搜档网
当前位置:搜档网 › QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书
QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

货号:QS2631 规格:50管/24样

内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

分光光度法

正式测定前务必取 2-3 个预期差异较大的样本做预测定

测定意义:

Cx存在于细菌、真菌和动物体内,是纤维素酶系的组份之一,Cx主要作用于非晶态纤维素和水溶性纤维素衍生物,随机水解糖苷键,将其分解成葡萄糖、纤维二糖、纤维三糖和其他寡聚体。

测定原理:

采用3,5-二硝基水杨酸法测定Cx催化羧甲基纤维素钠降解产生的还原糖的含量。

需自备的仪器和用品:

可见分光光度计、水浴锅、离心机、可调式移液器、1mL 玻璃比色皿、研钵、冰和蒸馏水。

试剂的组成和配制:

提取液:液体 50mL×1 瓶,4℃保存;

试剂一:液体 15mL×1 瓶,4℃保存;

试剂二:液体 60mL×1 瓶,4℃保存;

样品测定的准备:

1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104

个):提取液体积(mL)为 500~1000:1 的比例(建议 500 万细菌或细胞加入 1mL 提取液),超声波破碎细菌或细胞(冰浴,功率 20%或 200W,超声 3s,间隔 10s,重复 30 次);8000g 4℃离心 10min,取上清,置冰上待测。

2、组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例(建议称取约 0.1g 组织,

加入 1mL 提取液),进行冰浴匀浆。8000g 4℃离心 10min,取上清,置冰上待测。

3、血清(浆)样品:直接检测。

测定步骤:

1、分光光度计预热 30min 以上,调节波长至 540nm,蒸馏水调零。

混匀, 90℃水浴 10min(盖紧,防止水分散失),冷却后,测 540nm 下吸光值 A,计

算ΔA=A 测定管-A 对照管。每个测定管需设一个对照管。

第1页,共2页

Cx 活性计算

1、标准条件下测定回归方程为y=6.4078x-0.0673;x 为标准品浓度(mg/mL),y为吸光值。

2、血清(浆)Cx 活力的计算

单位的定义:每 mL 血清(浆)每分钟催化产生 1μg 葡萄糖定义为一个酶活力单位。

Cx 活力(μg /min/mL)= [1000×(ΔA+0.0673) ÷6.4078×V 反总]÷V 样÷T

=14.305×(ΔA+0.0673)

3、细胞、细菌和组织中 Cx 活力的计算

(1)按照蛋白浓度计算

单位的定义:每 mg 组织蛋白每分钟催化产生 1μg 葡萄糖定义为一个酶活力单位。

Cx活力(μg/min/mg prot)=[ [1000×(ΔA+0.0673)÷6.4078×V反总]÷(V样×Cpr) ÷T

=14.305×(ΔA+0.0673) ÷Cpr

(2)按样本鲜重计算

单位的定义:每 g 组织每分钟催化产生 1μg 葡萄糖定义为一个酶活力单位。

Cx 活力(μg/min/g 鲜重)=[1000×(ΔA+0.0673) ÷6.4078×V反总]÷(W×V样÷V样总)

÷T=14.305×(ΔA+0.0673) ÷W

(3)按细菌或细胞密度计算

单位的定义:每 1 万个细菌或细胞每分钟催化产生 1μg 葡萄糖定义为一个酶活力单位。

Cx 活力(μg/min/104cell)=[1000×(ΔA+0.0673)÷6.4078×V反总]÷(500×V样÷V样总)

÷T=0.0286×(ΔA+0.0673)

1000:1mg/mL=1000ug/mL;V 反总:反应体系总体积,0.55mL; V 样:加入样本体积,0.05 mL;

V 样总:加入提取液体积,1 mL;T:反应时间,120 min;Cpr:样本蛋白质浓度,mg/mL;

W:样本质量,g;500:细菌或细胞总数,500 万。

第2页,共2页

QS2631内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书

货号:QS2631 规格:50管/24样 内切-β-1,4-葡聚糖酶(Cx)活性测定试剂盒说明书 分光光度法 正式测定前务必取 2-3 个预期差异较大的样本做预测定 测定意义: Cx存在于细菌、真菌和动物体内,是纤维素酶系的组份之一,Cx主要作用于非晶态纤维素和水溶性纤维素衍生物,随机水解糖苷键,将其分解成葡萄糖、纤维二糖、纤维三糖和其他寡聚体。 测定原理: 采用3,5-二硝基水杨酸法测定Cx催化羧甲基纤维素钠降解产生的还原糖的含量。 需自备的仪器和用品: 可见分光光度计、水浴锅、离心机、可调式移液器、1mL 玻璃比色皿、研钵、冰和蒸馏水。 试剂的组成和配制: 提取液:液体 50mL×1 瓶,4℃保存; 试剂一:液体 15mL×1 瓶,4℃保存; 试剂二:液体 60mL×1 瓶,4℃保存; 样品测定的准备: 1、细菌或培养细胞:先收集细菌或细胞到离心管内,离心后弃上清;按照细菌或细胞数量(104 个):提取液体积(mL)为 500~1000:1 的比例(建议 500 万细菌或细胞加入 1mL 提取液),超声波破碎细菌或细胞(冰浴,功率 20%或 200W,超声 3s,间隔 10s,重复 30 次);8000g 4℃离心 10min,取上清,置冰上待测。 2、组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例(建议称取约 0.1g 组织, 加入 1mL 提取液),进行冰浴匀浆。8000g 4℃离心 10min,取上清,置冰上待测。 3、血清(浆)样品:直接检测。 测定步骤: 1、分光光度计预热 30min 以上,调节波长至 540nm,蒸馏水调零。 混匀, 90℃水浴 10min(盖紧,防止水分散失),冷却后,测 540nm 下吸光值 A,计 算ΔA=A 测定管-A 对照管。每个测定管需设一个对照管。 第1页,共2页

酶活力测定方法

蛋白酶活力测定: 参照中华人民共和国专业标准SB/ T10317-1999蛋白酶活力测定方法( Asha 等, 2007)。 纤维素酶DNS酶活力测定方法 DNS, 活力, 纤维素酶, 测定 1 定义" |0 `. y6 t9 b" ^ 2 x 1g固体酶粉在40℃和pH值4.2条件下,每分钟水解纤维素生成1微克葡萄糖的量为1个酶活力单位,以u/g表示。 2 原理 纤维素酶分解纤维素,产生纤维二糖、葡萄糖等还原糖,纤维二糖、葡萄糖等还原糖能将3,5二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量,表示酶的活力。! Y" m& p' q; I& K B& e$ T( B4 } 3.试剂和溶液 3.1 1%葡萄糖标准溶液(同β-葡聚糖酶酶活测定) 3.2 羧甲基纤维素钠(CMC)溶液 取1g羧甲基纤维素钠(粘度300~600厘泊),加入pH4.2的磷酸氢二钠-柠檬酸缓冲液(甲液414ml和乙液586ml并用pH计校正至pH为4.2)混合均匀,水浴加热至溶,冷却后用2M 盐酸或氢氧化钠调节pH到4.2,定溶至100ml,再用二层纱布过滤,此溶液在4℃冰箱贮存,有效期3天。取滤液100ml,20ml,蒸馏水40ml,混匀,贮冰箱备用。4 C) c+ }( l2 R( M( p! L 3.3 DNS 试剂(同β-葡聚糖酶酶活测定); h1 a. l3 Z3 k6 t2 | 4仪器和设备 4.1恒温水浴锅(40℃±0.2℃) 4.2分光光度计 含10mm比色皿,可在550nm处测量吸光度。$ ]1 h& A) p) K 5测定步骤 5.1 标准曲线绘制. [* |! P6 u* G& u2 ^6 J4 Q 分别吸取1%葡萄糖标准溶液0、1.0、2.0、3.0、4.0、5.0、6.0ml于50ml容量瓶中,用蒸馏水制成每ml分别含有葡萄糖0、200、400、600、800、1000、1200mg的稀标准液。各取不同浓度的稀标准液0.5ml于试管中,加入CMC溶液1.5ml、DNS试剂3.0ml,于沸水浴中沸腾7min,取出后立即加入蒸馏水10ml混匀。冷却后,用10mm比色皿,在波长550nm处用分光光度计分别测定其吸光度。以吸光度为纵坐标,相对应的葡萄糖浓度为横坐标,绘制标准曲线或计算回归方程。1 H, `% F/ `7 X/ U. W 5.2待测酶液的制备(同β-葡聚糖酶酶活测定) 1 L- {5 h8 W; q+ V4 u2 Y 5.3 比色测定 精确吸取经待测稀释酶液0.5ml,40℃预热5min,加入经40℃预热的CMC液1.5ml(每个样品同时作3支平行试管),于40℃水浴精确反应10min,立即加入DNS试剂3.0ml终止反应,以后按标准曲线制作步骤测定样品吸光度。 同时进行空白对照测定,取稀释酶液0.5ml,先加入DNS试剂3.0ml,再加入CMC液1.5ml,其余步骤同于样品测定。 6.计算0 W+ i$ S: }( _1 o7 ], R5 m( N

β-1,3 葡聚糖酶(β-1,3-glucanase,β-1,3-GA)试剂盒使用说明

β-1,3葡聚糖酶(β-1,3-glucanase,β-1,3-GA)试剂盒使用说明 分光光度法货号:BC0830 规格:50管/24样 产品内容: 提取液:液体50mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入3mL蒸馏水,充分溶解待用;用不完的试剂4℃保存; 试剂二:液体30mL×1瓶,4℃保存; 产品说明: β-1,3-GA(EC3.2.1.73)主要存在植物中,催化β-1,3-葡萄糖苷键水解。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,因此β-1,3-GA活性测定广泛应用于植物病理和逆境生理研究。 β-1,3-GA水解昆布多糖,内切β-1,3-葡萄糖苷键,产生还原末端,通过测定还原糖生成速率,来计算其酶活性。 自备仪器和用品: 可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵、冰和蒸馏水。 操作步骤: 粗酶液提取: 按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液),进行冰浴匀浆。12000g4℃离心10min,取上清,置冰上待测。

测定步骤: 1、分光光度计预热30min以上,调节波长至550nm,蒸馏水调零。 2、样本测定(在1.5mL EP管中依次加入下列试剂): 试剂名称(μL)测定管对照管 样本100100 蒸馏水100 试剂一100 充分混匀,放入37℃水浴60min。 试剂二600600 充分混匀,沸水浴5min(盖紧,防止水分散失),流水冷却,550nm处记录各管吸光值A,如果吸光值大于2,可以用蒸馏水稀释后测定(计算公式乘以相应稀释倍数),ΔA=A测定-A对照。每个测定管需设一个对照管。 β-1,3-GA活性计算: 标准条件下测定回归方程为y=0.0958x-0.0192;x为标准品浓度(mg/mL),y为吸光值。 (1)按蛋白浓度计算 单位的定义:每mg组织蛋白每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/mg prot)=[(ΔA+0.0192)÷0.0958×V1]÷(V1×Cpr)=10.438×(ΔA +0.0192)÷Cpr (2)按样本鲜重计算 单位的定义:每g组织每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/g鲜重)=[(ΔA+0.0192)÷0.09585×V1]÷(W×V1÷V2)=10.438×(ΔA

蛋白酶活力测定方法

酸性蛋白酶产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。工作机理 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 酸性蛋白酶(Acid protease )是指蛋白酶具有较低的最适pH,而不是指酸性基团存在于酶的活性部位,酸性蛋白酶的最适PH从2左右(胃蛋白酶)到4左右。从酶的活力-PH曲线分析,在酶的活性部位中含有一个或更多的羟基。这一类蛋白酶中研究最彻底的是胃蛋白酶。(酸性蛋白酶537容易失活)

简介:酸性蛋白酶是由隆科特黑曲霉优良菌种经发酵精制提炼而成,它能在低PH条件下,有效水解蛋白质,广泛应用于酒精、白酒、啤酒、酿造、食品加工、饲料添加、皮革加工等行业。 1、产品规格:,规格有5万u/g~10万u/g 液体型为黑褐色液体,规格有50000u/ml~10000u/ml. 2、酶活力定义:一个酶活力单位是1g酶粉或1ml酶液在40℃,PH3.0条件下,1分钟水解酪素产生1ug酪氨酸为一个酶活力单位(u/g或u/ml) 特性1、温度范围为:最适温度范围为40℃-50℃2、PH为:最适PH范围为2.5~3.5 使用方法 1、白酒工业: 本品用以淀粉为原料的生产酒精及白酒行业,提高出酒率0.25%个酒分,提高发酵速度。 2、食品工业: 食品上用以淀粉改良,提高食品风味、改良品质,因能提高氨基酸含量 3、啤酒生产: 能有效阻断双乙酰生成,缩短啤酒成熟期。 4 饲料添加剂:提高饲料利用率。 5、毛皮软化: 提高上色率,手感丰满,增加毛皮光泽。

木聚糖酶研究进展

木聚糖酶研究进展 刘亮伟 河南农业大学生命科学学院 郑州 450002 文化路 95 号llw321@https://www.sodocs.net/doc/0517107089.html, 科学技术的进步给21世纪的人类带来了便利,也给人类带来了前所未有的压力:人口膨胀、能源危机、环境污染、资源匮乏,所有这些问题的本源是能源危机。与能源匮乏相矛盾,自然界通过光合作用赋予人类大量可再生资源:如纤维素和半纤维素,作为继纤维素后第一大生物资源的半纤维素在农业和木材工业中是常见的废弃物,它作为可再生资源的一个有利条件是它比纤维素更易于提取和水解。秸秆中半纤维素含量占其总干重的25~50%,其化学结构较纤维素复杂得多,由D-木糖通过β-1,4-糖苷键相连成的主链和少量L-阿拉伯糖侧链所组成[1],这种D-木糖单元在硬木和软木中平均聚合度分别是150-200和70-130,要得到能够利用的单糖必须通过以木聚糖酶为主的半纤维素酶系协同作用进行水解而完成[2]。 内切-1,4-β-木聚糖酶(E.C 3.2.1.8)是一种内切糖苷酶,能够水解木聚糖这类自然界中最丰富的半纤维素,同自然界中五碳糖的循环相联系,在能量循环中占有重要地位。在古代人们就已经在生产过程中间接地利用各种酶进行生产:如酿酒、制作奶酪、烘焙面包、修饰淀粉等。1986年,Viikarri发现了木聚糖酶在纸浆漂白和造纸工业中能够降低环境污染物品的用量[3],伴随着人类对于可持续性发展和环境的重视,木聚糖酶在工业上的应用明显增加,在1997-2002年间的5年中,纸浆造纸业用酶由1.0亿美元增加到1.92亿元,增长率为16.2%,是所有酶制品行业中增长率最快的。 1木聚糖酶的应用 1.1在纸浆造纸工业中应用 木聚糖酶最重要的用途是在纸浆造纸工业中对于纸浆的漂白。因为环境污染最大的来源是纸浆造纸工业中的废水。根据资料显示仅仅美国每年用于纸浆漂白的氯化物或次生氯化物用量就有200多万吨[4]。因为纸浆漂白污水中含有有毒物质,并且这些物质能在生态系统的生物和非生物组成中积累,如氯苯、氯二苯和其它氯化木质素次生物[5; 6]。这些化学物质对环境危害很大,据有关研究显示既便是远离造纸厂10公里以外的鱼群都会受到纸浆漂白污水中有害物质的负面影响[7],这种受到污染的鱼可以直接或间接地影响人类的身体健康。木聚糖酶的作用就是对木聚糖进行水解从而加快了纸浆中木质素的释放,色素物质所以能够比较容易地从纤维素中释放出来。经实验证实,木聚糖酶的漂白效果比木质素降解酶好得多,这是因为木质素大部分交联在半纤维素上,而半纤维素比木质素更容易解聚[8]。利用木聚糖酶相应地比其它酶进行多聚物降解时,碳水化合物水解速度要快2-3倍[9]。经木聚糖酶处理后的纸浆漂白可以降低20%-40%漂白剂用量 [10]。

酶活测定方法

酶活测定方法 还原法 酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。在此反应体系中添加 化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。通过在特定的波长下 比色,即可求出还原产物的含量,从而计算出酶活力的大小。 色原底物法 通过底物与特定的可溶性生色基团物质结合,合成人工底物。该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。 粘度法 该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。木聚糖和β-葡聚糖溶液通常 情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子 使其粘度大为降低。基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。 高压液相色谱法 酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行 色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物 的含量,从而换算出酶活力的数值。 免疫学方法 常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。 免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂 家生产的酶产品需要有不同特定的抗体发生反应。 琼脂凝胶扩散法 将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。用打孔器在 琼脂平面上打出一个约4-5mm半径的小孔。在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。 蛋白酶活力的测定

微生物产β-葡萄糖苷酶研究进展

Advances in Microbiology 微生物前沿, 2018, 7(2), 79-86 Published Online June 2018 in Hans. https://www.sodocs.net/doc/0517107089.html,/journal/amb https://https://www.sodocs.net/doc/0517107089.html,/10.12677/amb.2018.72010 Progress of β-Glucosidase from Microorganisms Zhishuai Chang*, Hui Lan, Yali Bao, Zhanying Liu# Inner Mongolia University of Technology, Hohhot Inner Mongolia Received: Jun. 7th, 2018; accepted: Jun. 21st, 2018; published: Jun. 28th, 2018 Abstract β-glucosidase can effectively decrease the inhibitory effect of cellobiose on cellulase activity, which is a bottleneck on the complete hydrolysis of cellulose. Because of its low activity and high cost, the β-glucosidase, which is highly resistant to acid and alkali, is more suitable for industrial production and application by means of genetic engineering technology and expressing in hetero-logous hosts. In this paper, there is a detailed summary about β-glucosidase in the classification and cloning about different sources of β-glucosidase gene, enzyme activity determination and so on, which provides theoretical support for enzyme researches. Keywords β-Glucosidase, Gene Cloning, Enzyme Activity Determination 微生物产β-葡萄糖苷酶研究进展 常治帅*,兰辉,包亚莉,刘占英# 内蒙古工业大学,内蒙古呼和浩特 收稿日期:2018年6月7日;录用日期:2018年6月21日;发布日期:2018年6月28日 摘要 β-葡萄糖苷酶能有效解除纤维二糖对纤维素酶活性的抑制,是限制纤维素彻底水解的重要因素。由于β-葡萄糖苷酶酶活相对较低、成本高等因素,通过基因工程手段对其定向改造,异源表达获得高酶活、耐*第一作者。 #通讯作者。

β-1,3葡聚糖酶检测试剂盒使用说明

β-1,3葡聚糖酶检测试剂盒使用说明 分光光度法货号:BC0360 规格:50管/24样 产品内容: 提取液:液体50mL×1瓶,4℃保存; 试剂一:粉剂×1瓶,4℃保存;临用前加入3mL蒸馏水,充分溶解待用;用不完的试剂4℃保存; 试剂二:液体42mL×1瓶,4℃保存; 标准品:粉剂×1支,4℃保存,含10mg无水葡萄糖(干燥失重<0.2%),临用前加入1ml蒸馏水溶解,配制成10mg/ml葡萄糖溶液备用,4℃可保存1周,或者用饱和苯甲酸溶液溶解,可保存更长时间。 标准品准备:将标准品用蒸馏水稀释至1、0.8、0.6、0.4、0.2mg/ml。 产品说明: β-1,3-GA(EC3.2.1.73)主要存在植物中,催化β-1,3-葡萄糖苷键水解。在植物染病或处于其他逆境条件下,可诱导细胞大量合成β-1,3-GA,因此β-1,3-GA活性测定广泛应用于植物病理和逆境生理研究。 β-1,3-GA水解昆布多糖,内切β-1,3-葡萄糖苷键,产生还原末端,通过测定还原糖生成速率,来计算其酶活性。 自备仪器和用品: 可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵、冰和蒸馏水。

操作步骤: 粗酶液提取: 按照组织质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g组织,加入1mL 提取液),进行冰浴匀浆。12000g4℃离心10min,取上清,置冰上待测。 测定步骤: 1、分光光度计预热30min以上,调节波长至540nm,蒸馏水调零。 2、样本测定(在1.5mL EP管中依次加入下列试剂): 试剂名称(μL)测定管对照管标准管(葡萄糖溶液)样本或标准液100100100蒸馏水100100 试剂一100 充分混匀,放入37℃水浴60min。 试剂二600600600 充分混匀,沸水浴5min(盖紧,防止水分散失),流水冷却,540nm处记录各管吸光值A,如果吸光值大于2,可以用蒸馏水稀释后测定(计算公式乘以相应稀释倍数),ΔA=A测定-A对照。每个测定管需设一个对照管。 β-1,3-GA活性计算: 根据标准管吸光度(x)和浓度(y,mg/ml)建立标准曲线,将ΔA带入公式中计算出样品中产生的还原糖的含量y值(mg/ml) (1)按蛋白浓度计算 单位的定义:每mg组织蛋白每小时产生1mg还原糖定义为一个酶活性单位。 β-1,3-GA(U/mg prot)=(y×V1)÷(V1×Cpr)=y÷Cpr (2)按样本鲜重计算

β-葡聚糖测定方法

β-葡聚糖酶活力测定方法(NY/T911-2004) ? 1.原理 β-葡聚糖酶能将木聚糖降解成还原性糖。还原性糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂反应显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中β-葡聚糖酶的活力。 ? 2. 操作 ? 2.1.标准葡萄糖曲线的制作 2.1.1 吸取PH5.5的0.1M乙酸-乙酸钠+缓冲溶液4.0mL,加入DNS试剂5.0mL, 沸水浴加热5min。用自来水冷却至室温,用水定容至25.0mL,制成标准空白样。 2.1.2 分别吸取葡萄糖溶液1.00mL、2.00mL、 3.00mL、 4.00mL、 5.00mL、 6.00mL 和7.00mL,分别用PH5.5的0.1M醋酸缓冲溶液定容至100mL,配制成浓度为 0.10mg/mL、0.20mg/mL、0.30mg/mL、0.40mg/mL、0.50mg、0.60mg/mL和0.70mg/mL 葡萄糖标准溶液。 2.1.3 分别取上述浓度系列的葡萄糖标准溶液各2.00mL(做两个平行),分别 加入到刻度试管中,再分别加入2.0mL缓冲液94.4)和5.0mLDNS试剂。电磁振荡3s-5s,沸水浴加热5min。然后用自来水冷却到室温,在用水定溶液至25mL。 以标准空白为对照调零,在540min处测定吸光度A值。 以葡萄糖糖浓度为Y轴、吸光度A值为X轴,绘制标准曲线。每次新配制DNS试剂均需要重新绘制标准曲线 ? 3. 酶样测定 吸取10.0mLβ-葡聚糖溶液,37℃平衡20min。 吸取10.0经过适当稀释的酶液,37℃平衡10min。 ?吸取2.00mL经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mLDNS试剂,电磁振荡3s-5s。然后加入8.0g/lβ-葡聚糖溶液2.0ml,37℃保温30min,沸水浴加热5min。用自来水冷却至室温,加水定容至25mL,电磁振荡3s-5s。以标准空白样(2.1.1)为空白对照,在540min处测定吸光度A 。 B

PG酶

提要概述了植物多聚半乳糖醛酸酶(PG)的作用方式、组织定位、序列结构及其功能等。对PG同工酶、序列差异性及功能多样性进行了讨论。 关键词植物;多聚半乳糖醛酸酶;功能;综述 Structure and Function of Plant Polygalacturonases-A Review Lu Shengmin,Xi Yufang,Jin Yongfeng,and Zhang Yaozhou (Biochemistry Institute,Food Science and Technology Departme nt,Zhejiang University,Hangzhou 310029) Abstract The action mode,localization,sequence structure and function of plant polygalac-turonases were summarized,and their iso-enzymes,sequence difference and function multiformity were also discussed. Key words Plant;Polygalacturonase;Function;Review 果胶是植物细胞壁的主要成分之一,与半纤维素一起组成共同伸展的网络状结构,纤维素微纤丝镶嵌在其中,这是Carpita等提出的植物初生壁模型〔1〕。果胶类分子的主要特征是由α-(1→4) 连接的D-半乳糖醛酸线状链,其中有些半乳糖醛酸的羧基发生了甲基酯化,有的在线状主链上插入了一些鼠李糖单位,这些鼠李糖残基上常带有富含阿拉伯聚糖和半乳糖的侧链。果胶结构通过二价阳离子交联及与其它细胞壁聚体共价结合而加强。植物细胞分化和形状巨变时,果胶网络结构发生系统性的分解,因此,果胶代谢在植物发育过程中具有重要的作用。 许多酶与催化果胶降解有关。外切和内切多聚半乳糖醛酸酶(PG)、果胶裂解酶、果胶甲基酯酶和β-半乳糖苷酶通过作用于中性支链残基而使果胶聚合体的分子量降低〔2〕。此外,还有可能存在至今未发现的酶在裂解果胶与细胞壁其它结构网络间的共价键上起作用。人们对PG调节果胶降解已有广泛研究,本文综述植物PG的结构与功能研究进展。 1 PG的作用方式和组织定位 早在1965年,Hobson〔3〕用细胞壁蛋白粗提液体外降解纯化果胶的方法发现了果实软化与PG活性的相关性,并将PG按作用方式分为内切多聚半乳糖醛酸酶(endo-PG)、外切多聚半乳糖醛酸酶(exo-PG)和寡聚半乳糖醛酸酶(oligo-PG)。前者以内切方式水解断裂多聚半乳糖醛酸链,后二者以外切方式依次

纤维素酶的结构与功能综述

研究生课程作业(综述)题目:纤维素酶的结构与功能 食品学院食品工程专业 学号 学生姓名 课程食品酶学 指导教师 二〇一三年十二月

纤维素酶的结构与功能 摘要:人类的生命活动离不开酶,生物体的一切新陈代谢活动都离不开酶,并且工业酶产业正在迅速发展。本文简单阐述了酶的结构与功能,重点以纤维素酶为例子,阐述它的来源、结构、分类、催化机制以及在各行业的应用,并对纤维素酶的发展前景作了一定展望。 关键词:纤维素酶结构家族功能 The structure and function of cellulase Abstract:Human's life activities is dependent on the enzyme,and all the metabolic activity of organisms cannot leave the enzyme, and industrial enzyme industry is developing rapidly.This article simply expounds the structure and function of enzymes.The key to cellulose enzyme as an example,expounds its source,structure, classification,catalytic mechanism and application in various industries,and lastly expect the development prospect of cellulase. Keywords: cellulase structure family function 1

β-葡聚糖酶是一类分解β-葡聚糖的酶

β-葡聚糖酶是一类分解β-葡聚糖的酶,它主要分解大麦等麦类中以β-1,3和β-1,4混合键连接的β-D-葡聚糖和细菌地衣多糖,也称地衣多糖酶。β-葡聚糖酶主要由植物和微生物产生,在动物饲粮(尤其是含有大麦的饲粮)中添加能有效地解决β-葡聚糖的抗营养作用,降低食糜粘度。 产品规格 型号酶活剂型包装规格 FE303A2000 IU/g粉状20 kg/袋或桶 FE303B4000 IU/g粉状20 kg/袋或桶 FE303C6000 IU/g粉状20 kg/袋或桶 FE303AL2000 IU/ml液体30 kg/桶或200 kg/桶FE303BL4000 IU/ml液体30 kg/桶或200 kg/桶FE303CL6000 IU/ml液体30 kg/桶或200 kg/桶 产品特点 ●采用新型国际专利菌种生产,产品性能优良,使用效果得以保证; ●先进的全自动液体深层发酵技术,领先的后处理加工工艺,保障了产品的 高纯度、高稳定性和良好的均匀度; ●采用基因工程技术改良发酵菌种,使内切酶活性大幅度提高,是普通产品 的2.5~3.5倍; ●有良好的对高温高湿的耐受能力,在饲料制粒条件下,制粒后的酶活可以 保持85%以上,保证了其在颗粒饲料中的使用效果; ●有良好的对动物胃酸、胃蛋白酶、胰蛋白酶和高浓度金属离子的耐受能力, 保证了其在动物生产中的使用效果。 产品功能 ●有效降解植物饲料中的抗营养因子——β-葡聚糖,消除其抗营养作用, 降低食糜粘度,提高饲料养分的消化率和吸收利用率; ●与纤维素酶、木聚糖酶一起作用,有效摧毁植物细胞壁结构,促进植物细 胞内其它营养物质释放,提高原料中营养物质的利用率; ●促进内源酶的分泌,提高消化道中内源酶活性,促进营养物质的消化和吸 收,提高饲料利用率;

β-葡聚糖的研究

啤酒生产过程中β-葡聚糖研究与测定 郑翔鹏 福建省燕京惠泉啤酒股份有限公司362100 摘要:研究了啤酒生产过程中β-葡聚糖的变化,发现刚果红显色法用于啤酒生产中半成品、成品的测定具有一定的可行性,同时运用的数学统计方法分析,测定的结果表明了其在整个生产过程的变化以及与相应影响因素的关系,起到指导生产的作用。 关键词:β-葡聚糖;刚果红显色法;啤酒 前言 β-葡聚糖是麦芽中非淀粉质多糖的主要组成部分,其占麦芽干物质的5%~8%,是通过β(1、3)、β(1、4)糖苷键随机排列的线性连接而成的。麦芽中水不溶性的β-葡聚糖主要存在于完整胚乳细胞壁中,热水可溶性β-葡聚糖酶,主要存在于胚乳细胞之间和蛋白质混合在一起。β-葡聚糖在水中溶解时,浓度低时直接与水分子相互作用增加溶液粘度,浓度大时,β-葡聚糖分子自身相互作用缠绕成网状结构,能吸收水分子形成凝胶,使溶液的粘度大大的增加;啤酒中适量的β-葡聚糖对口味的丰满有益,能增进口感的柔和性。 在糖化过程中,麦芽中游离的β-葡聚糖及其的分解产物溶于醪液中,使醪液的粘度上升;在35~50℃时,通过内-β-1、4葡聚糖酶和大麦内-β-葡聚糖酶的作用,高分子的β-葡聚糖逐步分解为β-葡聚糖糊精和低分子物质,醪液的粘度逐之下降;在45~55℃,麦芽浸出物继续溶解,β-葡聚糖继续游离,此时,内-β-1、4葡聚糖酶和大麦内-β-葡聚糖酶的活力逐步减弱,β-葡聚糖分解缓慢,但研究表明,内-β-1、4葡聚糖酶在50~55时仍具有一定的活力,可继续分解β-葡聚糖;在60~70℃时,β-葡聚糖溶解酶使大量的β-葡聚糖从其相结合的蛋白质中分离出来,在这个温度上,温度越高,游离出来的β-葡聚糖含量就越高,在65℃以上内-β-1、4葡聚糖酶的活力逐渐失活;在70℃以上,由于上述各种β-葡聚糖分解酶均已逐渐失活,此时由β-葡聚糖分解酶溶解的β-葡聚糖保持不变。 其中,影响β-葡聚糖分解的因素为:首要的还是大麦的品种与质量,溶解良好的麦芽,其的高分子β-葡聚糖含量远低于溶解不良的,而含的酶量远高于溶解不良的;粉粹条件也有一定影响,一般说细粉溶解出较多的β-葡聚糖;糖化的条件的影响,低温下料和低温糖化,β-葡聚糖的分解较明显,而高温糖化对高分子β-葡聚糖难分解到满意的程度,特别是对溶解不良的麦芽,但是,对麦汁中β-葡聚糖含量起作用的是麦芽质量,糖化方法只能起到调节的作用,当然了,延长低温休止时间,对β-葡聚糖的分解是有利的,PH值的影响不是很明显。研究表明,45℃糖化时只有少数的β-葡聚糖释放到麦汁中去,而在65℃糖化有大量的β-葡聚糖浸出到麦汁中,因此,就糖化温度以及糖化其他物理性质对糖化过程中β-葡聚糖的浸出比β-葡聚糖酶的影响更大,这将表明,麦汁中的β-葡聚糖含量主要取决于制麦过程中胚乳细胞壁所经受酶的水解程度。 对于麦汁、发酵液以及成品酒中β-葡聚糖的检测分析,作者根据多种分析方法研究分析实践,如利用苯酚法等,最终确定刚果红显色法进行分析研究。通过研究表明,该方法具有良好的线性,操作简单、方便,对于实际样品的检测有一定的指导生产的作用。 本文主要基于该检测方法上,研究整个啤酒酿造过程中β-葡聚糖的变化情况,同时根据不同品种的啤酒其β-葡聚糖的差异,表明一定的问题。 1、实验材料与方法 1.1实验材料 标准β-葡聚糖(美国Sigma公司生产) 刚果红(进口分装) 磷酸缓冲溶液(PH=8.0) 分光光度计(hp公司生产) 恒温水浴槽

酶在饲料中的应用

酶在饲料方面的应用 最早记载科学描述外源性酶制剂在动物营养中的作用可追溯到20世纪20年代,在此后的30年里,科学家开始研究外源酶在家禽饲料中的应用,并达到了广泛应用。 酶在动物体内消化与新陈代谢过程中起着非常重要的作用。动物能分泌到消化道内的酶主要属于蛋白酶、脂肪酶类和碳水化合物酶类。在消化酶的作用下,底物大分子物质(如蛋白质、脂肪、多糖等)降解为易被吸收的小分子物质,如寡肽、氨基酸、脂肪酸、葡萄糖等。饲用酶制剂大致可分为消化酶和非消化酶两大类。非消化酶是指动物自身不能分泌到消化道内的酶,这类酶能消化动物自身不能消化的物质或降解一些抗营养因子,主要有纤维素酶、木聚糖酶、β-葡聚糖酶、植酸酶、果胶酶等。消化酶是指动物自身能够分泌的淀粉酶、蛋白酶和脂肪酶类等。 饲用酶制剂不仅能消除饲料抗营养因子的有害作用,促进养分的消化和吸收,提高畜禽的生长速率、饲料转化效率和增进畜禽健康,而且能减少养殖业排污中氮、磷的排放,保护生态环境。应用饲用酶制剂是现代化养殖业中经济效益与生态效益兼顾的重要科学技术措施。 饲用酶制剂的商业化应用在国外约有10余年的历史。英国20世纪90年代初酶制剂在鸡饲料中添加率几乎等于零,而现在95%以上的鸡饲料都添加酶制剂。中国如以珠海溢多利公司1992年推出溢多酶作为饲用酶商业化应用的起点,饲用酶制剂在中国的应用也有10 多年历史。 目前中国饲用酶制剂的市场已经初步形成,并在逐步发展。在中国销售饲用酶制剂的国外公司有近10家,其产品有:芬兰国际饲料公司的爱维生和保安生系列产品,芬兰安特罗斯公司的安特复合酶、植酸酶系列产品,罗氏公司和德国巴斯夫公司的植酸酶产品等。 中国饲用酶制剂企业据不完全统计也有20余家,其产品有:广东珠海经济特区溢多利有限公司的溢多酶系列产品、广东肇庆华芬饲料酶有限公司的华芬酶系列产品、广东江门英恒生物饲料有限公司的英恒酶系列产品、江苏太糊酶制厂的太糊酶系列产品、吉林长春昆仑酶制剂厂的复合酶系列产品等。 一、饲料的组成 饲料原料中的脂肪和添加到饲料中的植物油或动物脂肪在肠道经过乳化后才能与胰脂酶充分接触从而得以消化吸收。不饱和脂肪有利于乳糜微粒的形成。不饱和脂肪酸含量高的植物油消化吸收率高于动物油,动物油中猪油消化率高于牛油。幼龄动物对饱和脂肪酸的消化吸收能力较差,随着周龄增大而提高。 饲料中多糖又可分为营养性多糖和结构多糖。营养性多糖主要是淀粉和糖原,结构多糖在植物性饲料中也指非淀粉多糖,主要是植物细胞壁组成成分,包括纤维素、半纤维素、果胶。半纤维素又包括β-葡聚糖、阿拉伯木聚糖、甘露寡糖等。禾谷子实(如玉米、高粱、小麦和大麦等)是畜禽饲料中碳水化合物的主要来源,其主要成分是淀粉,非淀粉多糖含量也较高。豆类饲料原料中的非淀粉多糖主要是果胶和纤维素。非淀粉多糖在目前可以说是影响饲料有机物质消化利用的最主要因素,其中可溶性非淀粉多糖在动物消化道可增加食糜黏稠度,妨碍能量、氨基酸等养分的利用,对单胃动物产生抗营养作用。非反刍动物体内不能分泌纤维素酶、β-葡聚糖酶、木聚糖酶、果胶酶等,纤维素、果胶和大部分半纤维素只能被微生物有限地利用。利用微生物生产的外源多糖酶添加到饲料中可以帮助畜禽消化利用这些非淀粉多糖,如β-葡聚糖酶可水解β-葡聚糖,木聚糖酶可水解阿拉伯木聚糖,从而降低其抗营养作用,提高动物生产性能。

饲料酶活性测定方法

饲用酶活性测定方法

附录A 木聚糖酶活力的测定方法 A1应用范围 本标准规定了用分光光度法测定饲料添加剂中木聚糖酶的活力。 本标准适用于饲料添加剂木聚糖酶产品,最低检出限为10.0U/g。 A2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注册日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注册日期的引用文件,其最新版本适用于本标准。A3木聚糖酶活力单位定义 在37℃,pH为5.5的条件下,每分钟从浓度为5mg/ml的木聚糖溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位U。 A4测定原理 木聚糖酶能将木聚糖降解成寡糖和单糖。具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与3,5-二硝基水杨酸(DNS)试剂发生显色反应。反应液颜色的深度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中木聚糖酶的活力成正比。因此,通过分光比色测定反应液颜色的强度,可以计算反应液中木聚糖酶的活力。 A5.试剂与溶液 除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水。 A5.1乙酸溶液,c(CH3COOH)为0.1mol/L: 吸取冰乙酸0.60ml。加水溶解,定容至100ml。 A5.2乙酸钠溶液,c(CH3COONa)为0.1mol/L: 称取三水乙酸钠1.36g。加水溶解,定容至100ml。 A5.3氢氧化钠溶液,c(NaOH)为200g/L: 称取氢氧化钠20.0g。加水溶解,定容至100ml。 A5.4乙酸—乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH为5.50 称取三水乙酸钠23.14g,加入冰乙酸1.70ml。再加水溶解,定容至2000mL。测定溶液的pH。如果pH偏离5.50,再用乙酸溶液(5.1)或乙酸钠溶液(5.2)调节至5.50。 A5.5木糖储备溶液,c(C5H10O5)为10.0mg/ml: 称取无水木糖1.000g,加缓冲液(5.4)溶解,定容至100ml。 A5.6木聚糖溶液,浓度为5mg/mL 称取木聚糖(Sigma X0672)1.00g,加入氢氧化钠0.32g(或0.5mol/LNaOH溶液16mL),再加入90mL水(75mL),加热,磁力搅拌至木聚糖完全溶解。再加入冰乙酸0.5mL,再用乙酸乙酸钠缓冲溶液(5.4)定容至100mL。如果pH偏离5.50,再用乙酸溶液(5.1)或乙酸钠溶液(5.2)调节pH 至5.50,然后再用乙酸乙酸钠缓冲溶液(5.4)定容至100mL。使用前,适当摇匀。4℃避光保存,有效期为12h。 A5.7DNS试剂 称取3,5-二硝基水杨酸3.15g(化学纯),加水500mL,搅拌5s,水浴至45℃。然后逐步加入100mL 氢氧化钠溶液(5.3),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃)。再逐步加入四水酒石酸钾钠91.0g、苯酚2.50g和无水亚硫酸钠2.50g。继续45℃水浴加热,同时补加水300mL,不断搅拌,直到加入的物质完全溶解。停止加热,冷却至室温后,用水定容至1000mL。用烧结玻璃过滤器过滤。取滤液,储存在棕色瓶中,避光保存。室温下存放7

β-葡聚糖酶活性测定(精)

β-葡聚糖酶活性测定 β-葡聚糖是由葡萄糖单体通过β-1,3和β-1,4糖苷键连接而成的D型葡萄糖聚合物,它主要存在于单子叶禾本科谷实中的糊粉层和胚乳细胞壁中。β-葡聚糖酶属于水解酶类,能有效地降解β-葡聚糖分子中的β-1,3和β-1,4糖苷键,使之降解为小分子。由于在饲料中,大麦的β-葡聚糖含量较高,难以被单胃动物消化利用,而且对饲料中各种养分的消化利用具有明显的干扰和抑制作用,成为麦类饲料中的抗营养因子。在饲料中添加β-葡聚糖酶,能有效地消除β-葡聚糖的抗营养作用,促进饲料中各种养分的消化和吸收利用,增进畜禽健康。在啤酒生产中,添加β-葡聚糖酶可以加快麦汁和啤酒的过滤速度、提高麦汁得率、增加可发酵糖的含量。此外,β-葡聚糖酶在造纸工业、日化工业等其它许多方面也有着广泛的应用,对β-葡聚糖酶的研究将越来越受到人们的重视。 β-葡聚糖酶活力的测定方法主要有3种:还原糖测定法(分光光度法)、粘度测定法和底物染色法。其中还原糖测定法简便实用,比较准确,而且结果重复性好,是广泛使用的一种酶活测定方法。其原理是:β-葡聚糖酶能将β-葡聚糖降解成寡糖和单糖,其具有的还原基团在沸水浴条件下可与DNS试剂发生显色反应,显色的深浅与还原糖量成正比,而还原糖的生成量又与反应液中β-葡聚糖酶的活力成正比,因此,可以利用比色测定反应液的吸光度值来计算还原糖的生成量,从而得出β-葡聚糖酶的活力。但在该测定方法的具体操作中存在一些影响酶活力测定结果的因素,本文即对还原糖法测定β-葡聚糖酶活力的几个重要影响因素进行研究,并得出最佳测定条件。 1 材料与方法 1.1 菌株与培养基 1.1.1 发酵产酶菌株 黑曲霉(Aspergillus niger)A47菌株,由本实验室保藏。 1.1.2 固态发酵培养基 麸皮70 g、米糠27 g、NH4NO3 2.95 g、微量元素液0.05 ml、蒸馏水100 ml,pH值5.0,121 ℃灭菌20 min。 微量元素液的组成为:2 mol/l HCl溶液 5 ml、FeSO4 2.5 g、MnSO4·H2O 0.98 g、ZnCl2 0.83 g、CoCl2 1.0 g、蒸馏水100 ml。

纤维素酶活力测定方法_张瑞萍

测试与标准 纤维素酶活力测定方法 张瑞萍 南通工学院(226007) 摘 要 用DN S 为显色剂,分别以滤纸和CM C 为底物,以滤纸糖酶活性(FP A )和羧甲基纤维素酶活性(CM C a se )表征纤维素酶活力。确定酶活测定用波长为530nm,参比溶液应为失活酶、底物和DN S 等共热的反应物;比较了两种底物的酶活力测定方法。结果表明,CM C a se 比FP A 高,说明酶对水溶性底物有较高的活力,也表明吸附对酶的活性部位与纤维素分子链段的结合及催化均有很大影响;对于不同牌号的纤维素酶,织物的酶减量率与CM C 酶活力关系密切。 叙 词: 测试 纤维素酶 活度中图分类号: TS197 纤维素酶是多组分复合物,各组分的底物专一性不同。纤维素酶作用的底物比较复杂,反应产物不同,致使纤维素酶活力测定方法很多,各国的方法亦不统一。我们选择滤纸、CM C 为底物,原理系利用纤维素酶催化水解纤维素,产生纤维多糖、二糖及葡萄糖等还原糖,与显色剂反应,求出还原糖的浓度,间接求出酶的活力。由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力)和CM C ase (羧甲基纤维素酶酶活力)。本文分析确定酶活力测定的主要条件,比较两种底物的酶活力测定方法的结果,探讨纤维素酶活力与织物减量率的关系,为酶在生产中的利用提供依据。 1 实验方法 1.1 化学药品、材料 纤维素酶(工业品),DNS 试剂(自配),冰醋酸,醋酸钠,葡萄糖(均为分析纯),滤纸(定性),羧甲基纤维素酶CM C (试剂级),纯棉针织物半制品(南通针织厂)。 1.2 FPA 滤纸酶活力和CMC 酶活力的测定 取适当稀释的酶液,分别以滤纸或1%的CM C 溶液为底物,于50℃恒温水解反应1h ;然后加入显色剂DNS,沸水浴中煮沸5min;再加入蒸馏水,于530nm 测定吸光度OD 值。 酶活可定义为:每毫升酶液1min 产生1mg 葡萄糖为一个单位( )。 1.3 针织物酶减量率的测定 将酶处理前后的试样在烘箱中105℃烘至恒重。减量率= 处理前织物干重-处理后织物干重 处理前织物干重 ×100% 2 结果与讨论 2.1 显色剂的选择 选用DNS ,在碱性条件下与还原糖反应,生成有色化合物,用分光光度计比色,确定低分子糖含量。 碱性条件下DNS 与还原糖共热反应如下: O 2N OH O 2N CO OH +还原糖  H 2N OH CO OH O 2N DN S(黄色) 3-氨基-5-硝基水杨酸(棕红色) 生成的棕红色氨基化合物系比色法测定基础。2.2 最大吸收波长的确定 选取490~580nm 波长对显色液进行比色。由图1可知,不同浓度的葡萄糖溶液在490~500nm 处有最大吸收,DNS 在此波长下也有较明显的吸收。为了排除DNS 的干扰,选择在波长 530nm 处进行测定,此波长下的葡萄糖吸收虽有所降低,然而符合“吸收最大、干扰最小”的原则。 图1 D NS 与葡萄糖的吸收曲线 2.3 底物及酶本身含糖量的影响 在实验过程中发现,底物特别是滤纸,也含有一定的还原糖,在碱性的DNS 试剂中也会发色。而且,试验所用的纤维素酶是一种工业级的复合酶,品种不同,其本身含糖量也不同。为了排除这类还原糖的干扰,参比溶液取失活后的酶、底物、DNS 等共热的反应物。2.4 葡萄糖标准曲线 用不同浓度的葡萄糖溶液作为标准溶液,与DNS 共热反应显色后,测出其吸光度OD 值(见图2)。标准曲线的线性相关系数R 2为0.9991(见图2),线性相当好,可以用于酶活力的测定。 38 印 染(2002No .8) www .cdfn .com .cn

相关主题