搜档网
当前位置:搜档网 › 浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形
浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形

摘要文章以上海市轨道交通M8线淮海路站~复兴路站区间隧道的施工为例,对引起隧道施工后期变形的多种因素进行分析,并阐述了防治措施。

关键词盾构法隧道后期变形影响因素防治措施

1 概述

在上海地铁隧道施工过程中,经常发现已拼装成环的隧道在刚离开盾尾或脱离盾尾3~4环后,就发生环面不平整现象,即D块管片滞后于B1、B2块管片,B1、B2块管片滞后于L1、L2块管片,从而产生管片角部碎裂,影响隧道的施工质量。

通过对环缝错位现象的分析,认为这种现象是由于成环管片在出盾尾后发生了隧道的后期变形(上浮或沉降)而导致的。以上海轨道交通M8线复兴路站~淮海路站区间隧道施工的有关数据为依据,阐述影响隧道后期变形的各种因素,并介绍相应的防治措施。

2 工程概况

上海轨道交通M8线复兴路站~淮海路站区间隧道起始于复兴路站北端头井,止于淮海路站南端头井,推进里程为SK20+236.595~SK19+409.846,全长826.749 m,在SK19+785.640处设有1条联络通道。土压平衡盾构机由复兴路站北端头井下井,出洞后上行线沿西藏南路往北推进,途径自忠路、方浜路、浏河路、会稽路、寿宁路、桃源路、淮海路,穿越众多管线后到淮海路站南端头井。盾构机在淮海路站端头井内调头后,下行线沿西藏南路往南推进到复兴路站北端头井(见图1)。

图1 区间隧道示意图

3 工程地质

工程地质是影响隧道后期变形的主要因素之一。

本工程隧道穿越的土层为④淤泥质粘土层、⑤1粉质粘土层,各土层性能指标及特征见表1。

4 影响隧道后期变形的主要原因及分析

4.1 设计轴线

复兴路站~淮海路站区间隧道最大坡度为-11.675‰,隧道顶覆土厚9.0~16.3 m。上、下行线隧道推

进竖向轴线坡度见表2。

设计轴线为下坡的隧道段,后期发生隧道上浮的现象比较普遍,在坡度发生变化的竖曲线段,隧道上浮特别严重。如图2是设计坡度为-11.607‰的1段上行线(375~530环)隧道后期上浮曲线,其后期上浮量大部分均超过30 mm,仅有1处为15 mm,最大值达到82 mm。

设计轴线为上坡的隧道段,后期发生隧道上浮的现象较少,若盾构推进的轴线与设计轴线不相吻合,则隧道还可能产生下沉。如图3是设计坡度为11.670‰的1段下行线(260~296环)隧道后期上浮曲线,其后期变形量明显较小,大部分区域均发生了后期沉降,局部发生后期上浮,但最大上浮量仅为25 mm。

4.2 实际坡度

除了隧道的设计坡度对后期沉降有影响外,盾构掘进过程中实际坡度对后期沉降也有一定的影响。图4是上行线230~535环隧道(设计坡度为-11.607‰的下坡)的后期变形情况,图5为上行线230~535环隧道的实际坡度。

通过图4、图5的曲线对比得出:在工程地质、轴线均相同的情况下,隧道后期变形曲线与实际坡度曲线的变化趋势有众多类似的地方。可以认为:在盾构推进的过程中,隧道的后期变形与实际坡度有关,隧道坡度发生变化,相应的隧道后期变形也会发生类似变化,即坡度减小时,隧道上浮量相应减小;反之,当施工中实际坡度增大时,隧道上浮量容易增大。

4.3 注浆

盾构在掘进的过程中采用同步注浆的工艺,由于同步注浆的浆液在注入隧道外壁与土层间的空隙中不能马上固结,在推进过程中,浆液顺隧道的圆弧流至隧道的底部,大量浆液淤积于隧道底部,对隧道产生了一定的浮力,导致隧道容易上浮。

4.4 超前量

在盾构推进过程中,往往存在一定的超前量,当超前量不正确时,则管片环面与千斤顶的顶力方向不垂直,使盾构推力产生了分力,导致管片出盾尾后发生偏移。通过对隧道后期的复测数据分析,隧道后期发生的偏移与当时的超前量有关,即下超过大,易导致隧道后期上浮;上超过大,易导致隧道后期沉降。

4.5 土质

对于相同坡度的隧道,由于土质的不同,隧道后期产生的沉降和上浮也不同。从已经施工的几条隧道来看,盾构在淤泥质粘土或粘土层中掘进,隧道的后期变形量相对较大;而在粉砂土或砂土层中掘进,隧道的后期变形量相对较小。

5 防治措施

5.1 抗浮

⑴复紧管片间的连接螺栓,减小管片与螺栓间的自由活动空间;

⑵提高同步注浆浆液的稠度(控制在9.5左右),可使地面沉降相对稳定,对隧道上浮也有一定的制约;

⑶在推进中,盾构的坡度略小于隧道的坡度,可减小千斤顶后座力中的向上分力;

⑷根据测量到的隧道上浮情况,在推进过程中,有针对性地将管片的高程控制在-20~-30 cm左右(虽不能减小隧道上浮量,但可以有效地保证隧道轴线,减少超标);

⑸采用二次壁后注浆工艺(从盾尾后5环的L1、L2管片注浆孔注入,每3环注1次,每孔注浆量为

1.5m3),对隧道后期上浮有一定的制约(但不能控制刚出盾尾的那环管片的上浮,而且会引起地面明显隆起)。

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

地铁隧道盾构法施工中的地面沉降问题探析

地铁隧道盾构法施工中的地面沉降问题探析 摘要:随着我国经济的高速发展,我国地铁高速发展,盾构法具有不影响地面 交通、对周围建(构)筑物影响小、适应复杂地质条件、施工速度快等众多优点而 在地铁工程建设中广泛应用。但盾构法隧道工程是在岩土体内部进行的,无论其埋深大小,开挖施工都不可避免地会对周围土层产生扰动,从而引起地面沉降(或隆起),危机邻近建筑物或地下管道等设施的安全。因此,施工能产生多大的沉降或隆起, 会不会影响相邻建筑物的安全,是地铁隧道盾构施工中最关键的问题。要在地铁工程施工前对工程可能引起的地面沉降问题有所估计,就首先需要了解盾构法施工引起的地面沉降的一般规律和机理,进而提出相应的安全判别标准和控制原则,达到 事先防控的目的。 关键词:地铁隧道;盾构法;地面沉降 引言 随着城市交通事业的高速发展,在地铁施工中盾构施工最为普遍,地铁施工引发的地面 沉降问题逐渐受到了人们的重视,怎样对盾构施工中的地面沉降问题进行合理的预测和防范,成为了地铁盾构施工亟需解决的重要问题。本文主要阐述了有关地铁隧道盾构法施工中的地 面沉降问题研究。 1地铁隧道盾构施工引起地面沉降主要影响因素分析 1.1覆土厚度H和盾构外径D的影响 在地铁施工过程中隧道盾构技术非常重要,盾构外径越大,由盾构施工引起的单位长度的 地层损失就越大,在相同地面沉降槽宽度下,最大地面沉降也随着增大;而隧道覆土厚度越大,则 最大地面沉降值就会越小,但地面沉降槽宽度会越大。最大地面沉降随覆土厚度H与盾构外径 D的比值即H/D的增大而减小。 1.2盾构到达时的地层沉降,开挖面前的沉降或隆起 在地铁隧道施工过程中,沉降是非常重要的,自开挖面距观测点约3m-10m时起,直至开 挖面位于观测点正下方之间所产生的隆起或沉降现象。实际施工过程中设定的盾构土压舱压 力很难与开挖面土体原有土压力达到完全的平衡,多因土体应力释放或盾构反向土仓压力引起 的土层塑性变形所引起。 1.3盾构穿越土层性质 隧道开挖在软土层中,主要的土层性质有砂质粉土、淤泥质粘性土、砂土层以在不同的 土层穿越中对地面沉降也有不同的影响。在保持其他工艺条件都不变的情况下,穿越砂土层 相对于黏土层来说,其沉降槽宽度的系数也更小,因此沉降量也是最大的。设地层损失率为2%,盾构埋深为 10m,盾构半径为 3.2m,计算分析穿越不同土层的宽度系数与沉降量的关系。通过计算分析后可知,在穿越不同土质时地面沉降效应也不同,穿越黏土时的沉降槽宽 系数最大,对地面沉降影响的范围也最大,穿越砂质粉土层,宽度系数比黏土层小,沉降量 显著,在穿越砂土地面时沉降量最大。 1.4盾尾间隙沉降 隧道施工过程中,地表沉降是由于地铁盾尾通过测点后产生的,一般的范围约在后尾通过 测点后0-20m范围。由于盾构外径大于管片外径,管片外壁与周围土体间存在空隙,往往因注 浆不及时和注浆量不足,管片周围土体向空隙涌入,造成土层应力释放而引起地表变形,这一期 间的地表沉降约占总沉降的40%-45%。 2盾构隧道的地面沉降机理 在盾构隧道施工开挖的过程中,地面沉降是由于面的附加应力、应力释放等引起地层产 生的弹塑性变形。隧道施工所引起的地面沉降,主要包括开挖卸载时开挖面周围土体向隧道内 涌入所引起的地面沉降,支护结构背后的空隙闭合所引起的地面沉降,管片衬砌结构本身变形 所引起的地面沉降以及隧道结构因整体下沉所引起的地面沉降,可称为开挖地面沉降。盾构法 隧道在施工期的地面沉降可认为主要由开挖沉降、固结沉降和次固结沉降组成,而次固结沉降

隧道盾构法施工的成本分析与降低成本措施

隧道盾构法施工的成本分析与降低成本措施 摘要:盾构方法作为一种新型的隧道施工方法,由于其先进的施工工艺以及完 善的施工盾构方法,在一定程度上能够使用其在地下空间的应用和开发过程中占 据重要的现实地位,并被广泛应用于城市地铁的构建、越江通道的构建以及城市 地下管道等工程建设中,与此同时,其盾构方法的造价相对较高,使得这种施工 方法难以得到进一步的推广和应用。本文通过对盾构施工方法的费用成本以及现 有的技术水平进行详细的分析,并提出针对性的解决对策。 关键词:隧道;盾构施工方法;成本分析;降低成本 现代城市的发展和建设过程中,城市地下空间的建设和开发已经成为重要的构成部分, 而盾构隧道的施工工艺以及不断完善的构建技术,使得其在地下空间的开发过程中取得了一 定的的成果,并被逐渐广泛应用和推广。在我国各大城市的建设过程中,通常使用的是盾构 隧道的施工方法。本文对盾构隧道施工方法的成本构成与降低成本的主要措施进行详细分析。 一、盾构隧道施工成本的总体概述 (一)盾构隧道施工成本的定义 盾构隧道的施工成本主要值得是建筑工程的施工单位以施工项目作为成本核算对象,在 具体施工过程中所消耗所有费用的合计。 (二)盾构隧道施工成本的构成因素 按照经济性的成本分析法而言,项目工程的和施工成本是由直接成本与间接成本两个方 面所构成。直接成本指的是:在具体施工过程中,由于资源耗费所构成的工程项目实际载体,或者是有助于形成工程项目的实际支出,其中主要包括了人员施工费、施工材料费以及机械 设备的使用等其他费用。间接费用指的是:施工单位内部为工程项目为主体的组织和管理工 程的总体施工费用,其中包括;所有管理人员的奖金、工资以及其他福利待遇等;工程项目 施工过程中所有使用机械设备的折旧累积、修理、材料消耗以及低值消耗用品的全部费用; 工程项目在具体施工过程中所有的间接费用:办公室取暖费、差旅费以及办公等其他费用等。 其中影响盾构隧道施工成本的主要原因具体包括管理措施以及技术措施两个方面。技术 措施主要包括:施工设计具体方法的合理性与施工材料的选择、施工设备的选取以及工期成 本管理等其他方面。施工管理的主要措施涵盖了成本管理、施工进度、施工质量以及施工其 他管理工作等。 二、降低成本的措施分析 盾构隧道施工方法的成本控制主要是通过各种控制手段,不断降低在施工过程中的项目 成本。控制施工成本主要要求成本需要伴随工程项目的施工进度以及各个阶段持续进行的一 个过程,在此过程中,不能够出现疏忽的情况,而是应该使得施工项目的实际成本控制在合 理规定范围之内。由于盾构施工方法具有一次性的特点,不能够像企业的生产顺序具有可循 环性,因此,建筑工程的施工项目需要在每一施工阶段进行合理的成本控制,成本的结算和 控制需要与施工阶段的过程同步进行,在时间方面能够保持一致,降低盾构隧道的施工成本 的有效途径,应该是将开源与节约两个方面相结合,以达到降低盾构方法施工成本的最终目的。想要合理控制施工成本,需要遵循以下几个方面。 (一)责任成本的合理控制 责任成本是一项财务成本的发展和持续,建立完善的工程责任核算体系,是有效实现施 工成本控制的关键环节,同时也是工程施工成本的首要工作。为了能够确保项目工程的成本 进一步准确和真实,需要确保项目相关负责人的利益,并合理确定施工项目的责任范围。在 具体实施项目工程的承包期间,需要科学的计算和预测工程项目的承包指数。与此同时,预 算项目工程的承包指数也是项目工程成本控制的关键环节。 (二)优秀人员的合理配置 项目经理通常是项目成本管控的首要负责人,全面而又合理的组织项目部门的成本管控 工作,并及时掌握项目工程的盈亏状况,采取及时有效的措施具有重要的现实意义。工程技 术部门是整个项目工程的施工技术以及整体进度的责任部门,应该在一定程度上有效控制施

特殊地段的盾构施工技术措施

特殊地段的盾构施工技术措施 摘要:盾构在地铁区间的特殊地段施工,必须作好充足的施工准备和施工技术措施。关键词:地铁区间;盾构施工;技术措施 广州西场站—西村站地铁区间施工标段,沿线两侧为密集民居、酒店、办公楼、商店等,交通繁忙,上部地面为环市西路,区间线路穿越广茂铁路,地形平坦,略有起伏,其中有岩溶和溶蚀空洞、内环高架桥桩、基岩球状风化体地段(风化深槽)、泥质粉砂岩、上软下硬岩段等特殊地段。其中广州火车站—草暖公园区间段下穿过广州火车站广场,到达草暖公园,施工难度大。根据现场实际情况,做出相应的盾构施工技术措施。 1盾构通过岩溶和溶蚀空洞 本工程隧道左右线均存在岩溶和溶蚀空洞,左线溶蚀空洞约为0.8m高,右线在YCK7+522和YCK7+576处存在溶蚀空洞,其中较大的溶蚀空洞为2.7m高,对盾构掘进造成极为

不利的影响,极有可能发生突泥、突水、地面沉陷、盾构机被卡等严重事故。 为保证盾构掘进顺利通过,必须提前探明隧道穿过的岩溶裂隙的位置、形状、尺寸大小、充填物性质等,并及时处理。施工采取以下措施探测和处理: (1)开工前,进行补充地质勘探,在左右线溶蚀空洞地段加密勘探,在勘探场地允许的前提下,使部分钻孔间距达到10m,进一步查明该段条件地层地质条件,对可能出现岩溶裂隙的段落、岩溶裂隙的规模、充填物等情况,提前作出盾构掘进方案。 (2)对盾构机适当改造,针对地质情况,盾构机增设超声波探测系统。盾构掘进施工时通过发射超声波,可对刀盘前方30m范围内的岩溶裂隙、砂土层中的孤石等分布情况进行探测,利用专业软件对接收到的反射波分析,即可精确查明岩溶裂隙或孤石的位置、形状、尺寸大小、充填物性质等。 (3)根据超前地质预报的资料,对分布于盾构周边的岩溶裂隙,通过地面注浆的办法进行超前注浆加固或回填。对岩溶裂隙要提前确定注浆方案,根据其位置、形状、充填物性质,确定实施超前注浆的里程位置、注浆品种及配合比、注浆压

浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形 摘要文章以上海市轨道交通M8线淮海路站~复兴路站区间隧道的施工为例,对引起隧道施工后期变形的多种因素进行分析,并阐述了防治措施。 关键词盾构法隧道后期变形影响因素防治措施 1 概述 在上海地铁隧道施工过程中,经常发现已拼装成环的隧道在刚离开盾尾或脱离盾尾3~4环后,就发生环面不平整现象,即D块管片滞后于B1、B2块管片,B1、B2块管片滞后于L1、L2块管片,从而产生管片角部碎裂,影响隧道的施工质量。 通过对环缝错位现象的分析,认为这种现象是由于成环管片在出盾尾后发生了隧道的后期变形(上浮或沉降)而导致的。以上海轨道交通M8线复兴路站~淮海路站区间隧道施工的有关数据为依据,阐述影响隧道后期变形的各种因素,并介绍相应的防治措施。 2 工程概况 上海轨道交通M8线复兴路站~淮海路站区间隧道起始于复兴路站北端头井,止于淮海路站南端头井,推进里程为SK20+236.595~SK19+409.846,全长826.749 m,在SK19+785.640处设有1条联络通道。土压平衡盾构机由复兴路站北端头井下井,出洞后上行线沿西藏南路往北推进,途径自忠路、方浜路、浏河路、会稽路、寿宁路、桃源路、淮海路,穿越众多管线后到淮海路站南端头井。盾构机在淮海路站端头井内调头后,下行线沿西藏南路往南推进到复兴路站北端头井(见图1)。 图1 区间隧道示意图 3 工程地质 工程地质是影响隧道后期变形的主要因素之一。 本工程隧道穿越的土层为④淤泥质粘土层、⑤1粉质粘土层,各土层性能指标及特征见表1。

4 影响隧道后期变形的主要原因及分析 4.1 设计轴线 复兴路站~淮海路站区间隧道最大坡度为-11.675‰,隧道顶覆土厚9.0~16.3 m。上、下行线隧道推 进竖向轴线坡度见表2。

盾构法施工特点及工艺流程

①地下施工,必须面对复杂的地质条件和敏感的地面环境。 ②所用设备集成度高,技术含量高。 ③涉及的专业领域较多,对复合型人才有较多需求。 2、盾构法施工的优点 (1)盾构法隧道施工不受地面自然条件的影响。 在盾构支护下进行地下工程暗挖施工,不受地面交通、河道、航运、潮汐、季节、气候等条件的影响,能较经济合理地保证隧道安全施工。 (2)盾构法施工隧道机械化、自动化程度高。 盾构的推进、出土、衬砌拼装等可实行自动化、智能化和施工远程控制信息化,掘进速度较快,施工劳动强度较低。 (3)地面人文自然景观受到良好的保护,周围环境不受盾构施工干扰。 在松软地层中,开挖埋置深度较大的长距离、大直径隧道,具有经济、技术、安全、军事等方面的优越性。

①需要隧道衬砌管片预制、运输、衬砌、衬砌结构防水及堵漏、施工测量、场地布置、机械安装等施工技术的配合,系统工程协调复杂; ②施工过程变化断面尺寸困难;只能前进,不能后退,当隧道曲线半径过小或隧道埋深较浅时,施工难度大,在饱和含水的松软地层中施工,地表沉陷风险较大; ③盾构机制造周期长,造价较昂贵,盾构的拼装、转移等较复杂,建造短于750m的隧道经济性差。 4、盾构施工工艺流程 4.1大流程:盾构总体施工流程 大流程:盾构总体施工流程 始发井交付使用→盾构托架就位→盾构机下井、安装、调试→初始掘进(L=约100m)→负环拆除及其它调整→正常掘进→盾构机到达中间站→盾构机通过中间站→盾构机再次安装、调试→盾构机再次初始掘进→正常掘进→盾构机到达终点站→盾构机解体外运→隧道清理准备验收。 4.2小流程:盾构掘进流程 准备工作→转动刀盘→启动次级运输系统(皮带机)→启动推进千斤顶→启动首级运输系统(螺旋机)→停止掘进→安装管片→回填注浆→准备下一环掘进。 开挖→出土→拼装→注浆。

特殊地段及复杂地质条件盾构施工技术措施

特殊地段及复杂地质条件盾构施工技术措施 一. 盾构下穿河流(续) 1.应对江河地段水文地质条件、河床、河堤状况、水流速度、水深、淤泥层厚度、岸边建(构)筑物情况及保护要求进行详细调查。必要时进行补堪,确定河底地质。 2.应对地质勘探孔位进行调查确认,防止河水从勘探孔灌入隧道。 3.盾构应具有土仓加泥或泡沫的功能,螺旋输送机应设有防喷装置。 4.穿越时在土仓和刀盘前注入泡沫、膨润土改善渣土性能,防止涌沙突水发生。 5.盾构机刀盘处于河岸前一倍覆土厚度时,应逐渐降低土仓压力,到达河岸下方时,土仓压力应与浅覆土的河流段土压力相等。确保快速通过危险区域。 6.穿越前,应对盾尾密封系统做全面检查和处理。使用优质盾尾油脂,掘进中不断地对盾尾密封注入油脂,保证每环30kg以上。防止泥水和浆液进入盾体。 7.严格控制盾构操作,控制好盾构的各项参数,调整好盾构推进油缸的压力差及各组推进油缸的行程,避免盾构上浮。注浆材料加入早强剂,块速达到强度。 8.注浆压力在理论上减小0.05—0.1MPa,避免形成劈裂注浆,造成河水倒灌。必要时,可每10环压注一次环箍(双液浆、水泥浆),防止窜浆,增强盾尾防水能力。注浆时应注意管片变形及隧道上浮。保证出渣量与掘进速度一致,避免“冒顶”。 9.掘进时保持土压平衡,停止掘进时保持土仓压力为正常值的1.1—

1.2倍。 二.穿越风险源施工 盾构穿越铁路、桥梁、建(构)筑物、大型管线、河流、胡泊、主干道路、不良地质地段(简称穿越施工): 1. 盾构机组装时,禁止使用劣质盾尾刷;使用优质盾尾油脂,防止盾尾漏浆。 2.加强盾构机检修、保养工作,保持盾构均速、快速施工,避免非正常停机。 3.确保盾构机姿态,减少姿态调整引起的土层扰动,必须纠偏时每环纠偏量控制在4mm以内。 4.必须对同步浆液的稠度进行现场测试,浆液水泥含量不得低于120kg/m3,稠度不得大于11,浆液初凝时间不得大于6小时。 5.必须进行“持续”注浆,即:除同步注浆和二次注浆外,盾尾与二次注浆之间的管片(一般为5—8环),在不能实现二次注浆之前,必须进行间歇注浆。必须保证从同步注浆开始,盾尾以后的所有管片都能实现即时注浆,以控制地面沉降。 6.必须加大监测频率,根据监测数据及时调整土仓压力,注浆压力及注浆量。 7.必须坚持精细化施工,每天至少两次进行穿越过程书面作业,即:核对盾构机与地面建(构)筑物的精确对应关系,分析监测结果,对沉降部位及时采取措施。 三. 浅覆土地段推进 (覆土厚度不大于盾构直径的地段)

土压平衡盾构施工工艺

16土压平衡盾构施工工艺 16.1总则 16.1.1适用范围 本标准适用于采用土压平衡式盾构机修建隧道结构的施工。 16.1.2编制参考标准及规范 16.1.2.1地下铁道工程施工及验收规范(GB 50299-1999)。 16.1.2.2地下铁道设计规范(GB 50157-2013)。 16.1.2.3铁路隧道设计规范(TB10003-2016)。 16.1.2.4盾构掘进隧道工程施工验收规范。 16.1.2.5公路隧道施工技术规范(JTJ042-94)。 16.1.2.6公路工程质量检验评定标准(JTGF80/1-2004)。 16.2术语 16.2.1土压平衡式盾构 土压平衡盾构也称泥土加压式盾构,它的基本构成见图16.2.1。在盾构切削刀盘和支承环之间有一密封舱,称为“土压平衡舱”,在平衡舱后隔板的中间装有一台长筒形螺旋输送器,进土口设在密封舱内的中心或下部。用刀盘切削下来的土充填整个

16.2.2 端头加固 为确保盾构始发和到达时施工安全,确保地层稳定,防止端头地层发生坍塌或涌漏水等意外情况,根据各始发和到达端头工程地质、水文地质、地面建筑物及管线状况和端头结构等综合分析,确定对洞门端头地层加固形式。 16.2.3 盾构后座 盾构刚开始掘进时,其推力要靠工作井井壁来承担。因此,在盾构与井壁之间需要设传力设施,此设施称为后座。 16.2.4 添加材 采用土压平衡盾构掘进时,为改善土体的流动性防止其粘附在盾构机上而注入的一些外加剂。添加材的功能是:辅助掘削面的稳定(提高泥土的塑流性和止水性);减少掘削刀具的磨耗;防止土仓内的泥土压密粘附;减少输送机的扭矩和泵的负荷。 16.3 施工准备 16.3.1 技术准备 16.3.1.1 根据隧道外径、埋深、地质、地下管线、构筑物、地面环境、开挖面稳定及地表隆陷值等的控制要求,经过经济、技术比较后选用盾构设备。盾构选型流程如图16.3.1.1所示。 16.3.1.2 认真熟悉工程设计文件、图纸,对工程地质、水文地质、地下管线、暗

土压平衡盾构施工技术难点及处理措施

土压平衡盾构施工技术难点及处理措施 【摘要】土压平衡盾构以其高效、安全、环保等优点,已被广泛应用于地铁施工中,虽然技术成熟,但施工中一些常见的问题,施工方依然应当采取预防及处理措施,从而确保地铁工程的施工质量。本文根据实际工作经验,对施工中几个常见的难题探讨了其预防及处理措施。 【关键词】土压平衡盾构;盾构法隧道;事故预防;处理 一、盾构刀盘结泥饼问题 盾构机穿越粘土地层时,如掘进参数不当,则刀盘和土仓会产生很高的温度,这样粘土在高温、高压作用下易压实固结成泥饼,特别是刀盘的中心部位。当泥饼产生,最终会导致盾构无法掘进。 施工中采取的主要技术措施为:1)施工前分析隧道范围内的地层情况,在到达此地层前把刀盘上的部分滚刀换成齿刀,增大刀盘的开口率。3)合理增加刀盘前方泡沫的注入量,增大碴土的流动性,减小碴土的黏附性,降低泥饼产生的几率。5)必要时螺旋输送机内也要加入泡沫,以增加渣土的流动性,利于渣土的排出。6)如果刀盘产生泥饼,可空转刀盘,使泥饼在离心力的作用下脱落,施工过程中确保开挖面稳定。7)如上述方法均未能奏效,则可采用人工进仓处理的方式清除泥饼,人工进仓处理前如掌子面地层软弱,则需进行预加固。 二、桩基侵入盾构隧道 城市地铁线路规划设计应避开重要建(构)筑物、避开建筑物的桩基,但城市中心区内房屋建筑较为密集,要求线路选线时避开所有的建筑物是不现实的,因此难免会有一些建筑物桩基侵入隧道,由于许多桩基为钢筋混凝土结构,盾构机无法通过,需要对桩基进行拆除。针对侵入盾构隧道的桩基,采取的措施为:1)具有承载力的桩基,采取桩基托换方法。2)大竖井暗挖拆除桩基方法。3)小竖井开挖分区拆除桩基方法。4)人工挖孔+暗挖横通道拆除桩基方法。 深圳市地铁龙岗线西延段3153标盾构区间下穿燕南人行天桥,开工前该桥地表以上部分已经拆除,但桩基并没有拆除。调查资料显示共有8根直径为1.2m 的人工挖孔桩侵入右线隧道,盾构机无法安全、顺利通过。为了使侵入隧道的桩基不对盾构施工造成影响,采用比原桩基直径大的人工挖孔桩自地表而下来破除侵入隧道范围内的桩基。燕南人行天桥与盾构区间隧道位置关系如图所示。侵入隧道桩基与隧道纵面位置关系如图1和图2所示。 图1 燕南人行天桥与盾构区间隧道位置关系图 图2 侵入隧道桩基与隧道纵面位置关系图

公路隧道施工盾构法、沉管法介绍(全国公路水运工程质量检测专业技术人员继续教育)

公路隧道施工盾构法、沉管法介绍 第1题 沉管隧道施工工序中,沉管与连接之后的工序是()。 A.预制管段 B.修建临时干坞 C.基础处理 D.回填覆盖 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 ?关于盾构法,下列()的说法是错误的。 A.盾构法是暗挖隧道的一种施工方法 B.盾构法穿越地面建筑群的区域时,周围可不受施工影响 C.盾构机推进系统包括推进千斤顶和液压系统 D.盾构壳体由切口环和支承环两部分组成 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 盾构机的外壳沿纵向从前到后可分为前盾、中盾、后盾三段。通常所指的支承环是() A.前盾 B.中盾 C.后盾 D.盾尾 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 泥水平衡盾构开挖的渣土以()形式输送到地面。 A.岩石

B.泥浆 C.土体 D.砂浆 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 以下不属于盾构始发端头加固方法的是()。 A.旋喷桩法 B.注浆法 C.内嵌钢环 D.冻结法 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 ()盾构机配备有泥水分离处理系统。 A.土压平衡 B.硬岩TBM C.双护盾TBM D.泥水平衡 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第7题 以下()设备不属于盾构机后配套设备。 A.注浆系统 B.管片运输设备 C.出土设备 D.刀盘 答案:D 您的答案:D

题目分数:4 此题得分:4.0 批注: 第8题 以下()工序不属于盾构始发阶段。 A.安装反力架 B.凿除洞门 C.拼装负环管片 D.到达端口加固 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第9题 沉管隧道按照管段的制作方式分为()和干坞型。 A.圆形 B.矩形 C.钢筋混凝土 D.船台型 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 以下()不属于沉管隧道优势。 A.可浅埋,与两岸道路衔接容易 B.结构为现浇混凝土,造价低 C.防水性能好 D.对地质水文条件适应能力强 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第11题

盾构隧道施工方法及技术措施

盾构隧道施工方法及技术措施 § 1端头加固 1.1 端头加固概述 盾构进出洞门外土体为软弱含水的土层,盾构机在进出洞时,工作面将处于开放状态,这种开放状态将持续较长时间。若不提前加固处理,地下水、涌水等就会进入工作井,就会导致软弱地层不稳定,严重情况下会引起洞门塌方。为确保施工安全及盾构机顺利始发及出洞,必须对洞门外土体进行加固处理。 本标段盾构始发及到达共有4个端头需要加固,具体加固方法见表8-1-1 1.1.1加固的原则 (1)根据隧道埋深及盾构隧道穿越地层情况,确定加固方法和范围。 (2)在充分考虑洞门破除时间和方法的基础上,选择合适的加固方法和范围, 确保洞门破除和盾构机进、出洞的安全。 1.1.2加固要求 根据始发及到达端头地层性质及地面条件,选择加固方法,加固后的土体应有良 好的自立性,密封性、均质性,采用搅拌桩加固的土体无侧限抗压强度不小于0.8MPa, 8 渗透系数k < 1 x 10- cm/sec。 (2)渗透系数v 1.0 x 10-5cm/s。 1.2 端头的施工 1.2.1施工原理 旋喷法施工是利用钻机把带有特殊喷嘴的注浆管钻进至土层的预定位置后,用高压脉冲泵,将水泥浆液通过钻杆下端的喷射装置,向四周以高速水平喷入土体,借助流体的冲击力切

削土层,使喷流射程内土体遭受破坏,与此同时钻杆一面以一定的速度旋转,一面低速徐徐提升,使土体与水泥浆充分搅拌混合,胶结硬化后即在地基中形成直径比较均匀,具有一定强度的桩体,从而使地层得到加固。 1.2.2机械设备 旋喷法施工主要机具设备包括:高压泵、泥浆泵、钻机、浆液搅拌器、空压机、旋喷管和高压胶管等;辅助设备包括操纵控制系统、高压管路系统、材料储存系统以及各种管材、阀门、接头安全设施等。浆液搅拌采用污水泵自循环式的搅拌罐,钻机采用XY-100型振动钻机,空压机采用SA-5150W空压机,参数为20mVmin。 1.2.3材料要求 旋喷使用的水泥应采用新鲜无结块42.5R普通硅酸盐水泥,浆液水灰比为1:1。稠度要适合,水泥掺入量250kg/m,粘土粉50kg/m,为消除离析,加入0.9 %的碱。浆液宜在旋喷前lh以内配制,使用时滤去〉0.5mm的颗粒,以免堵塞管路和喷嘴。 1.3 端头地层加固施工工艺 1.3.1三轴搅拌桩施工工序 ①定位 三轴搅拌机开行到指定桩位,对中。当地面起伏不平,应注意调整机架的垂直度;搅拌桩的桩位偏差不得大于50mm垂直度不得大于1.5%。 ②制备水泥浆 在搅拌机定位的同时即开始按设计确定的配合比拌制水泥浆,水泥浆的搅拌采用二次搅拌方式,灰浆拌和时间不少于2mi n,保证拌和均匀,不发生沉淀,放置水泥浆的时间不超过2个小时,搅拌好的水泥浆须在一个小时内用完。外渗剂可根据工程需要选用具有早强、缓凝、减水、节省水泥等性能的材料,为增强流动性可掺入水泥重量0.20%?0.25%的木质磺酸钙,1%勺硫酸钠和2%勺石膏,但应避免污染环境。 ③预搅下沉 检查无误后开动搅拌机,以正循环方式钻进,为避免搅拌过程中喷浆口的堵塞,边喷射水泥浆边搅拌下沉,下沉速度控制在0.8m/min。 ④喷浆搅拌提升 为保证水泥搅拌桩桩端、桩顶及桩身质量,第一次提钻喷浆时应在桩底部停留30 秒,进行磨桩端,然后以反循环方式提升,余浆上提过程中全部喷入桩体,且在桩顶部位进行磨桩头,停留时间为30s,提升速度要保持均匀,控制在0.5m/min。

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

盾构施工质量保证措施

1.1管片质量保证措施 (1)管片生产质量保证措施 1)严格控制管片模具的精度,按照精度要求对管片钢模定期进行检查和校正。 2)要求混凝土所使用的原材必须符合设计及施工规范的要求,应有出厂合格证和相应的试验报告。 3)严格审查管片生产工艺和质量保证措施,认真做好过程控制。指派专门的管片质量检查人员每周不定期去构件厂检查管片生产过程的质量、原材料及生产工艺的控制情况,要求构件厂提供从原材、生产及试验的所有资料,并结合检查记录分析等形成质量周报,并报业主及监理等单位。 4)要严格做好出厂检验及现场的验收工作,事先制定出厂检查及现场质量验收标准。 5)事先计划好现场管片的存放、运输及拼装作业。要有管片的使用计划。 (2)管片拼装质量保证措施 1)选取管片时要多方面考虑,选取管片时也要本着“勤纠偏、小纠偏”的原则进行,以减小片拼装时的错台。 2)确保质量合格、管片类型符合工程师指令的管片才准进洞。 3)严格按指定的拼装工艺进行拼装。 4)拼装过程中经尺量管片错台符合拼装要求后,再将管片就位。 (3)管片衬砌防水质量保证措施 1)确保管片的自身防水符合设计要求,并对管片弹性密封垫入洞前进行严格的验收。 2)严格控制拼装工艺,提高管片拼装的质量。 3)在管片拼装前先于弹性密封垫上涂抹润滑剂,以减少弹性密封垫在拼装中出现的错位。 4)安装管片螺栓接头前检验止水垫圈完整方可安装螺栓。 5)盾构掘进时盾尾空隙注浆要严格控制配比,以形成稳定均匀的管片防水层。

(1)盾构施工轴线控制措施 1)所使用盾构机须装备有高度现代化的自动实时监控测量指引系统。 2)在盾构隧道施工之前,要严格按要求建立起一套严密的人工测量和自动测量控制系统,根据自动的精度和工程的精度要求决定人工控制测量和复核的内容及频率。 3)认真做好盾构机的操作控制,按“勤纠偏、小纠偏”的原则,通过严格的计算,合理选择和控制各千斤顶的行程量,从而使盾构和隧道轴线在容许偏差范围内,切不可纠偏幅度过大,以控制隧道平面与高程偏差而引起的隧道轴线折角变化不超过0.4%。 4)合理使用超挖刀和铰接千斤顶来控制盾构机轴线,从而实现对隧道轴线的线形控制。 5)管片的类型和拼装方式的控制,依据隧道中线和设计中线以及盾构机和管片的关系,通过计算修正曲线来确定管片的类型和超前量。 (2)盾构施工沉降控制措施 认真进行现场环境条件的调查,并结合线路的走向做好地面的监测工作。准备进行的与沉降有关的监测项目有:地表沉降监测、地面建(构)筑物变形监测、地下管线变形监测、河底沉降监测、隧道收敛监测。 1)监测点的观测频率、范围与数据处理 2)盾尾注浆压力和注浆量是直接影响地面沉降的关键因素,在施工中要严格按规定程序和下达的施工指令进行注浆操作,精确控制注浆压力和注浆量。 3)严格控制盾构机的姿态 在盾构掘进施工过程中,盾构姿态变幅越大,盾构机越难控制,对地面沉降的影响也越大,要坚持“勤监测、勤纠偏、小纠偏”的原则,尽量实现盾构的平缓推进;严禁一次性大幅度纠偏,造成过大超挖和对周围土层的扰动。每次盾构机的纠偏量应不超过3cm(0.5%D)。 1.3联络通道施工质量保证措施 (1)测量放线准确,从地面引测后,尽早从隧道内进行检测。 (2)衬砌之间的防水板接缝严密,焊钢筋时设隔垫板保护。

盾构穿越建筑物施工技术措施

盾构穿越建筑物施工技术措施 【摘要】在城市地下进行盾构隧道掘进施工,有时盾构将不可避免的穿越建构筑物或地下管线,采取何种施工措施控制其变形,是地铁或其他地下工程盾构施工中不可回避的问题。本文针对成都地铁盾构在砂卵石地层穿越不同结构、基础和建设年代建筑物时所采用的技术措施进行了简单描述,希望能够对相同或接近地层的盾构施工起到借鉴作用。 关键词:盾构建构筑物加固施工 1.前言: 地铁工程建设所选择线路主要区段均在城市的主城区,因规划和历史原因,地铁隧道线路或将不可避免的在既有建构筑物或地下重要管线的下方穿过。但受盾构施工机理和地质情况的限制,掘进时将引起地面隆起和沉降。如沉降或隆起超过建构筑物或管线允许的变形控制极限,造成地面建构筑物和管线的变形、开裂,甚至建筑物倒塌,可能带来的纠纷对施工产生不可忽视的影响,不但影响施工进度和施工安全,并且会造成严重的社会不良影响。特别是成都砂卵石地层、含水量丰富且有粉细砂透镜体,在扰动状态下掌子面不稳定,地面沉降量和沉降速率均较大,采取何种施工措施控制建构筑物的变形是盾构施工的难点。 2.成都地铁地质情况描述: 盾构隧道从<2-8>、< 3-4>、<3-7〉等砂卵石地层中通过。卵石成分主要为灰岩、砂岩、石英岩,卵石的含量达67%,中间夹杂大漂石。砂卵石具有分选性差,强度高的特点(地质情况见图1、图2所示)。 隧道通过的地层含水丰富,根据钻孔揭示,隧道区间分布的卵石土及所夹透镜状砂层为地下水主要含水层,含水量丰富,含水层厚20~22 .6m,区间范围内卵石土分选性差,渗透性强。图1、基坑开挖时渣土状态图2、刀盘前掌子面土体 3.盾构施工中引起沉降的情形分析: (1)、盾构掘削面前的地层变形:盾构推力过大和出土率小而引起的挤压隆起和前移;盾构推力过小和出土率大而引起的塌陷。 (2)、盾构通过时引起的地面变形:盾构盾体与土体摩擦引起的隆起和前移;刀盘超挖、盾构蛇形扰动引起的地面沉陷。 (3)盾尾脱出后的地层变形:盾尾空隙不能及时填充注浆引起沉陷,因过大的注浆量和注浆压力而引起的隆起。盾尾漏水或隧道衬砌漏水引起地下水下降而发生大范围下降,盾构在软弱粘土地层扰动引起的长期固结沉降。 因地层变形,邻近的地面或地下建构筑物的外在条件,支撑状态将会发生变化,建构筑物受到不同程度的影响而发生隆起、沉降、倾斜,甚至结构破坏。影响程度的大小取决于建构筑物与盾构隧道的相互关系(距盾构的位置距离、线型、施工段长度)、建构筑物结构条件、刚度、地层的特性等。 4.盾构下穿见构筑物施工的基本技术措施: 1)、盾构下穿建构筑物的技术准备工作 (1)、在施工前对建构筑物、管线进行充分调查。收集有关资料,包括建构筑物的设计图纸、竣工图进行研究分析,并对建构筑物进行实地调查分析,必要时实施探槽调查的方法。(2)、经过调查后应明确建构筑物的位置、结构形式及尺寸、何种基础、建筑年代、老化程度、使用状态、产权归属、与盾构隧道的距离及相对位置关系等;对地下管线通过调查应明确管线的功能性质、材质、接口形式、管道输送介质、老化程度、埋深以及产权归属、与盾构隧道的距离及相对位置关系等基本情况。 (3)、为避免盾构通过后不必要的纠纷,在盾构通过前根据建构筑物的产权情况、重要性、

盾构法施工技术

盾构法施工技术 1盾构法 1.1 盾构法简介 盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。盾构(Shield)是一个既可以支承地层中推进的活动钢筒结构。钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需千斤顶;钢筒尾部可以拼装预制工或现浇隧道衬砌环。盾构每推进一环距离,应在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉。盾构推进的反力由衬砌环承担。盾构施工前应先修建一竖井,在竖井处安装盾构,盾构开挖出的土体由竖井通道送出地面。盾构法施工工艺见图1所示。 图1 盾构法施工示意 1.2盾构法施工的优点及适用范围 盾构施工法所具有的优点: 一、可地盾构支护下安全地开挖、衬砌。 二、掘进速度快。盾构的推进、出土、拼装衬砌等全过程可实现机械化、自动化作业,施工 劳动强度低。 三、施工时不影响地面交通与设施,穿越河道时不影响航运。 四、施工中不受季节,风雨等气候条件影响。 五、施工中没有噪声和振动,对周围环境没有干扰。 六、在松软含水在层中修建埋深较大的长隧道往往具有技术和经济方面的优越性。 盾构施工法最适于在松软含水地层中修建隧道,在江河中修建水底隧道,在城市中修建在下铁道及各种市政设施。盾构施工法一般适宜于长隧道施工,有些资料显示,对于短于750m的隧道被认为是不经济的。因为盾构是一种昂贵,针对性很强的专用施工机械,对每一条用盾构法施工的隧道,都需根据地质水文条件、结构断面尺寸专门设计制造,一般不能得意简单的倒用到其它隧道工程中重复使用。此外,对隧道曲线半径过小或隧道顶覆土太浅时,施工困难较大。对水底隧道,覆土太浅时施工不够安全。当盾构施工法有采用全气压方

盾构法隧道施工及验收规范GB

1.0.1编制本规范的目的时为了加强盾构隧道工程的施工管理,确保施工过程的工程安全、环境安全和工程质量,统一盾构法隧道工程的施工技术与质量验收标准。本规范不包括盾构隧道的设计、使用和维护方面的内容 1.0.2本规范为规定的内容应按照国家现行相关标准执行。 2术语 本章给出了本规范有关章节引用的19条术语。目前盾构及其施工技术在术语尚存在地区和习惯差异,通过本规范统一盾构法施工及验收的相关术语。 本规范的术语主要参考现行国家标准《地铁设计规范》GB50157、《城市轨道交通岩土工程勘察规范》GB50307、《城市轨道交通工程测量规范》GB50308、《城市轨道交通工程监测技术规范》GB50911、《地下轨道工程施工及验收规范》GB50299及《地下铁道设计与施工》等资料,经编制组集中归纳和整理编入本规范。 本规范的术语时从盾构法隧道施工及验收角度赋予其含义,同时还给出相应的推荐性英文翻译,仅供参考。 3基本规定 3.0.1施工管理体系包括质量管理体系、环境管理体系、职业健康安全管理体系。对于施工现场管理,除应具有健全的施工管理体系外,还要求有相应的施工技术标准、施工质量控制和检验制度,以及施工人员和设备安全保障和环境保护措施。 对具体的施工项目,要求有经审查批准的施工组织设计和施工技术方案,并能在施工过程中有效运行。对于涉及隧道结构安全、人身安全和环境保护的内容,应有明确的规定和相应的措施。 3.0.3本条为强制性条文。规范操作盾构,并制定应急预案,使其在预定条件和正确操作下正常使用时确保盾构法隧道施工的重中之重。因此,在施工前应根据盾构类型、地址条件和工程实践,首先由针对性地进行危险源和环境因素的辨识和评估,根据分解结论制定包括盾构安全操作技术规程、对周边环境的影响及应对措施等在内的专项施工方案和应急预案,确保施工作业在安全和卫生环境下进行。 3.0.7盾构法隧道施工应建立信息管理体系,制定信息管理制度。为便于几时了解施工现场情况,鼓励有条件的施工现场配置地面远程监控系统,将盾构掘进参数实时传递到地面监控中心。 3.0.8盾构法隧道工程施工期间,对重要或有特殊要求的建(构)筑物,应及时采取注浆、加固、支护等技术措施,保证邻近建(构)筑物、地下管线、道路及轨道交通线路等安全。 3.0.9质量验收包括实物检验和资料检查。资料检查包括施工质量验收依据和质量验收记录等。施工质量验收层次为:生产班组的自检、交接检;施工单位质量检验部门的专业检查和评定,监理单位(建设单位)组织的验收。 根据有关规定和工程合同的规定,对工程质量起重要作用或有争议的检验项目,有各方参与见证检验,已确保施工过程中关键部位的质量得到控制。 4施工准备 4.1前期调查 4.1.2~4.1.4位防止资料与实际工况条件不符,施工前应进行工程环境的调查和实地踏勘,位制定施工组织设计提供足够的依据,调查的主要内容有: 1实地踏勘调查各种建(构)筑物的使用功能、结构形式、基础类型及其与隧道的相对位置等; 2道路种类和路面交通情况; 3工程用地情况,主要对施工场地及材料堆放场地、弃土场地、运输路线等做必要的调

相关主题