搜档网
当前位置:搜档网 › 工业废弃催化剂回收利用研究进展综述

工业废弃催化剂回收利用研究进展综述

工业废弃催化剂回收利用研究进展综述
工业废弃催化剂回收利用研究进展综述

工业废弃催化剂回收利用研究进展综述

环境科学与工程游俊杰3140204004

摘要:废催化剂是一些药厂、炼油厂、化工厂等工厂固体废弃物的重要来源之一,其回收利用不仅有重要的环保意义,还可使有限的资源得到可持续性的发展并有一定的经济效益。本文介绍国内外对工业废弃催化剂的回收利用现状,以及较成熟的回收处理方法和回收处理的一般步骤。

关键字:固体废弃物;废弃;催化剂;回收利用

Abstract

Dead catalyst is that some drug companies, oil refineries, chemical plants and other factories one of the important sources of solid waste, its recycling not only has significance to environmental protection, still can make limited resources get sustainable development and has certain economic benefits.In this paper, the recycling of industrial waste catalyst at home and abroad the status quo, as well as the more mature recycling methods and general steps of recycling.

Key words: Solid waste; Abandoned; Dead catalyst; Recycling

1.引言

催化剂是一种能够改变一个化学反应的速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显消耗的化学物质。据统计,当今90%的化学工业中均包含有催化过程,催化剂在化工生产中占有相当重要的地位。按质量计,全世界每年消耗的工业催化剂约为8×105t(不包括烷基化用的硫酸与氢氟酸催化剂),其中炼油催化剂约占52%,化工催化剂约占42%,环保催化剂(汽车催化转化器)约占6%。2001 年全球工业催化剂的销售额预计约为1.07×1010$(不包括许多大型企业自产用的催化剂)。随着科技和社会的进步,工业催化剂的使用量还将进一步增加,如随着汽车工业的发展和对汽车尾气排放法规的不断加严,用于汽车尾气净化的环保催化剂预计将增长13%[1]。

工业使用的催化剂随着运转时间的延长,催化剂的活性会逐渐降低或者完全失去活性,

这种现象叫做催化剂失活。导致催化剂失活的原因归纳起来主要有 3 种:催化剂中毒、催化剂积碳与催化剂烧结。为此,全世界每年不可避免地要置换出数量可观的废工业催化剂,而且随着经济的发展和人口的增加,废催化剂的数量也将随着新鲜催化剂销售额的增加而增加。

废工业催化剂中含有大量的有用物质,将其作为二次资源加以回收利用,不仅可以直接获得一定的经济效益,更可以提高资源的利用率,实现可持续发展。工业催化过程中大多数采用多组分固体催化剂,以满足工业生产对催化剂性能的多方面要求;根据这些组分在催化剂中的作用可分为主催化剂(活性组分)、共催化剂(和主催化剂共同起催化作用的物质,缺一不可)、助催化剂(加入主催化剂中的少量物质,本身没有活性但却能显著改变催化剂的性能)和载体(主催化剂和助催化剂的分散剂、粘合剂和支持物),多组分固体在制备过程中不但改变了各组分的存在状态,而且也形成了新的微观结构。在使用过程中某些组分的形态、结构以及数量也会发生变化。但废工业催化剂中仍然含有数量不低的有色金属(如Cu、Ni、Co、Cr 等)和稀贵金属(如Pt、Pd、Ru 等) [2],如2000 年用于制造汽车尾气催化剂铂系金属就达到160t。从废催化剂中回收贵金属和有色金属与从矿石中提炼相比,所得金属的品位高,投资少,成本低,效益高。特别对人均资源拥有率相对较低的我国来说,从废工业催化剂中回收有用的金属及组分,就更具有深远的意义。因催化反应的需要,有些催化剂在制备过程中不得不采用或添加一些有毒的组分如As2O3、As2O5、CrO3等,这些毒物往往也存在于废催化剂中。催化剂在使用过程中也会吸附一些来自原料、反应物、设备材质等的有害物如砷、硫、氯、羰基镍等,这些有害物质随废催化剂排出也会对周围环境造成污染。倘若对废催化剂不加处置随意堆放,不仅要占据大量场地,而且废催化剂中的有害物质会随雨水冲刷流失,造成水质污染或破坏土壤、植被。同时废催化剂在日光照射下会释放出挥发性的有机物和SO2、NOx 等有害气体污染大气,并会增加大气悬浮物含量。开展废催化剂的回收利用,可以使废催化剂的有害部分减量化甚至无害化以达到清洁生产的目的,既增强了企业的竞争能力,又能解决相关环境污染问题,必将产生十分重要的社会效益。

所以,开展废催化剂的回收利用可以变废为宝,化害为益,是一个应当引起全社会关注并有广阔应用前景的开发研究领域。

2. 国内外废催化剂回收利用现状

2.1 国外废催化剂回收利用现状

国外较早注意废催化剂的回收利用。美国环保法规定废催化剂随便倾倒、掩埋要缴纳巨额税款。目前已形成从废工业催化剂中回收利用贵金属的产业,据统计1995 年回收了铂系金属12.44t~15.5t。近年已扩展到贱金属、低值甚至赔本的废催化剂的回收利用。德国的Degussa 公司1968 年就用捕集网回收铂网催化剂,1988 年新建1000t/d 废重整催化剂回

收装置,铂回收率达97%~99%[2]。1991 年英国ICIKatalco 公司和ACIIndustries 公司一起出台了有关废催化剂管理的规定并将废催化剂的处理问题囊括在催化剂的综合服务中。日本由于缺乏各种金属资源,其生产催化剂的主要原料靠进口,因而早在50 年代日本就注意废催化剂的回收利用。1970 年日本就颁布了固体废物处理与清除法律,确认废催化剂为环境污染物。由于日本工业集中,故其废催化剂便于集中回收,通常由催化剂使用厂、催化剂生产厂及专门回收处理工厂三方协调回收事宜[1]。

2.2 国内废催化剂回收利用现状[1]

回收废催化剂的品种:现可利用磁分离法、离子交换法、混合氧化剂法及天然碱浸法等技术,处理含镁、镍废催化剂,从废钯—炭催化剂中提取氯化钯,回收钼,钯、钴-钼、Cu-Zn、镍、铝、五氧化二钒、钛,废钯碳催化剂回收装置的技术改进,废氧化铝催化剂制高纯超细氧化铝,利用废钴催化剂生产环烷酸钴新工艺,利用含钼废催化剂生产钼铁,利用联醇装置废催化剂生产氯化亚铜和氧化锌,研制成功羰基合成废催化剂回收技术,已能从废铑催化剂中回收铑粉,浸出CT-2 废催化剂中的金、钯。

废催化剂回收公司:我国废催化剂回收工作起步较晚,自1971 年抚顺石化三厂开始从废重整催化剂中回收铂、铼等稀贵金属以来,全国有许多企业和研究单位都开展了废催化剂回收利用的研究。

废催化剂回收的组织协调工作:目前我国在废催化剂利用方面已开创出一条不同于国外的较符合本国国情的路子,并取得一定的业绩,有些废催化剂甚至供不应求。但与国外相比,我国废催化剂总回收利用率并不高,资金投入较少,有些设备、技术和回收工艺比较落后,一些回收价值不高但污染严重的废催化剂并未得到处理。由于国内催化剂使用技术水平不高,催化剂的更换频率和废催化剂的数量均高于国外,加之我国对废催化剂尚缺乏系统的研究和相应的组织机构和法规,我国废催化剂的回收利用仍将有很长的路要走。

3. 废工业催化剂的常用回收方法[5]

各类废工业催化剂的常用回收方法一般分为 4 种:干法、湿法、干湿结合法和不分离法。

3.1 干法

一般利用加热炉将废催化剂与还原剂及助熔剂一起加热熔融,使金属组分经还原熔融成金属或合金回收,以作为合金或合金原料,而载体则与助熔剂形成炉渣排出。回收某些稀贵金属含量较少的废催化剂时,往往加进一些铁等贱金属作为捕集剂共同熔炼。干法通常有氧化焙烧法、升华法和氯化物挥发法。如Co-Mo/Al2O3、Ni-Mo/Al2O3、Cu-Ni、Ni-Cr 等系催化剂均可采用此法回收。干法耗能较高,在熔融、熔炼过程中,可能会释放出SO2等气

体,可用石灰水吸收。

3.2 湿法

用酸、碱或其他溶剂溶解废工业催化剂的主要成分,滤液除杂纯化后,经分离,可得难溶于水的硫化物或金属氢氧化物,干燥后按需要再进一步加工成最终产品。贵金属催化剂、加氢脱硫催化剂、铜系及镍系等废催化剂一般采用湿法回收。通常也把电解法包括在湿法之中。用湿法处理废催化剂,其载体往往以不溶残渣形式存在,如无适当的处理方法,这些大量固体废弃物会造成二次公害。若载体随金属一起溶解,金属和载体的分离会产生大量废液易造成二次污染。将废催化剂的主要组分溶解后,采用阴阳离子交换树脂吸附法,或采用萃取、反萃取的方法将浸液中不同组分分离、提纯出来是近几年湿法回收的研究重点。废催化剂溶解时常用溶剂及分类见下表1。

表1 废催化剂溶解时常用溶剂及分类

溶剂选择的原则是热力学上可行,反应速度快、经济合理,来源容易。易于回收。对设备腐蚀性小,对欲溶解组分的选择性好。主要应根据被溶物的物理特性和化学特性而定。碱性溶剂比酸性溶剂的反应能力弱,但其选择性比酸性的高。氯气浸出主要用于含贵金属的废催化剂原料。由于氯气的电位高于除金以外的贵金属,并且氯在水溶液中会水解生成盐酸和次氯酸,盐酸可以使已氯化的贵金属呈氯络酸状态溶解;而次氯酸的电极电位比氯更高,能使所有的贵金属氧化。

3.3 干湿结合法

含2种以上组分的废催化剂很少单独采用干法或湿法进行回收,多数采用干湿结合法才能达到目的。此法广泛地用于回收物的精制过程。如铂—铼重整废催化剂回收时浸去铼后的含铂残渣,需经干法煅烧后再次浸渍才能将铂浸出。不分离法此法是直接利用废催化剂进行回收处理而不再将废催化剂的活性组分或活性组分与载体分离的一种方法。由于此法不分离活性组分及载体,故耗能小、成本低、废弃物排放少、不易造成二次污染,是废催化剂回收利用中经常采用的一种方法。如回收铁铬中温变换催化剂时,不将浸液中的铁铬组分各自分

离开来,直接回收用其重制新催化剂。废工业催化剂的回收利用究竟采用何种方法,尚需根据此种催化剂的组成、含量、载体种类以及回收物的价值、性能、收率等因素加以综合选择决定。例如,铂-铼废重整催化剂回收时,浸去铼后的含铂残渣需经干法煅烧后,再次浸渍才将铂浸出。

3.4不分离法

此法不将废催化剂活性组分与载体分离,或不将其两种以上的活性组分分离处理。由于不分离活性组分及载体,故能耗小,成本低、废弃物排放少,不易造成二次污染。例如,在回收铁铬中温变换催化剂时,往往不将浸液中的铁铬组分各自分离开来,直接将其回收重制新催化剂。再如,回收生产DMT(苯二甲酸二甲酯)和TA(对苯二甲酸)用的钴锰废催化剂时,往往不将钴锰分离开来,调整其钴锰配比(按工艺要求)后直接返回系统中重新启用。

废催化剂的回收利用其针对性极强。因此,针对某种废催化剂,具体究竟应采用哪一种方法进行回收,尚需根据此种催化剂的组成,含量及载体种类等加以选择,根据企业拥有的设备和能力及回收物的价值、性能、收率,最终回收费用等加以比较而决定之。

4.溶液中组分的析出

废催化剂回收利用的另一个主要阶段是从溶有一种或多种金属的溶液中将它们析出来,常用处理方法有结晶、金属沉淀、离子沉淀、离子交换、溶剂萃取等。

4.1结晶

可利用不同组分溶解度的差别通过结晶的先后而从同一种溶液分离出两种金属组分。在分离化学性质近似的金属化合物可通过反复结晶达到目的。

4.2金属置换沉淀

用一种金属将溶液中的另一种金属沉淀出来的过程叫金属置换沉淀。

4.3难溶化合物形式沉淀金属

从溶液中以氢氧化物形式沉淀金属时,首先将沉淀这样一种金属的氢氧化物,这种金属水解的pH值较低,所形成的这种金属的沉淀物在获得这种金属的介质中比较稳定。

同一种金属水解的pH值是不固定的。它取决于金属的浓度;水解的pH值随着金属浓度(活度)的降低而升高。下表2列出了生成氢氧化物的pH值、溶度积Kp、溶解度以及吉布斯能G的变化。

表2 生成氢氧化物的pH值、溶度积Kp、溶解度以及吉布斯能G的变化

实践表明、纯的金属氢氧化物仅能从稀溶液或离子活度小的溶液中沉淀出。从金属浓度偏高的溶液中通常沉淀出碱式盐或复盐。

也可从溶液中析出难溶的硫化物沉淀物来达到分离的目的。常用的沉淀剂有硫化氢、硫化钠及硫化铵。对沉淀过程产生重大影响的是沉淀金属的离子的活度、溶液的pH值、温度、压力及其他因素。

4.4离子交换

离子交换对于处理金属离子浓度为10×10-6或更低的极稀溶液特别有效。例如,可将含铜万分之一的溶液浓缩到5‰和从混合溶液中分离提纯金属。离子交换操作包括两个步骤:

①吸附(负载):将待分离的混合溶液,以一定的流速通过吸附柱、使混合金属离子吸附在吸附柱中。

②解吸(淋洗):用一种淋洗剂溶液通过负载柱,使吸附其上的金属离子洗脱下来。在淋洗的过程中负载柱得到再生。

离子交换树脂宜为直径0.5-2.0mm的球状颗粒,离子交换工艺操作示意图见下图1。离子交换剂有天然的和人工合成之分。有无机离子交换剂和有机离子交换剂两大类。废催化剂回收中常用的是人工合成的离子交换树脂。溶液的流速,树脂的颗粒大小等决定了柱式操作的效率,通常采用直径2.14m,高3.65m的交换拄。

图1离子交换工艺操作示意图见下

4.5溶剂萃取

萃取是利用有机溶剂从不相混溶的液相中把某种物质提取出来的一种方法。其实质是物质在水相和有机相中溶解分配的过程。溶剂萃取是净化、分离溶液中有价成分的有效方法。该法平衡速度快、选择性强、分离和富集效果好,产品纯度高、处理容量大,试剂消耗少,能连续操作。溶剂萃取法提取或分离金属,通常分萃取、洗涤、反萃取三个主要阶段。基本工艺流程下图2所示。

图2 基本工艺流程下

萃取剂的选择原则:有选择性、萃取容量高,易于反萃,油溶性大,水溶性小,易于与水分离等。稀释剂是一种惰性有机溶剂,它能溶解萃取剂,其作用是改变有机萃取剂的浓度,改善萃取剂的性能,降低有机相的粘度,提高萃合物在有机相的溶解度等。工业上常用的稀释剂有煤油、苯、甲苯、二乙苯、四氯化碳、氯仿等。在萃取体系中分配比,萃取效率是重要参数。主要的影响因素是溶液的pH值,阳离子或阴离子浓度,萃取剂的浓度、稀释剂的性能等。

5. 废工业催化剂回收利用的一般步骤[5]

5.1调查研究

进行某种废催化剂回收利用之前,事先应进行如下几个项目的调查研究:(1)原料的调查:必须先调查同类型新催化剂的型号、产地、组分含量及载体种类、制备方法、使用要求等内容。对使用后的废催化剂则要了解使用时的工况条件、使用寿命等情况,并弄清附着物的种类及玷污程度。分析其组成情况。(2)回收工艺路线的调查:应对国内外现有的废催化剂的成熟回收工艺进行调查,并从中选择一、二种工艺简单、投资少、成本低、无污染的适用工艺作为预定工艺。(3)产品的调查:对废催化剂回收产品的市场前景、价格和销售行情进行调查。(4)设备的调查:根据废催化剂的产生量,就所建的设备处理能力、设备所需的资金、新建装置的预计开车率、现有设备可利用性等进行调查。

5.2 选择合理的回收工艺路线

5.2.1 废催化剂的预处理

预处理的目的在于除去废催化剂吸附的水分、有机物、硫等其他有害杂质并改变废催化剂的内在结构和外型,使之适应后工序的要求。废催化剂的预处理一般采用干燥、焙烧、脱脂、脱硫、氧化还原等过程加以实施。干燥过程可脱除浆状废催化剂中的部分水分,使其含固体的量达20%以上。焙烧或脱脂过程可用于脱除废催化剂中的油类、烃类及其他有机物,对那些含硫量较高的废催化剂在焙烧时进行必要的烟气脱硫,可避免污染环境。对一些有毒的附着物例如含氰、砷等组分则采用氧化还原等化学反应解毒,如对Cr6+应设法还原成无毒的Cr3+。难于用干法直接进行预处理的粉状废催化剂可选择合适的粘结剂、造粒剂将其形成球状或团状后使用,以避免粉体随烟气的损失并带来环境污染。采用湿法时也可根据溶解的需要,将废催化剂粉碎到一定的细度后使用。

5.2.2 活性组分与载体的分离

催化剂制备时常常用Al2O3或硅藻土等作载体,但在废催化剂处理时往往需分离活性组分和载体。分离活性组分与载体应注意:①根据载体类别与性质及产品的要求,选择合适

的分离方法,例如溶剂抽提法、还原溶解法或暂不分离待下一步处理。②在分离时还应考虑活性组分性质与助催化剂组分性质间的差异。③为提高分离效果,应选择适当的预处理手段。

④应解决溶剂抽提或还原溶解后的残渣处理。编制工艺流程:废催化剂需要经过包括物质和能量转换的一系列加工,才能转变成所需的产品,实施这些转换需要有相应的功能单元来完成,按物料加工顺序将这些功能单元有机地组合就形成了工艺流程。工艺流程的组织或合成是化工过程的开发和设计中的重要环节,组织流程需要有化学、物理的理论基础以及工程知识,要结合生产实际,并借助前人的经验。同时要运用推论分析、功能分析、形态分析等方法论进行流程的设计。根据调查研究的结果和工艺路线选择的原则,一般可按图 1 编制出预定的工艺流程[4]:

图1 工艺流程

6. 结束语

在提倡清洁生产实现零排放的今天,废工业催化剂的回收利用问题应该得到社会诸方面的关注和重视。人们应该不断提高环境保护意识,有关部门也应尽早明确制订废催化剂回收的相关法规和政策,就废催化剂的排放、收集、运输、管理以及回收技术、设备、产品规格、测试方法等环节实施规范化的要求,以全面提高我国废催化剂回收利用的水平。

参考文献

[1] 刘焕群. 国外废催化剂回收利用[J].中国资源综合利用.2000(12):35-37.

[2] 汪云华,吴晓峰,童伟峰. 铂族金属催化剂回收技术及发展动态[J].贵金属,2011,32(1),76-81.

[3] 贺小塘. 从石油化工废催化剂中回收铂族金属的研究进展[J]. 贵金属,2013,34(1),35-41.

[4] 雷玲,钱枝茂. Pd/C催化剂的失活与再生[J]. 化学工业与工程技术.1996,17(2),38-40.

[5] 方喜,金国钧.废工业催化剂的回收[J].化学教育.2004,13(2),28-30.

有机催化剂的应用及发展

催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中最主要的改性手段。

后过渡金属催化剂综述

后过渡金属催化剂综述 1催化剂的意义 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[3]。 2后过渡金属催化剂的性质 聚烯烃工业的发展是一个国家石化工业发展的重要标志。Ziegler - Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂研发的3个主要方向[4]。 90年代,美国北卡罗来纳大学的Brookhart等人[5]报道了利用适当的配体, 可使元素周期表中的第Ⅷ族中Ni和Pd的配合物用来引发烯烃聚合, 从而由单一烯烃可获得高分子量的、有各种支化度的聚合物, 并能实现与极性单体的共聚。他们将这一类催化剂称为烯烃聚合后过渡金属催化剂。后过渡金属催化剂中金属元素的种类涉及到第Ⅷ族中的元素, 目前研究得比较多的为Fe、Co、Ni、Pd4种金属元素[6]。 这类金属配合物的亲氧性相对较弱,对空气和水分不太敏感,特别是催化烯烃以及环烯烃聚合的活性很高[7],而且对比茂金属催化剂, 后过渡金属催化剂具有稳定性好、生产费用低、能生产新品种聚烯烃以及能合成带有官能团的新型聚合物等优点。再加上后过渡金属催化剂合成相对简单, 产率较高,因而其成本远低于茂金属催化剂, 而且聚合时助催化剂用量比较低, 一般与负载的茂金属催化剂相当, 因此成为烯烃聚合用催化剂的新的研究热点[8]。 3 后过渡金属催化剂的种类 后过渡金属烯烃聚合催化剂是指以镍( Ⅱ) 、钯( Ⅱ) 、铁( Ⅱ) 、钴( Ⅱ) 、钌( Ⅱ)等后过渡金属原子为活性中心的一类金属配合物烯烃聚合催化剂。 3.1 镍系 镍系包括双亚胺类、P - O类和N - O类等。双亚胺类镍系烯烃聚合催化剂是指以双亚胺为配体的一类平面型镍(Ⅱ)阳离子配合物。当采用甲基铝氧烷(MAO)作助催化剂时,二溴化双亚胺合镍的衍生物具有很高的催化活性。这类催化剂在Lewis酸如MAO 的作用下形成阳

工业废弃催化剂回收利用研究进展综述

工业废弃催化剂回收利用研究进展综述 环境科学与工程游俊杰3140204004 摘要:废催化剂是一些药厂、炼油厂、化工厂等工厂固体废弃物的重要来源之一,其回收利用不仅有重要的环保意义,还可使有限的资源得到可持续性的发展并有一定的经济效益。本文介绍国内外对工业废弃催化剂的回收利用现状,以及较成熟的回收处理方法和回收处理的一般步骤。 关键字:固体废弃物;废弃;催化剂;回收利用 Abstract Dead catalyst is that some drug companies, oil refineries, chemical plants and other factories one of the important sources of solid waste, its recycling not only has significance to environmental protection, still can make limited resources get sustainable development and has certain economic benefits.In this paper, the recycling of industrial waste catalyst at home and abroad the status quo, as well as the more mature recycling methods and general steps of recycling. Key words: Solid waste; Abandoned; Dead catalyst; Recycling 1.引言 催化剂是一种能够改变一个化学反应的速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显消耗的化学物质。据统计,当今90%的化学工业中均包含有催化过程,催化剂在化工生产中占有相当重要的地位。按质量计,全世界每年消耗的工业催化剂约为8×105t(不包括烷基化用的硫酸与氢氟酸催化剂),其中炼油催化剂约占52%,化工催化剂约占42%,环保催化剂(汽车催化转化器)约占6%。2001 年全球工业催化剂的销售额预计约为1.07×1010$(不包括许多大型企业自产用的催化剂)。随着科技和社会的进步,工业催化剂的使用量还将进一步增加,如随着汽车工业的发展和对汽车尾气排放法规的不断加严,用于汽车尾气净化的环保催化剂预计将增长13%[1]。 工业使用的催化剂随着运转时间的延长,催化剂的活性会逐渐降低或者完全失去活性,

有机催化剂的应用及发展

https://www.sodocs.net/doc/1014640106.html,/sundae_meng 催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中

2010 - 废催化剂回收利用现状综述

2010年第4期常州工程职业技术学院学报V ol.4 2010总第六十六期JOURNAL OF CHANGZHOU INSTITUTE OF ENGINEERING TECHNOLOGY December No.66废催化剂回收利用现状综述 朱岩 (常州工程职业技术学院,江苏常州 213164) 摘 要:从废催化剂的环保法规、回收废催化剂的品种、废催化剂回收公司及废催化剂回收的组织协调工作方面,对国内外废催化剂回收利用现状进行研究,总结出废工业催化剂的常用4种回收方法:干法、湿法、干湿结合法和不分离法。同时提出了废工业催化剂回收利用的一般步骤。 关键词:废催化剂;回收利用;综述 废催化剂是一些药厂、炼油厂、化工厂等工厂固体废弃物的直要来源之一,其回收利用不仅有重要的环保意义,还可使有限的资源得到可持续性的发展并有一定的经济效益。加入WTO以后我国的环保工作将与国外先进国家接轨。企业的达标排放将成为生存的首要条件,为此特向大家介绍废催化剂回收利用的现状。 催化剂是一种能够改变一个化学反应的速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显消耗的化学物质。据统计,当今90%的化学工业中均包含有催化过程,催化剂在化工生产中占有相当重要的地位。按质量计,全世界每年消耗的工业催化剂约为8×105t(不包括烷基化用的硫酸与氢氟酸催化剂),其中炼油催化剂约占52%,化工催化剂约占42%,环保催化剂(汽车催化转化器)约占6%。2001年全球工业催化剂的销售额预计约为1.07×1010$(不包括许多大型企业自产自用的催化剂)。随着科技和社会的进步,工业催化剂的使用量还将进一步增加,如随着汽车工业的发展和对汽车尾气排放法规的不断加严,用于汽车尾气净化的环保催化剂预计将增长13%。 工业使用的催化剂随着运转时间的延长,催化剂的活性会逐渐降低或者完全失去活性,这种现象叫做催化剂失活。导致催化剂失活的原因归纳起来主要有3种:催化剂中毒、催化剂积碳与催化剂烧结。为此,全世界每年不可避免地要置换出数量可观的废工业催化剂,而且随着经济的发展和人口的增加,废催化剂的数量也将随着新鲜催化剂销售额的增加而增加。 1废催化剂回收的意义 废工业催化剂中含有大量的有用物质,将其作为二次资源加以回收利用,不仅可以直接获得一定的经济效益,更可以提高资源的利用 收稿日期:2010-09-18 作者简介:朱岩,常州工程职业技术学院制约系教师。

废工业催化剂的回收

废工业催化剂的回收 余方喜金国钧(上海市松江第二中学 201600) (上海市松江区教师进修学院) 摘要本文介绍了废工业催化剂回收的意义,现状,常用回收方法以及一般步骤.全社会都应该关注废催化剂的回收利用问题. 关键词废工业催化剂回收 2002年上海高考化学试题中出现了一道工业上用乙烯氧化制备环氧乙烷过程中废催化剂(Ag)的回收问题,尽管试题只涉及到回收过程中简单的化学工艺以及相关的化学基础知识,但却引出了一个很重要的课题—废工业催化剂的回收利用.本文想借此谈谈有关废工业催化剂回收的一些基本问题. 催化剂是一种能够改变一个化学反应的速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显消耗的化学物质.催化剂是催化技术的核心,是化学研究中永久的主题.具有工业生产实际意义,可以用于大规模生产过程的催化剂称为工业催化剂.据统计,当今90 %的化学工业中均包含有催化过程,催化剂在化工生产中占有相当重要的地位;按质量计,全世界每年消耗的工业催化剂约为8×105t(不包括烷基化用的硫酸与氢氟酸催化剂),其中炼油催化剂约占52 % ,化工催化剂约占42 % ,环保催化剂(汽车催化转化器)约占 6 %.2001年全球工业催化剂的销售额预计约为1. 07×1010$(不包括许多大型企业自产自用的催化剂).随着科技和社会的进步,工业催化剂的使用量还将进一步增加,如随着汽车工业的发展和对汽车尾气排放法规的不断加严,用于汽车尾气净化的环保催化剂预计将增长13 %. 工业使用的催化剂随着运转时间的延长,催化剂的活性会逐渐降低或者完全失去活性,这种现象叫做催化剂失活.导致催化剂失活的原因归纳起来主要有3种:催化剂中毒,催化剂积碳与催化剂烧结.为此,全世界每年不可避免地要置换出数量可观的废工业催化剂,而且随着经济的发展和人口的增加,废催化剂的数量也将随着新鲜催化剂销售额的增加而增加. 1 废工业催化剂回收的意义 废工业催化剂中含有大量的有用物质,将其作为二次资源加以回收利用,不仅可以直接获得一定的经济效益,更可以提高资源的利用率,实现可持续发展.工业催化过程中大多数采用多组分固体催化剂,以满足工业生产对催化剂性能的多方面要求;根据这些组分在催化剂中的作用可分为主催化剂(活性组分),共催化剂(和主催化剂共同起催化作用的物质,缺一不可),助催化剂(加入主催化剂中的少量物质,本身没有活性但却能显著改变催化剂的性能)和载体(主催化剂和助催化剂的分散剂,粘合剂和支持物),多组分固体在制备过程中不但改变了各组分的存在状态,而且也形成了新的微观结构.在使用过程中某些组分的形态,结构以及数量也会发生变化.但废工业催化剂中仍然含有数量不低的有色金属(如Cu,Ni,Co,Cr等)和稀贵金属(如Pt,Pd,Ru等),如2000年用于制造汽车尾气催化剂铂系金属就达到160 t.从废催化剂中回收贵金属和有色金属与从矿石中提炼相比,所得金属的品位高,投资少,成本低,效益高.特别对人均资源拥有率相对较低的我国来说,从废工业催化剂中回收有用的金属及组分,就更具有深远的意义.因催化反应的需要,有些催化剂在制备过程中不得不采用或添加一些有毒的组分如As2O3,As2O5,CrO3等,这些毒物往往也存在于废催化剂中;催化剂在使用过程中也会吸附一些来自原料,反应物,设备材质等的有害物如砷,硫,氯,羰基镍等,这些有害物质随废催化剂排出也会对周围环境造成污染.倘若对废催化剂不加处

国内外化工行业催化剂制备与应用-文献综述

催化氧化处理难降解废水催化剂的应用研究 文献综述 一催化剂研究发展概况 1从国内外该技术目前研究现状及发展趋势来看,该类催化剂的开发向着选择性低、工艺简单、易再生、廉价高效的方向发展。 2 均相催化剂混溶于废水中, 易流失, 且难以回收再生利用; 3非均相催化剂成为该类催化剂研究的重点。国内外以金属氧化物如氧化镍、氧化锰、氧化钒等为催化剂对高浓度有机废水进行了氧化处理研究, 取得了较好的效果; 但存在金属氧化物难以回收、流失量大等问题; 4负载型或共混催化剂则克服了上述问题。负载型催化剂使催化剂的活性组分高度分散, 强化了传质过程; 同时载体对有机污染物具有一定的吸附和催化作用, 载体与催化剂良好的协同作用大大提高了催化氧化的效果。作为催化剂载 体使用的主要有活性炭、γ- Al 2O 3 、粘土、树脂等。活性炭特殊的石墨型层状微 晶结构, 赋予其丰富的孔结构、比表面积以及结晶缺陷, 其表面大量含氧基团的存在, 尤其是羟基、酚羟基等的大量存在使活性炭不仅具有吸附能力, 而且具有一定的催化氧化和还原作用, 从而使其作为催化剂或催化剂载体被广泛用于石 油化工、印染、医药化工等工业废水处理中。而γ- Al 2O 3 具有较强的抗热冲击 和抗机械冲击能力, 同活性组分 Cu、Fe 等的协同催化作用佳,作为该方面载体应用的报道也较多。此外, 以粘土、粉煤灰等为载体的该类催化剂也有少量报道。而催化剂的活性组分, 出于对催化剂成本的考虑, 国内外的研究主要集中对廉价的过渡金属如 Cu、Fe、Mn、Ni 等; 而对于活性较高的贵金属组分如 Pt、Rh 等, 由于成本较高而相对研究较少。 二针对各种污染废水,国内外催化剂的制备与应用进展如下: 1 催化O 3 氧化 ①纺织印染废水 采用以γ-Al 2O 3 为载体,由含稀土元素为主的过渡金属和多种组分混合型 金属元素制备的催化剂,通过催化氧化试验装置,对纺织印染废水的二级处理出水进行中试深度处理研究,反应温度 60~80 ℃;常压处理,废水处理后,COD 和色度去除率可达 80% 张仲燕等以超细γ-Al 2O 3 为载体,在 Cu(NO 3 ) 2 溶液中,采用浸渍法制备超细 γ-Al2O3/CuO 催化剂,并将其用于处理含氮染料废水, 发现此催化剂活性高,COD 和色度去除率分别为 77%和 99%。 以沸石作为载体制得的 MnO 2、Fe 2 O 3 、ZnO 、CuO 负载型催化剂, 对臭氧氧 化反应均有催化作用, 其催化效果依次为 M n O 2/ 沸石> Fe 2 O 3 / 沸石> ZnO/ 沸 石> CuO/ 沸石。同时, MnO 2 / 沸石的重复使用率高。 ②苯酚废水 用自制的催化剂--活性炭负载金属氧化物(Fe/AC, Cu/AC, Mn/AC)对模拟苯酚废水进行臭氧催化氧化比较,并对影响催化氧化效果的几个因素:不同的活性组成分、初始 COD、反应时间、pH 值进行了分析。 ③硝基苯等难降解有机物

1第一章工业催化剂概述

第一章工业催化剂概述 1.催化剂在经济上的地位和作用 2.催化工业的形成和发展 3.催化剂市场 4.若干术语和基本概念 1.催化剂在经济上的地位和作用 A.催化剂是化学工业的基石。据统计,现有90%以上的化工过程是采用催化剂进行生产的。借助于催化剂生产的产品总值在全世界工业生产总值中约占18%,仅低于机械产品的总值。 B.提高社会生产水平(合成氨、合成材料、生物化工) 合成氨:亚洲在世界上的产量最高,其中,中国是第一大生产和消费国; 合成材料:树脂,塑料;合成纤维;合成橡胶; 树脂,塑料;产量最大的通用塑料:聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯;热塑性树脂,塑料总产量已与赶超钢铁的产量。 生物化工:酶化工,最古老的化学工业,酿酒、制药,(Only,Cobbut,青霉素) 生物汽油:发酵法生产乙醇,掺入汽油约10%; 生物柴油:大豆油、蓖麻油等掺入柴油中。 C.扩大资源利用范围(C1化工、煤、石油)

C1:含一个碳的小分子;可生产合成燃料(F-T合成);生产三烯(乙烯,丙烯,丁二烯);生产三苯(苯、甲苯、二甲苯);构成化学物质的使用循环。 煤:传统用处,燃料,化工原料(汽化干馏得到,成本高,不纯);现石油危机,重提化工利用,汽化,液化等。 石油:催化裂化,重要的行业革新;催化重整,开辟制苯途径;60年代,全面取代煤。 燃料添加剂:四乙基铅、甲基叔丁基醚、二甲醚。 D.提取制造重要物质(精细化工) 精细化工产品:批量小,附加值高,技术含量高,针对性强。 催化剂本身是一种精细化工产品; E.满足社会各方面需要(衣、食、住、行、环保、国防) 2.催化工业的形成和发展 A. 二十世纪以前(萌芽时期);最早工业化催化剂:硫酸催化剂:NO2 SO2 SO3 Cat:NO2 后1879年用Pt催化剂,现用V2O5-K2SO4/硅藻土 B. 二十世纪初(奠基时期) 1913年:合成氨Fe Cat; 15年:氨氧化制硝酸Pt网Cat; C. 二十世纪初30~60年代(大发展时期) 36年:催化裂化催化剂:SiO2-Al2O3; 38年:Ficher-Tropsch合成,Fe,Co,Ni催化剂; 49年:催化重整催化剂:Pt-Re/Al2O3; 53年:乙烯聚合催化剂:Ziggler-Natte TiCl4-Al(C2H5)3 60年代:均相络合催化剂;分子筛催化剂。 D. 二十世纪初70年代以后(成熟时期) 78年:甲醇制汽油,甲醇芳构化,ZSM-5分子筛; 甲醇羰基化RhI2(CO)2;

催化剂的历史及其发展趋势

催化剂的历史及其发展趋势 1.催化剂的历史 催化现象由来已久,早在古代,人们就利用酵素酿酒制醋,中世纪炼金术士用硝石催化剂从事硫磺制作硫酸。十三世纪发现硫酸能使乙醇产生乙醚,十八世纪利用氧化氮之所硫酸,即所谓的铅室法[1]。最早记载“催化现象”的资料可以追溯到十六世纪末(1597年)德国的《炼金术》一书,但是当时“催化作用”还没有被作为一个正式的化学概念提出。一直到十九世纪初期,由于催化现象的不断发现,为了要解释众多的催化现象,开始提出了“催化”这一个名词。最早是在1835年,瑞典化学家J.J.Berzelius(1779-1848)在其著名的“二元学说”的基础上,把观察到的零星化学变化归结为是由一种“催化力(catalyticforce)”所引起的,并引入了“催化作用(cataysis)”一词[2]。从此,对于催化作用的研究才广泛的开展起来。 1.1萌芽时期(20世纪以前) 催化剂工业发展史与工业催化过程的开发及演变有密切关系。1740年英国医生J.沃德在伦敦附近建立了一座燃烧硫磺和硝石制硫酸的工厂,接着,1746 年英国J.罗巴克建立了铅室反应器,生产过程中由硝石产生的氧化氮实际上是一种气态的催化剂,这是利用催化技术从事工业规模生产的开端。1831年P.菲利普斯获得二氧化硫在铂上氧化成三氧化硫的英国专利。19世纪60年代,开发了用氯化铜为催化剂使氯化氢进行氧化以制取氯气的迪肯过程。1875年德国人E.雅各布在克罗伊茨纳赫建立了第一座生产发烟硫酸的接触法装置,并制造所需的铂催化剂,这是固体工业催化剂的先驱。铂是第一个工业催化剂,现在铂仍然是许多重要工业催化剂中的催化活性组分。19世纪,催化剂工业的产品品种少,都采用手工作坊的生产方式。由于催化剂在化工生产中的重要作用,自工业催化剂问世以来,其制造方法就被视为秘密。 1.2奠基时期(20世纪初) 在这一时期内,制成了一系列重要的金属催化剂,催化活性成分由金属扩大到氧化物,液体酸催化剂的使用规模扩大。制造者开始利用较为复杂的配方来开发和改善催化剂,并运用高度分散可提高催化活性的原理,设计出有关的制造技术,例如沉淀法、浸渍法、热熔融法、浸取法等,成为现代催化剂工业中的基

中国工业催化剂常规分类

中国工业催化剂常规分类 一、化肥催化剂(Catalysts for fertilizer manufacture) 一)脱毒剂(Purification agent) 1.活性炭脱硫剂(Active carbon desulfurizer) 2.加氢转化脱硫催化剂(Hydrodesulfurization Catalyst) 3.氧化锌脱硫剂(Zinc oxide sulfur absorbent) 4.脱氯剂(Dechlorinate agent) 5.转化吸收脱硫剂(Converted-absoubed desulfurizer) a.氧化铁脱硫剂(Iron ozide desulfurizer) b.铁锰脱硫剂(Iron -Nanganese oxide desulfurizer) c.羰基硫水解催化剂(Carbonyl Sulfide hydrolysis) 6.脱氧剂(Deoxidezer) 7.脱砷剂(Hydrodearsenic Catalyst) 二)转化催化剂(Reforming Catalyst) 1.天然气一段转化催化剂(Nature gas primary reforming catalyst) 2.二段转化催化剂(Secondary reforming catalyst) 3.炼厂气转化催化剂(Refinery gas steam reforming catalyst) 4.轻油转化催化剂(Naphtha steam reforming catalyst) 三)变换催化剂(CO shift catalyst) 1.中温变换催化剂(High temperature CO shift catalyst) 2.低温变换催化剂(Low temperature CO shift catalyst) 3.宽温耐硫变换催化剂(Sulfur tolerant shift catalyst) 四)甲烷化催化剂(Methanation catalyst) 1.甲烷化催化剂(Methanation Catalyst) 2.城市煤气甲烷化催化剂(Town gas methanation Catalyst) 五)氨合成催化剂(Ammonia synthesis Catalyst) 1.氨合成催化剂(Ammonia synthesis catalyst) 2.低温氨合成催化剂(Low temperature ammonia synthesis catalyst) 3.氨分解催化剂(Ammonia decomposition catalyst) 六)甲醇催化剂(Methanol Catalyst) 1.高压甲醇合成催化剂(High pressure methanol synthesis catalyst) 2.联醇催化剂(Combined methanol synthesis catalyst) 3.低压甲醇合成催化剂(Low pressure methanol synthesis catalyst) 4.燃料甲醇合成催化剂(Fuel methanol synthesis catalyst) 5.低碳混合醇合成催化剂(mixture of lower alcohols synthesis catalyst) 七)制酸催化剂(Acid manufacture catalyst) 1.硫酸生产用钒催化剂(Vanadium catalyst for manufacture of sulfuric acid)2.硝酸生产用铂网催化剂(Platinum ganze catalyst for manufacture) 3.非铂氨氧化催化剂(Non-platinum catalyst for ammonia oxidation) 4.铂捕集网(platinum catch gamze) 5.硝酸尾气处理催化剂(Treated catalyst for tail gas from nitric acid plant)八)制氮催化剂(Nitrogen manufacture catalyst) 1.一段制氮催化剂(First stage catalyst for ammonia combined) 2.二段制氮催化剂(Second stage catalyst for nitrogen manufacture)

阿司匹林制备中催化剂的比较研究(综述)

阿司匹林制备中催化剂的比较研究 【摘要】阿司匹林是一种常用的药物, 从催化剂和合成技术方面对阿司匹林生产工艺的改进作了简要综述。评价了各种工艺的优缺点, 认为对甲苯磺酸、硫酸氢钠、苯甲酸钠和维生素C等可望成为较好的能取代液体浓硫酸并对环境友好的固体酸催化剂。 【关键词】阿司匹林; 催化剂; 绿色合成; 酯化 阿司匹林也叫乙酰水杨酸,是一种历史悠久的解热镇痛药,诞生于1899年3月6日。用于治感冒、发热、头痛、牙痛、关节痛、风湿病,还能抑制血小板聚集,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,也可提高植物的出芽率[1],应用于血管形成术及旁路移植术也有效。临床上用于预防心脑血管疾病的发作。阿司匹林(Aspirin)是临床应用近百年的解热镇痛药,经典制备方法是用乙酸酐或乙酰氯在硫酸催化下对水杨酸酰化制得[2]。其生产工艺的突破、优选高效价廉的催化剂以及采用先进合成技术是关键。 1 催化剂改进研究 阿司匹林的合成原理是在催化剂作用下, 以醋酐为酰化剂, 与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸, 它存在如下缺点:1)收率较低(65%~ 70% ), 腐蚀设备, 有排酸污染。2)操作条件要求严格。浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化。3) 粗产品干燥时, 由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好。4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸已成为人们研究的新课题。综合文献分析可知, 改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 1. 1 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等。 1.1.1膨润土是以蒙脱石为主要矿物成分的非金属矿产资源,具备二维通道和大孔分子筛的性质,用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高,催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低,不污染环境,是一种绿色催化剂。该方法消除了环境污染,产品质量但收率中等[3]。 1.1.2对甲苯磺酸为固体有机酸,经济易得、污染少、收率高、操作方便,具有较好的工业化前景。对甲苯磺酸具有催化活性高,选择性好,操作方便,污染少等显著优点。 1.1.3活性二氧化锡性质稳定,操作安全,所得产品容易分离,回收的二氧化锡除去少量杂质可重复使用[4]。 1.1.4 NaHSO4催化通过正交实验,其催化合成乙酰水杨酸的产率与浓硫酸相当。用硫酸氢钾催化合成乙酰水杨酸,具有催化剂在反应过程保持固态,反应完毕经热过滤即可与产品分离、不溶于反应体系、易回收等特点,克服了浓硫酸对设备的强腐蚀性、对环境的污染等缺点,符合绿色化学的发展方向,具有工业应用的前景[5]。 1.2碱性化合物 碱性化合物为催化剂基于碱性化合物能与水杨酸反应、能破坏水杨酸分子内氢键、活化水杨

聚烯烃催化剂的发展现状与趋势

聚烯烃催化剂的发展现状与趋势 摘要:本文评述了自二十世纪五十年代初至今的近五十年时间里聚烯烃催化剂的几个重要发展阶段,讨论了Ziegler-Natta催化剂、无烷基金属化合物催化剂、茂金属催化剂及非茂有机金属催化剂的组成及特性,提出了我国在聚烯烃催化剂开发方面的对策。 关键词:Ziegler-Natta催化剂;茂金属催化剂;非茂催化剂;聚烯烃;对策 聚烯烃工业的发展是一个国家石化工业发展的重要标志,九十年代以来,世界聚烯烃生产能力大幅度增长,世界市场面临着供大于求的形势,在这种情况下,只有加大技术开发力度,掌握和采用先进技术,才能降低成本,提高产品附加值和市场竞争力。众所周知,聚烯烃技术的关键在于催化剂,聚烯烃树脂性能的改进与聚烯烃催化剂的开发有着极为密切的关系。所以研究和总结聚烯烃催化剂的发展历程对制定我国在聚烯烃工业中的中、长期战略目标具有十分重要的意义。 在各种聚烯烃催化剂中,目前使用最广泛的仍是齐格勒-纳塔(Ziegler-Natta)催化剂,它自五十年代问世以来,经过各国共同开发研究,经历了由第一代至第四代的发展,催化性能不断提高,推动了聚烯烃工业的迅猛发展,生产规模的不断扩大及高性能聚烯烃树脂(如高等规聚丙烯)的合成均可归因于齐格勒-纳塔催化剂的成熟与发展。目前对这类催化剂的研究和开发工作主要集中在高活性和高度立体定向催化剂的研制上。 1976年德国汉堡大学的Kaminsky教授偶然发现向Cp2ZrCl2 /三甲基铝(TMA)体系中加入少量水,催化剂活性会明显增大,后来对产生这一现象的原因进行了深入研究,结果发现,少量水的引入使TMA变成了甲基铝氧烷(MAO),由此揭开了烯烃聚合催化剂又一个新的篇章。茂金属催化剂由于具有理想的单活性中心,通过变换其配位基团又可以改变活性中心的电负性和空间环境,从而能精密地控制分子量、分子量分布、共聚单体含量和在主链上的分布及结晶构造。因而茂金属催化剂在聚合物品种的开发上显示出了明显的优势,用齐格勒-纳塔催化剂很难实现的聚烯烃树脂的功能化在茂金属催化剂作用下则很快得到了解决。正是由于茂金属聚烯烃所具备的优异性能,才使得茂金属催化剂自八十年代中期逐步成

工业催化文献综述(精)

工业催化文献综述 固体酸催化剂的发展及应用 班级: 学生学号: 学生姓名: 完成时间: 1 一、引言 催化剂(catalyst :是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。 :随着环境意识的加强以及环境保护要求的日益严格, ,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。关键词:固体酸催化剂 摘要:通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题 1固体酸催化剂的定义及分类 1.1定义

一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。 固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 1.2固体酸的分类 (1固载化液体酸 HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 (2氧化物简单 Al2O3,SiO2,B2O3,Nb2O5 复合 Al2O3-SiO2,Al2O3/B2O3 (3硫化物 CdS ZnS 2 (4金属磷酸盐 AlPO4,BPO 硫酸盐 Fe2(SO43,Al2(SO43,CuSO4 (5 沸石分子筛 ZSM-5沸石 ,X 沸石 ,Y 沸石 ,B 沸石丝光沸石 , 非沸石分子 筛 :AlPOSAPO系列 (6杂多酸 H3PW12O40,H4SiW12O40,H3PMo12O40 (7阳离子交换树脂苯乙烯 -二乙烯基苯共聚物 Nafion-H (8天然粘土矿高岭土 , 膨润土 , 蒙脱土 (9固体超强酸 SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3

钒钨钛催化剂的防护和废弃物处理措施

钒钨钛催化剂使用和处理防护措施 一、催化剂使用介绍 新的ZERONOXR 催化剂要经过OSHA(美国职业安全卫生管理局)认定,材料安全数据单(MSDS)也将随货发送,在装卸催化剂之前必须阅读材料安全数据单。并采取以下防护措施: 1) 催化剂防潮 2) 戴防护手套 3) 戴安全防护眼镜 4) 戴特制的呼吸器(过滤等级:欧洲P2,美国N-95) 5) 在处理催化剂时严禁饮食、吸烟等 6) 在处理催化剂后要漱口、洗脸、洗手等。 安全和环境信息 注意:如果不遵守以上预防措施,催化剂某些成分(如E.G,V2O5等)或催化剂粉尘会对外部环境产生以下影响: 1) 对眼睛和细胞膜产生刺激 2) 通过呼吸和吞咽进入体内,损坏人的健康 3) 生态破坏目前未知 4) 如有大量V2O5进入湖泊或河流,会对鱼类和浮游生物有一定伤害。

二、催化剂处理方法 采用填埋法,这是目前国际上发电厂废旧SCR脱硝催化剂通行的处理方法。由于失效电厂SCR脱硝催化剂含有危险成分(V2O5等),必须在获得许可资质的危险废弃物填埋处理厂进行处理。废催化剂首先要经过破碎处理,由专业废弃催化剂公司进行填埋处理,之后将催化剂模块外壳经处理后作为钢材回收。 对填埋过程的一些具体要求: 1)地质结构稳定,地震强度不超过7度的区域内; 2)设施底部必须高于地下水最高水位; 3)场界将位于居民区800m以外,地表水域150m以外; 4)将避免建在溶洞区域或易遭受严重自然灾害如洪水、滑坡、泥石流、潮汐等影响的地区; 5)将建在易燃,易爆等危险品仓库,高压输电线路防护区以外; 6)将位于居民中心区常年最大风频的下风向。 集中贮存的废物堆选址除满足以上要求外,还将满足基础必须防渗,防渗层至少1m厚粘土层(渗透系数10~7cm/s)或2mm厚高密度聚乙烯,或至少2mm 厚的其它人工材料,渗透系数10cm/s。 德国KWH公司

沸石分子筛催化剂的发展现状

沸石分子筛催化剂的发展现状 姓名: 班级: 学号:

沸石分子筛催化剂的发展现状 摘要:从工业催化的角度思考和表述了沸石分子筛催化剂合成、催化及应用,综述了国内外相关的最新研究进展,探讨了分子筛催化剂未来的发展方向。旨在引发人们对分子筛催化未来向经济、可控、高效催化、绿色环保和新应用等方面发展的思考与探索。 关键词:沸石分子筛催化剂、工业应用、未来发展 在我国的经济发展,工业是国民经济的重要组成部分,化学工业中80% 以上的过程涉及催化技术,尤其对于炼油与石化工业,催化剂更是不可或缺,其中分子筛催化剂未来的发展方向又深切关系着工业的发展。目前,分子筛催化剂在炼油与化工工业得到了研究与应用,如催化裂化、加氢裂化、带支链芳烃的烷基化、异构脱蜡以及轻烯烃聚合等。国内外已开发出一批有发展前景的高功能化、多功能化、精密化的分子筛催化剂材料。分子筛催化剂的合成方法主要有:①水热晶化法;②非水体系合成法;③干胶转换法;④无溶剂干粉体系合成法;⑤微波辐射合成法;⑥蒸汽相体系合成法;⑦多级孔道沸石分子筛的合成;⑧化学后处理法;⑨硬模板法;⑩软模板法[1]。 而沸石分子筛是其中重要一员。沸石分子筛的工业催化应用始于上世纪60 年代,Mobil 公司首先发现并采用八面沸石替代无定形硅铝催化剂, 应用于炼油中催化裂化(FCC) 过程, 大大提高了汽油产量以及原油利用率。目前,仅作为FCC催化剂一项,沸石分子筛催化剂的销售额就占全球催化剂的18.5%。沸石分子筛具有确定的孔体系,大的晶内比表面积和与硫酸或氯化铝相当的酸性,同时具有分子筛分或择形作用以及可改性或易掺杂等优点,它们对许多工业催化反应有高效促进作用。在各种酸性催化剂高性能中,反应了它的催化潜力。此外,还有其他类型的高效分子筛催化剂。 1、沸石分子筛结构 沸石分子筛是一族结晶性硅铝酸盐的总称。沸石最基本的结构是由(SiO4)四面体和(AlO4)四面体。相邻的四面体由氧桥连结成环,环有大有小,按成环的氧原子数划分,有四元氧环,五元氧环,六元氧环,八元氧环,十元氧环和十二元氧环;环是分子筛的通道孔口,对通过的分子筛起筛分作用。氧环通过氧桥相互

我所认识的催化剂

我所认识的催化剂 系所:应用与无机化学研究所 姓名:刘斌 学号:132311062 摘要:催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。 1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应

用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 1. 国外催化剂技术发展趋势 经过长期的发展,催化剂的应用领域已趋向如下局面:传统的石油化工技术基本趋于成熟,但需要新催化剂以满足原料性质变差、产品升级换代以及日趋苛刻的环保要求;天然气化工和煤化工在经济上还不能与石油化工竞争,所涉及的催化技术有很大的相似性;用于高附加值化学品和药物中间体合成为主的精细化工催化技术相对较为分散,发展迟缓,目前正在得到加强;以环境治理和环境保护为目的催化技术得到了广泛的重视。 据统计,全世界石油加工的产值为940多亿美元,基本有机化工和精细化工分别520和480亿美元左右,虽然在产量上,后二者之和低于前者,但其产值已超过石油加工,而且呈上升趋势。新型催化剂、高效催化反应技术和催化新材料及催化剂制备共性技术的创新是推动这些产业发展的核心。其中,环保用催化工艺及相应的新型催化剂、催化剂制备精细化等的发展是关键,也是今后催化剂技术的主要发展方向。 1.1 新型催化剂的开发与应用发展迅速 2.1.1 炼油与化工催化剂

相关主题