搜档网
当前位置:搜档网 › 基于灰色马尔科夫模型的传染病预测

基于灰色马尔科夫模型的传染病预测

基于灰色马尔科夫模型的传染病预测
基于灰色马尔科夫模型的传染病预测

基于灰色马尔科夫模型的传染病预测

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

摘要:对于传染病有效的预防和控制,一直以来就是卫生管理的重点。针对于传染性疾病发病不确定的特点,本文有效的将灰色模型和马尔科夫链融合在一起,根据GM(1,1)预测结果,利用马尔科夫链构建偏差的状态转移矩阵,对原来的灰色模型进行修正,有效的克服了数据波动大对于预测精度的不良影响,具有较好的预测效果。

关键词:灰色模型;马尔科夫模型;传染病预测前言

一直以来传染性疾病严重危害着人类的健康,对于传染性疾病的预测和预防是控制传染病的有效途径,当前社会各界对于疾病的预测进行了大量研究,对于疾病的预测具有较多的方法,而各种方法之间具有各自的优点和缺点。当前主要的预测方法有:马儿科夫模型,灰色模型,余弦模型,微分方程模型等。其中微分方程模型是一种较为简单,封闭的模型,余弦模型是一种利用周期变化来对事件进行预测的模型,针对该模型周期性变化的特点,它常常常用来研

究传染病的季节变化规律。马儿科夫模型则是根据状态转移概率矩阵来对未来某一时间的状况进行预测,它是一种区间预测。灰色模型最常用的是一阶一元GM(1,1)来进行预测,其基本思路是对事件序列整理之后构造白化方程,对一阶微分方程求解后得到预测结果。以上几种方法都有自身的特点和适用区域。张芳等[1]在分析货运价格的波动特征的基础上,认证运价指数符合马尔柯夫过程的条件,并利用马尔柯夫链预测对2008年7月~10月的指数进行区间预测,其实际值基本落入预测区间。谢劲心[2]利用余弦模型分析法对哈尔滨铁路局1992~1 996年度流行性暇腺炎发病季节特征进行分析,通过实验证明具有较好的预测效果。从而检验了马尔柯夫链预测方法的可靠性。王艳玲将灰色马尔可夫预测模型应用在工业二氧化碳排放量中的预测。实验证明,该法不但预测结果更可靠,而且能够对工业二氧化碳排放量的发展趋势进行宏观的把握,有利于决策者的决策行为。。,

1灰色模型

灰色系统理论(Grey System Theory)于1982年邓聚龙教授提出,引起了国内外学者的重视,并在各个领域得到了广泛的应用。“灰色”指的就是介于黑与白之间,即部分信息已知,部分信息未知。如今灰色系统模

型应用领域愈发广泛。在流行病领域预测方面主要应用一阶一元灰色预测方法,即GM(1,1)。

对于一般GM(1,1)预测方法,它的运算过程如下所示[31]~[33]:

(1)获取原始先验数列,其中t为t时刻的原始数列。

(2)对该序列进行累加,经过累加后序列变为了有序数列。

(3)对累加之后的数列求均值。

(4)根据以上各式建立GM(1,1)模型.,将该模型便是成为白化方程:,其中的参数利用最小二乘法进行估计

,

(5)最后将获取得到的一阶微分方程求解.

根据公式,即可求出所要求的预测值

但是基于灰色模型的一阶一元模型同时具有其的局限性,根据以上的分析可以看出利用该方法预测,对于先验数据波动如果不是太大那么它得到的预测结果也是想对较为精确地,但是一旦作为先验数据构成的数据列具有较大的波动,这个时候GM(1,1)它本所举有的局限性也就出现了。

2马尔科夫模型

马尔科夫模型自20世纪俄国数学家Markov提出以来得到了广泛的应用[5].态随机数学模型,通过对随机过程在前期不同时刻状态之间的变化规律,进而构建状态转移矩阵,利用状态转移矩阵来推测将来各个时刻事件所处的状态。相对于灰色模型而言,马尔科夫Markov模型具有无后效性,所谓的无后效性是指将来的预测结果只于当前的状态数据有关,而并不依赖于前期的数据,因而当数据的随机波动性较大时,对于马尔科夫模型的影响是较小的。

利用马尔科夫模型链进行预测,实际上就是利用的状态转移概率矩阵,根据当前数据预测后期数据。所以预测的第一步便是状态的划分。

状态划分

对于任意一个符合n阶马尔可夫非平稳随机序列将上述序列在数据—时间平面作曲线,可以将上述序列划分若干个区间,即若干个状态。如: ,则从区间一进人区间二的样本数与区间一内样本量之比即为从区间一转入区间二的转移概率,或者称为这两个状态间的状态转移概率P,它即表明如果在时刻t,当前处于状态一,在t+1时刻它将以概率P处于状态二。根据前面的讨论我们知道马尔科夫链的预测其实就是利用状态转移概率来预测t+1时刻的状态,所以当对

状态划分后,下一步就好构建状态转移矩阵。

状态转移概率矩阵

一个N阶的马尔科夫链实际上是有n个状态集合和一个状态转移矩阵构成的。状态转移矩阵可以由下式计算:

其中是状态Ei经过m次转移到Ej的概率,为从状态Ei经过m次转移到Ej的次数,为状态Ei出现的频率。针对于传染病的预测而言,一般以年为预测单位,实际上指从一种状态经过m年转移到另一种状态的次数,为该传染病状态在统计数据中出现的总数。根据上式可以确状态转移矩阵如下:

设系统初始时刻t = 0 的卫生病例数据为E(0),则后续传染病状况的预测为:

马尔科夫模型在预测的过程中可以抵抗数据波动性的变化所造成的影响,但它要求必须具有足够长的时间序列资料才能保证处理结果的可靠性,并且马尔科夫模型在短期预测中的准确度很高,而对长期预测效果欠佳[6]。

2灰色马尔科夫模型

根据以上马尔科夫模型和灰色预测模型的基本知识,我们发现单纯的使用任何一种预测方法很难取得较好的预测效果.马尔科夫模型是利用离散的时间序

列进行预测,即使对于先验数据中波动较大的情况,它仍然仍然能够提供较好的预测结果,它是一种区间预测,因为在预测过程中它依靠状态转移矩阵来获取预测值,状态转移矩阵同时也是根据数据库中数据的变化而不断的发生改变,通常是最近一段时间的数据,故而使得马尔科夫预测模型对于短期的预测较为准确,对于长期的预测过程效果欠佳.

因此根据以上的分析,本文经过大量的理论研究和实验结果证明利用灰色马尔科夫模型具有较好的预测效果。,我们利用灰色模型和马尔科夫模型的综合方法,即灰色马尔科夫模型来进行突发性公共卫生时间的预测,方法步骤如下所示:

(1)根据第一节中灰色模型建模公式构建GM(1,1)

(2)利用上述灰色模型的预测结果,进行状态划分。以曲线为基准,在其上下两侧作m条与之平行的曲线,划分出与曲线平行的若干区域,每一区域构成一个状态。若以Qi表示第i种状态,则:

(3)根据状态转移矩阵计算公式求的转移概率矩阵。

(4)利用转移矩阵确定预测值。

3小结

本文将灰色模型和马尔科夫模型有效的结合在了一起,过该模型,能够较为准确的预测出某一传染性疾病在某一时刻时发病的概率,灰色马尔科夫模型对于灰色模型和马尔科夫模型进行了扬长避短,解决了当出现较大随机状况时数据波动所造成的预测欠准确的确定,同时又兼顾了灰色模型本身的特点,使得整个的预测过程不再需要较长的时间序列资料,只要具有四个数据就可以完成整个的预测过程,这对于一些突发性的公共卫生事件显得尤为重要,对于没有较多先例,发生突然的卫生疫情该模型仍然能够有着较好的预测结果,对于卫生疫情的防治能够为管理人员提供辅助决策的作用。

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

基于灰色马尔科夫模型的传染病预测

基于灰色马尔科夫模型的传染病预测 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 摘要:对于传染病有效的预防和控制,一直以来就是卫生管理的重点。针对于传染性疾病发病不确定的特点,本文有效的将灰色模型和马尔科夫链融合在一起,根据GM(1,1)预测结果,利用马尔科夫链构建偏差的状态转移矩阵,对原来的灰色模型进行修正,有效的克服了数据波动大对于预测精度的不良影响,具有较好的预测效果。 关键词:灰色模型;马尔科夫模型;传染病预测前言 一直以来传染性疾病严重危害着人类的健康,对于传染性疾病的预测和预防是控制传染病的有效途径,当前社会各界对于疾病的预测进行了大量研究,对于疾病的预测具有较多的方法,而各种方法之间具有各自的优点和缺点。当前主要的预测方法有:马儿科夫模型,灰色模型,余弦模型,微分方程模型等。其中微分方程模型是一种较为简单,封闭的模型,余弦模型是一种利用周期变化来对事件进行预测的模型,针对该模型周期性变化的特点,它常常常用来研

究传染病的季节变化规律。马儿科夫模型则是根据状态转移概率矩阵来对未来某一时间的状况进行预测,它是一种区间预测。灰色模型最常用的是一阶一元GM(1,1)来进行预测,其基本思路是对事件序列整理之后构造白化方程,对一阶微分方程求解后得到预测结果。以上几种方法都有自身的特点和适用区域。张芳等[1]在分析货运价格的波动特征的基础上,认证运价指数符合马尔柯夫过程的条件,并利用马尔柯夫链预测对2008年7月~10月的指数进行区间预测,其实际值基本落入预测区间。谢劲心[2]利用余弦模型分析法对哈尔滨铁路局1992~1 996年度流行性暇腺炎发病季节特征进行分析,通过实验证明具有较好的预测效果。从而检验了马尔柯夫链预测方法的可靠性。王艳玲将灰色马尔可夫预测模型应用在工业二氧化碳排放量中的预测。实验证明,该法不但预测结果更可靠,而且能够对工业二氧化碳排放量的发展趋势进行宏观的把握,有利于决策者的决策行为。。, 1灰色模型 灰色系统理论(Grey System Theory)于1982年邓聚龙教授提出,引起了国内外学者的重视,并在各个领域得到了广泛的应用。“灰色”指的就是介于黑与白之间,即部分信息已知,部分信息未知。如今灰色系统模

数学建模传染病模型剖析

传染病的传播 摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合

MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。 关键词:微分方程 SARS 数学模型 感染率 1问题的重述 SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: 1)建立传染病传播的指数模型,评价其合理性和实用性。 2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件1提供的数据供参考。 3)说明建立传染病数学模型的重要性。 2 定义与符号说明 N …………………………………表示为SARS 病人的总数; K (感染率)……………………表示为平均每天每人的传染他人的人数; L …………………………………表示为每个病人可能传染他人的天数; dt d N(t)………………………… 表示为每天(单位时间)发病人数; N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数; t …………………………………表示时间; R 2 ………………………………表示拟合的均方差; 3 建立传染病传播的指数模型 3.1模型假设 1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。单位时间(一天)内一个病人能传播的人数是常数k ; 2) 在 所传染的人当中不考虑已治愈的人是否被再次被传播,治愈的人数占该地区的总人数是绝对的少数,治愈者不会再被传播并不影响疫情在该时间内的感染率常数k; 3) 病者在潜伏期传播可能性很小, 仍按健康人处理; 4) SARS 对不同的年龄组的感染率略有不同(相差不大),但我们只考虑它健康人的感染率是一样的;

数学建模之传染病模型

第五章 微 分 方 程 模 型 如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型. §1 传 染 病 模 型 建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题. 考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位. 一. SI 模 型 假设条件: 1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人 和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i . 2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康 人有效接触时,使健康者受感染变为病人. 试建立描述()t i 变化的数学模型. 解: ()()1=+t i t s ()()N N t i N t s =+∴ 由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为 ()t i N ,∴每天共有()()t i N t s λ个健康人被感染. 于是i s N λ就是病人数i N 的增加率,即有 i s N dt di N λ= (1)

i s dt di λ=∴ 而1=+i s . 又记初始时刻(0=t )病人的比例为0i ,则 ()()?????=-=0 01i i i i dt di λ 这就是Logistic 模型,其解为 ()t e i t i λ-??? ? ??-+= 11110 [结果分析] 作出()t t i ~和i dt di ~的图形如下: 1. 当2 1=i 时,dt di 取到最大值m dt di ?? ? ??,此时刻为 ??? ? ??-=-11ln 01i t m λ 2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的). 二. SIS 模 型 在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.

灰色预测马尔科夫

姓名:徐茂森 学号:200841004047 班级:统计2班 日期:2011年1月9日

基于灰色——马尔科夫模型的粮食产量预测 ——以山东省潍坊市粮食产量为例 【摘要】:本文基于灰色预测GM (1,1) 模型基础上,结合马尔科夫链,针对传统预测方法精确度不高的问题,研究山东省粮食产量变化来预测未来粮食产量。理论分析和实证计算表明,此种方法精确度更高,更加准确的预测未来的发展。 【关键词】:灰色预测模型,马尔可夫链,粮食产量 一、引言 我国是一个粮食大国,粮食关系到民生。对于我们这个具有13亿人口的大国来 说,粮食的作用更加重要。如今存在很多预测方法能够预测粮食的产量,都有一定的优点和缺点。灰度---马尔科夫模型是同时运用灰度预测模型和马尔科夫模型对问题进行分析预测。灰度预测模型通常是研究宏观规律,马尔科夫模型而是研究围观波动。恰当的运用这两种模型综合分析问题,会是预测精度明显提高。 二、理论分析及模型建立 2.1、 灰色模型GM (1,1)的基本思想 2.1.1、灰色预测 灰色系统分析方法是通过鉴别系统因素之间的发展趋势的相私或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列具有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。 灰色预测使用灰色模型GM (1,1)来进行定量的分析。 2.1.2、GM (1,1)模型的建立 令(0)X 为GM (1,1)建模序列 (0) X =((0)x (1),( 0)x (2),…,(0)x (n )) (1) X 为(0)X 的1-AGO 序列

数学建模论文资料传染病模型)

传染病模型 摘要 “传染病的传播过程”数学模型是通过控制已感染人群来实现的。利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害。由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。

一.问题的提出 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。 二.问题的分析 2.1 问题分析 描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。 2.2模型分工

Markov的各种预测模型的原理与优缺点介绍

Markov的各种预测模型的原理与优缺点介绍 建立有效的用户浏览预测模型,对用户的浏览做出准确的预测,是导航工具实现对用户浏览提供有效帮助的关键。 在浏览预测模型方面,很多学者都进行了卓有成效的研究。AZER提出了基于概率模型的预取方法,根据网页被连续访问的概率来预测用户的访问请求。SARUKKAI运用马尔可夫链进行访问路径分析和链接预测,在此模型中,将用户访问的网页集作为状态集,根据用户访问记录,计算出网页间的转移概率,作为预测依据。SCHECHTER构造用户访问路径树,采用最长匹配方法,寻找与当前用户访问路径匹配的历史路径,预测用户的访问请求。XU Cheng Zhong等引入神经网络实现基于语义的网页预取。徐宝文等利用客户端浏览器缓冲区数据,挖掘其中蕴含的兴趣关联规则,预测用户可能选择的链接。朱培栋等人按语义对用户会话进行分类,根据会话所属类别的共同特征,预测用户可能访问的文档。在众多的浏览模型中,Markov模型是一种简单而有效的模型。Markov模型最早是ZUKERMAN等人于1999年提出的一种用途十分广泛的统计模型,它将用户的浏览过程抽象为一个特殊的随机过程——齐次离散Markov模型,用转移概率矩阵描述用户的浏览特征,并基于此对用户的浏览进行预测。之后,BOERGES等采用了多阶转移矩阵,进一步提高了模型的预测准确率。在此基础上,SARUKKAI建立了一个实验系统[9],实验表明,Markov预测模型很适合作为一个预测模型来预测用户在Web站点上的访问模式。 1 Markov模型 1.1 Markov模型 Markov预测模型对用户在Web上的浏览过程作了如下的假设。 假设1(用户浏览过程假设):假设所有用户在Web上的浏览过程是一个特殊的随机过程——齐次的离散Markov模型。即设离散随机变量的值域为Web空间中的所有网页构成的集合,则一个用户在Web中的浏览过程就构成一个随机变量的取值序列,并且该序列满足Markov性。 一个离散的Markov预测模型可以被描述成三元组,S代表状态空间;A是转换矩阵,表

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

灰色预测模型理论及其应用

灰色预测模型理论及其应用 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测. 灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。 一、灰色系统及灰色预测的概念 灰色系统 灰色系统产生于控制理论的研究中。 若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。 若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。 灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。 特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。 灰色预测 灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或

传染病传播数学模型

第二节传染病传播的数学模型很多医学工作者试图从医学的不同角度来解释传染病传播时的一种现象,这种现象就是在某一民族或地区,某种传染病传播时,每次所涉及的人数大体上是一常数。结果都不能令人满意,后来由于数学工作者的参与,用建立数学模型来对这一现象进行模拟和论证,得到了较满意的解答。 一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要因素。先把问题简化,建立相应的数学模型。将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。从而使模型逐步完善。下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。 一.最简单的模型 假设:(1) 每个病人在单位时间内传染的人数是常数k;(2) 一个人得病后经久不愈,并在传染期内不会死亡。 以i(t)表示t时刻的病人数, k表示每个病人单位时间内传染的人 数,i(0)= i表示最初时有0i个传染病人,则在t?时间内增加的病人 数为 ()()() i t t i t k i t t +?-=?

两边除以t ?,并令t ?→0得微分方程 ()()()000di t k i t dt i i ?=???=? ………… (2.1) 其解为 ()00 k t i t i e = 这表明传染病的转播是按指数函数增加的。这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。但由(2.1)的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。最多所有的人都传染上就是了。那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。 二. 模型的修改 将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。i (0)= 0i 。 假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成正比。即()0k ks t =; (2) 一人得病后,经久不愈,并在传染期内不会死亡。 由以上假设可得微分方程

传染病的数学模型

传染病模型详解 /,SI SIS SIR 经典模型 经典的传播模型大致将人群分为传播态S ,易感染态I 和免疫态R 。S 态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。R 表示当经过一个或多个感染周期后,该个体永远不再被感染。 SI 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传 播病毒或谣言等。假设个体接触感染的概率为β,总人数为 N ,在各状态均匀混合网络中建立传播模型如下: dS SI dt N I SI d t N ββ?=-????=?? 从而得到 (1)di i i dt β=- 对此方程进行求解可得: 0000(),01t t i e i t i i i i e ββ==-+() 可见,起初绝大部分的个体为I 态,任何一个S 态个体都会遇到I 态个体并且传染给对方,网络中的S 态个数随时间成指数增长。与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。 然而在现实世界中,个体不可能一直都处于传播态。有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。而有些节点可能会从S 态转变I 态,因此简单的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现SIS 模型和SIR 模型。 SIR 是研究复杂网络谣言传播的经典的模型。采用与病毒传播相似的过程中的S ,I ,R 态 代表传播过程中的三种状态。Zanetee ,Moreno 先后研究了小世界传播过程中的谣言传播。 Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传播)。 假设没有听到谣言I 个体与S 个体接触,以概率()k λ变为S 个体,S 个体遇到S 个体 或R 个体以概率()k α变为R ,如图 所示。建立的平均场方程:

灰色预测模型及应用论文

管理预测与决策的课程设计报告 灰色系统理论的研究 专业:计算机信息管理 姓名:XXX 班级:xxx 学号:XX 指导老师:XXX 日期2012年11月01 日

摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型, 另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。通过给 出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论

目录 1、引言1 1.1、研究背景 (1) 1.1.1、国内研究现状 1 1.1.2、国外研究现状 1 1.2、研究意义 (2) 2、灰色系统及灰色预测的概念2 2.1、灰色系统理论发展概况2 2.1.1、灰色系统理论的提出2 2.1.2、灰色系统理论的研究对象 2 2.1.3、灰色系统理论的应用范围 2 2.1.4、三种不确定性系统研究方法的比较分析 3 2.2、灰色系统的特点.4 2.3、常见灰色系统模型 5 2.4、灰色预测 (5) 3、简单的灰色预测——GM(1,1)预测6

数学建模—传染病模型

传染病模型 摘要 当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。 不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。 本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。 关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。

一、问题重述 有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。 2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 二、问题分析 1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、问题表述中已给出了各子问题的一些相应的假设。 3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。 因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。

灰色预测模型及应用论文

灰色系统理论的研究 摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计 算式具有唯一性和规范性[]4 。通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型, 并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论

灰色系统理论的研究 GM(1,1)预测与关联度的拓展 1、引言 模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。黑箱模型:信息缺乏,暗,混沌。白箱模型:信息完全,明朗,纯净。灰箱模型:信息不完全,若明若暗,多种成分。 1.1、研究背景 1.1.1、国内研究现状 灰色系统理论在我国提出至今已有二十几年的历史,它的应用引起了人们的广泛兴趣,不论是我国粮食发展决策中总产量预测模型,还是对湖北2000年宏观经济的发展趋势的量化分析,抑或是河南人民胜利渠的最佳灌溉决策,还是武汉汉阳火车对火车装车吨位的预测等,无一不是灰色预测系统理论杰出的硕果。 1.1.2、国外研究现状 灰色系统理论在国际上也产生了很大的影响,IBM公司要求将灰色系统软件加入其为全球服务的管理软件库。目前英国、美国、德国、日本、澳大利亚、加拿大、奥地利、俄罗斯等国家、地区及国际组织有许多学者从事灰色系统的研究和应用。 国内外84所高校开设了灰色系统课程,数百名博士、硕士研究生运用灰色系统的思想方法开展学科研究,撰写学位论文。国际、国内200多种学术期刊发表灰色系统论文,许多会议把灰色系统列为讨论专题,SCI、EI、ISTP、SA、MR、MA等纷纷检索我国灰色论著。 1.2、研究意义 邓聚龙教授提出灰色系统有着重要的意义: (1) 是系统思维和系统思想在方法论上的具体体现; (2) 是科学方法论上的重大进展, 具有原创性的科学意义和深远的学术影响,是对系统科学的新贡献。 2、灰色系统及灰色预测的概念 2.1、灰色系统理论发展概况 2.1.1、灰色系统理论的提出 著名学者邓聚龙教授于20世纪70年代末、80年代初提出。

SI传染病模型

SI传染病模型 1.模型的建立 由题意知道:在此环境中仅存在健康者(即易感者)和已感者(即病人),且在t时刻人数分别为S(t),L(t),不考虑人口的出生与死亡,此环境中的人口数量 不变N即K,于是在单位时间内每天每个病人感染的人数βS(t)L(t),它是 病人的增加率,所以有: d L =β*S()t*L()t L()0=L1 (1) d t 在t时刻健康者与已感者满足关系式:S()t+L ()t=K(2) 此模型满足Logistic模型,所以它的解为: L(t)=1/1+((1/L1)-1)*exp(-β*t) 1.求平衡点 syms r S L K y y=r*L*(K-L); solve(y) ans = SIS传染病模型 1.模型假设SIS模型的假设条件1.2与SI模型相同,增加的条件为:每天被治

愈的病人数占病人的总数为m ,此称为日治愈率。病人治愈后仍然可以成为被感染的健康者,显然,平均传染期为1/m 。 2. 模型建立 此模型可以修整为:(a 代表β) ()()()()***dL t a S t L t m L t dt =- ()()L t S t K += ()01L L = 求平衡点:(s, l ,k 分别代表S , L ,K ) syms a t s l m k f f=a*l*(k-l)-m*l; solve(f) ans = -a*(-k+l) 1.δ大于时的图像,10,0.8a a b b δ? ? = == ??? 2.δ小于1时的图像)(0.2,0.8a b ==

模型假设:在SIS 模型中我们增加:人群可分为健康者,病人,病疫免疫的移出者,且三种人群的数量分别为S ()t ,L ()t ,R ()t ;病人的日接触率和日治愈率分别为β,m 所以传染期为 m β δ = 1. 模型建立 ()()()()***dL t a S t L t m L t dt =- ()()L t S t K += ()01L L = (1) ()()()**dS t a S t L t dt =- ()()00S K L =- (2) 求平衡点 syms a t s l m k [s,l]=solve('a*l*(k-l)-m*l','-(a*s*(k-s))') s = a*k-a*l a*k-a*l l = 0 k 健康者与病人数量在总人数中的比例()s t ,()i t 对时间的变化关系图为:

实验7 马尔科夫预测

实验7:马尔柯夫预测 7.1实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 7.2实验原理 7.2.1 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 7.2.1.1马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 7.2.1.2状态及状态转移 1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 7.2.2状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,

人力供给预测之马尔科夫模型

人力供给预测之马尔科夫模型 马尔科夫模型是根据历史数据,预测等时间间隔点上的各类人员分布状况。此方法的基本思想是根据过去人员变动的规律,推测未来人员变动的趋势。因此,运用马尔科夫模型时假设——未来的人员变动规律是过去变动规律的延续。既是说,转移率要么是一个固定比率,要么可以通过历史数据以某种方式推算出。 步骤: (1)根据历史数据推算各类人员的转移率,得出转移率的转移矩阵;(2)统计作为初始时刻点的各类人员分布状况; (3)建立马尔科夫模型,预测未来各类人员供给状况。 运用马尔科夫模型可以预测一个时间段后的人员分布,虽然这个时间段可以自由定义,但较为普遍的是以一年为一个时间段,因为这样最为实用。在确定转移率时,最粗略的方法就是以今年的转移率作为明年的转移率,这种方法认为最近时间段的变化规律将继续保持到下一时间段。虽然这样很简便,但实际上一年的数据过于单薄,很多因素没有考虑到,一个数据的误差可能非常大。因为以一年的数据得出的概率很难保证稳定,最好运用近几年的数据推算。在推算时,可以采用简单移动平均法、加权移动平均法、指数平滑法、趋势线外推法等,可以在试误的过程中发现哪种方法推算的转移率最准确。尝试

用不同的方法计算转移率,然后用这个转移率和去年的数据来推算今年的实际情况,最后选择与实际情况最相符的计算方法。转移率是一类人员转移到另一类人员的比率,计算出所有的转移率后,可以得到人员转移率的转移矩阵。 转移出i类人员的数量 i类人员的转移率= (3-1) i类人员原有总量 人员转移率的转移矩阵: P11 P12 (1) P21 P22 (2) P = P31 P32 (3) (3-2)

matlab传染病模型

传染病模型实验 实验目的: 理解传染病的四类模型,学会利用Matlab软件求解微分方程(组)。 实验题目: 利用Matlab求解传染病的SIS微分方程模型,并绘制教材P139页图3-图6。 SIS模型 假设: (1)、t时刻人群分为易感者(占总人数比例的s(t))和已感染者(占总人数比例的i(t))。 (2)、每个病人每天有效接触的平均人数是常数λ,λ称为日接触率,当健康者与病人接触时,健康者受感染成为病人。 (3)、病人每天被治愈的占病人总数的比例为μ,称为日治愈率,显然1 为这种传染病的平均传染期。 μ 则建立微分方程模型为: 令,则模型可写作 分别作图: 页脚内容1

当sigma>1时 Step1:先定义函数 function y=pr1(i,lambda,sigma) y=-lambda.*i.*(i-(1-1./sigma)) step2:作图 lambda=0.3;sigma=2; i=0:0.01:1; y=pr1(i,lambda,sigma) plot(i,y) 页脚内容2

页脚内容3 00.10.20.30.40.50.60.70.80.91 -0.16 -0.14-0.12-0.1-0.08-0.06-0.04-0.020 0.02 当sigma<1时 Step1:先定义函数 function y=pr1(i,lambda,sigma) y=-lambda.*i.*(i-(1-1./sigma)) step2:作图 lambda=0.3;sigma=0.5; i=0:0.01:1; y=pr1(i,lambda,sigma) plot(i,y)

传染病模型

传染病模型 医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。 社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。 一般把传染病流行范围内的人群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能力,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的人,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈而具有免疫力的人。 问题提出 请建立传染病模型,并分析被传染的人数与哪些因素有关?如何预报传染病高潮的到来?为什么同一地区一种传染病每次流行时,被传染的人数大致不变? 问题分析: 关键字: 社会、经济、文化、风俗习惯等因素 摘要: 随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制。但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。20世纪80年代十分险恶的爱滋病毒开始肆虐全球,至今带来极大的危害。长期以来,建立制止传染病蔓延的手段等,一直是各国有关专家和官员关注的课题。不同类型传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里不可能从医学的角度一一分析各种传染病的传播,而只是按照一般的传播模型机理建立几种模型。

数学建模 模型1 在这个最简单的模型中,设时刻t 的病人人数x(t)是连续、可微函数, 增加,就有 病人人数的到考察的人数为常数足使人致病接触并且每天每个病人有效t t t ?+λ) ( t t x t x t t x ?=-?+)()()(λ 程有个病人,即得微分方时有再设00x t = )1()0(,d d 0x x x t x ==λ 方程(1)的解为 )2()(0t e x t x λ= 结果表明,随着t 的增加,病人人数x(t)无限增长,这显然是不符合实际的。 建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别这两种人。 模型2 SI 模型 假设条件为 1.在疾病传播期内所考察地区的总人数N 不变,即不考虑生死,也不考虑迁移。人群分为易感染者(Susceptible )和已感染者(Infective )两类(取两个词的第一个字母,称之为SI 模型),以下简称健康者和病人。时刻t 这两类人在总人数中所占比例分别记作s(t)和i(t)。 2.每个病人每天有效接触的平均人数是常数,称为日接触率。当病人与健康者接触时,使健康者受感染变为病人。 的增加率,即有 病人数就是 个健康者被感染,于是有,所以每天共 为变为病人,因为病人数个健康者 天可使根据假设,每个病人每Ni Nsi t i t Ns t Ni t s λλλ)()()()( ) 3(d d Nsi t i N λ=)4(1)()(=+t i t s ,则 病人的比例为再记初始时刻0)0(i t =)5()0(,)1(d d 0i i i i t i =-=λ 方程(5)是Logistic 模型。它的解为 )6(1111 0t e i λ-??? ? ??-+ 所示。和图的图形如图和21~d d ~)(i t i t t i

相关主题