循环次数。最常见 (2)低周疲劳 高应力,低循环次数。 (3)热疲劳 温度变化引起的热应力作用下引起的疲劳破坏。 (4)腐蚀疲劳 交变载荷与腐蚀介质共同作用下引起的破坏。 (5)接触疲劳 机件的接触表面在接触应力反复作用下出现表面剥落。 10.1交变载荷特性 大小或方向或两者同时随时间发生周期性变化的载荷。 交变载荷的特性可用几个参数来表示: 应力循环:交变应力在两个应力极值之间变化一次的过程。 最大应力(σmax):循环中代数值最大的应力。 最小应力(σmin):循环中代数值最小的应力。 平均应力:(σmax+σmax)/2 应力幅:(σmax-σmin)/2

不对称系数:r=(σmin/σmax);r=-1对称,r=0脉动;-1107曲线呈水平,对于铝合金等有色金属则没有明显水平部分。 10.2.3疲劳断裂的断口特征 脆性断裂,断口无明显塑性变形,贝壳状纹路。 对缺口敏感(材料外缘和芯部纹扩散速度不同),对 缺口不敏感。 10.2.4金属材料的疲劳抗力指标 10.2.4.1疲劳极限 材料经无限多次应力循环不断裂的交变应力幅值。对于铝合金取Nf>=105~107的应力幅值作为条件疲劳极限。 同一材料,对称循环疲劳极限也不同,弯曲疲劳极限(σ-1)>拉压疲劳极限(σ-1p)>扭转疲劳极限(τ-1n)。 10.2.4.2疲劳缺口的敏感度 应力集中程度用应力集中系数 缺口对疲劳强度的影响,用疲劳有效应力集中系数Kf

影响螺栓疲劳强度的因素

影响螺栓疲劳性能的主要因素有以下几点: 1、螺纹牙谷形状和半径尺寸的影响。 螺栓受力时,螺纹牙谷处就会产生应力集中,其值在很大程度上取决于牙谷的形状。改变牙谷的形状,如螺纹的牙谷槽越平滑,应力集中就越小,疲劳强度则越高。一般而言,平底牙谷的螺纹疲劳强度最低。如以圆形牙谷代替平底牙谷,螺栓的疲劳强度便可得到提高。如平底螺纹牙谷的弹性应力集中系数为2.54,而改进的圆弧牙谷为1.52,即后者的牙谷应力集中系数较前者降低40%,从而可以使疲劳强度至少提高20%;如经调质处理的40CrNiMo钢制螺栓,螺纹为M6-1.0的平底牙谷时疲劳强度为95MPa,而采用最大半径为0.1mm的圆弧形牙谷时,其疲劳强度可以提高到120MPa,即提高26%。日本新日铁公司新开发的CD(critical design for fracture)螺栓的疲劳强度提高的幅度更大,高达100%,CD螺栓的主要特点是螺母内螺纹的牙峰高度逐渐降低,以使其受力更均匀。 2、螺纹表面粗糙度的影响。 螺纹的表面粗糙度对螺栓的疲劳寿命影响很大。如螺纹为M6-1.0的40CrNiMo钢制螺栓,其粗糙度由0.08~0.16降低到0.63~1.35时,疲劳强度下降33%;螺纹为M12-1.5的螺栓,其表面粗糙度由0.08~0.16降低到0.16~0.32时,疲劳强度下降21%。 3、螺纹滚丝工序的影响。 滚压螺纹会产生形变强化层和较高的残余压应力,对阻止疲劳裂纹的萌生和早起扩展起到很大的作用;同时,也会降低牙谷的表面粗糙度,因而有利于螺栓疲劳强度的提高。但是,如果滚压螺纹后再进行热处理,就会使上述有利因素消失。所以从改善螺栓疲劳性能的角度考虑,应在热处理后滚压螺纹。但此时存在另一个问题,即螺栓特别是高强度螺栓经过热处理后其硬度通常较高,致使滚丝模具寿命降低。此外,如果滚丝的质量不够好,在螺纹的表面或根部产生微裂纹或类似接触疲劳的剥落现象,则改善螺栓疲劳性能的效果不明显,甚至会降低疲劳性能。 4、钢材冶金缺陷的影响。 原材料表面脱碳,通常是在轧制加热过程中对坯料表面没有有效的保护所

影响零件疲劳强度的主要因素有

影响零件疲劳强度的主 要因素有 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。5.紧螺栓连接 中,螺栓刚度对 应力辐的影响: 降低螺栓刚度或 增加被连接件刚 度可减小应力 辐。 6.双键连接时, 切向键两者夹角 120-130度,平 键180度。 7不完全液体润滑 径向滑动轴承, 要进行验算轴承 的平均压力p、轴 承的pv值、滑动 速度v条件性计 算。液体润滑径 向滑动轴承。 8蜗杆传动中,蜗 杆头数与传动效 率及自锁性关 系:头数越多, 传动效率越高, 自锁性越不好。 9.带传动中其他 参数不变,只有 小轮有两种速 度,当传递功率 不变时应按低速 设计该带传动。 按低速的,当功 率不变时,速度 低的受力大,按 力大的选择带传 动,保证带的强 度。 10.链传动中,为 什么链条磨损后 更容易从大链轮 上脱落:磨损后 节距变长,滚子 沿大链轮外移, 大链轮容易发生 掉链爬高现象。 设计时减少大链 轮齿数,减少滚 子沿大链轮的外 移量。 11.一双齿轮传动 中,1.5倍。 12.在机械设计和 使用机器时应遵 从力求缩短磨合 期、延长稳定磨 损期、推迟剧烈 磨损的到来。 13.一对啮合的标 准圆柱齿轮传 动,若齿轮齿数 分别为z1小于z2, 这对齿轮的弯曲 应力1大于2. 14.普通紧螺栓连 接受横向载荷作 用,螺栓中受拉 伸应力作用。 15.带传动有效拉 力与预紧力、包 角、摩擦系数的 关系:正比关 系。最小初拉力 直接决定临界摩 擦力的大小,增 加摩擦系数和带 轮的包角有利于 增大临界摩擦 力,相应地降低 最小初拉力。 16单向规律性不 稳定变应力的疲 劳强度计算依 据:疲劳损伤累 积假说。 17.为什么小链轮 齿数不能选得过 少、大链轮齿数 不得过多:齿数 过少增加运动的 不均匀性和动载 荷,链条在进入 和退出啮合时链 接之间的相对转 角增大,链传动 的圆周力增大, 从整体上加速铰 链和链轮的磨 损。过大增大了 传动的整体尺 寸、还容易发生 跳链和脱链的现 象,从而影响链 条使用寿命。 18.带传动发生打 滑的原因:如果 工作载荷增大, 超过带传动的有 效拉力达到最大 (临界)值,则 带与带轮间就将 发生显着的相对 滑动。由于带在 大轮上的包角总 是大于在小轮上 包角,所以打滑 总是首先在小带 轮上发生。 1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。 5.紧螺栓连接中,螺栓刚度对应力辐的影响:降低螺栓刚度或增加被连接件刚度可减小应力辐。 6.双键连接时,切向键两者夹角120-130度,平键180度。 7不完全液体润滑径向滑动轴承,要进行验算轴承的平均压力p、轴承的pv值、滑动速度v条件性计算。液体润滑径向滑动轴承。 8蜗杆传动中,蜗杆头数与传动效率及自锁性关系:头数越多,传动效率越高,自锁性越不好。 9.带传动中其他参数不变,只有小轮有两种速度,当传递功率不变时应按低速设计该带传动。按低速的,当功率不变时,速度低的受力大,按力大的选择带传动,保证带的强度。 10.链传动中,为什么链条磨损后更容易从大链轮上脱落:磨损后节距变长,滚子沿大链轮外移,大链轮容易发生掉链爬高现象。设计时减少大链轮齿数,减少滚子沿大链轮的外移量。 11.一双齿轮传动中,1.5倍。 12.在机械设计和使用机器时应遵从力求缩短磨合期、延长稳定磨损期、推迟剧烈磨损的到来。 13.一对啮合的标准圆柱齿轮传动,若齿轮齿数分别为z1小于z2,这对齿轮的弯曲应力1大于2. 14.普通紧螺栓连接受横向载荷作用,螺栓中受拉伸应力作用。 15.带传动有效拉力与预紧力、包角、摩擦系数的关系:正比关系。最小初拉力直接决定临界摩擦力的大小,增加摩擦系数和带轮的包角有利于增大临界摩擦力,相应地降低最小初拉力。 16单向规律性不稳定变应力的疲劳强度计算依据:疲劳损伤累积假说。 17.为什么小链轮齿数不能选得过少、大链轮齿数不得过多:齿数过少增加运动的不均匀性和动载荷,链条在进入和退出啮合时链接之间的相对转角增大,链传动的圆周力增大,从整体上加速铰链和链轮的磨损。过大增大了传动的整体尺寸、还容易发生跳链和脱链的现象,从而影响链条使用寿命。 18.带传动发生打滑的原因:如果工作载荷增大,超过带传动的有效拉力达到最大(临界)值,则带与带轮间就将发生显着的相对滑动。由于带在大轮上的包角总是大于在小轮上包角,所以打滑总是首先在小带轮上发生。 1.影响零件疲劳强度的主要因素有:应力集中、尺寸大小、表面加工质量。 2.静连接与动连接的强度计算区别:压溃(工作面上挤压应力强度校核)、过度磨损(工作面上压力强度校核) 3.标准蜗杆传动中,蜗杆直径系数q与刚度的关系:d=mq(模数*系数) 4.螺纹连接防松:一旦松动,轻者影响机器的正常运转,重者造成严重事故。常用防松措施:摩擦防松、机械防松、破坏螺旋副运动关系。 5.紧螺栓连接中,螺栓刚度对应力辐的影响:降低螺栓刚度或增加被连接件刚度可减小应力辐。 6.双键连接时,切向键两者夹角120-130度,平键180度。

相关主题