搜档网
当前位置:搜档网 › 雾培水培自动控制

雾培水培自动控制

雾培水培自动控制
雾培水培自动控制

FM-WPK 雾培/水培控制系统

一、系统简述:

FM-W PK雾培控制系统对于营养液中的EC/PH,环境的温度湿

度,C O2,根系温度,水分,叶面温度、叶面湿度等作物生长环

境参数进行实时监测,按照程序设置,保持根系水分适当,EC,

PH合理,环境温度、环境湿度程序合理。

本系统可以与计算机相联,它有着与WIN DO WS相一致的界面风格,完善的内存管理和友善直观的人机操作方式。

二、监测控制功能:

FM-W PK雾培自动控制系统由主控制器、传感器、控制节点等设备所组成。可实时监控各个温温室的当前状态,包括室内温度、室内湿度、室内二氧化碳浓度等采集信息以及各个设备的开关状态等。通过控制器或者远程上位机软件设定各个温室的运行参数,如温度目标值、湿度目标值、二氧化碳浓度目标值等,以及设备的开关/停止时间等等。对采集上来的数据进行综合分析,利用手动或自动方式,对整个作物生长环境进行测控,让作物培养生长达到合理的环境。同时还可以利用数据查询系统和打印系统,随时记录、查询、打印历史记录等数据,可以按年、月、日、时将各个环境数据加以统计,找出任意时间段的最大值、最小值、平均值等信息,保证生长环境的合理性。

数据采集部分是实现自动雾培的重要环节。本系统选用国际先进技术的专业水分传感器,它把水吸力的大小转化为标准的4-20mA 电流信号。将传感器埋入土壤中,放在植被的根部。多个传感器注意其安放位置应具有代表性,这样才能反映整块的平均含水量的情况。EC传感器和pH传感器检测灌溉用水的电导率和酸碱度,以确定需添加肥料、养分的多少。

一、控制参数及逻辑:

可配备传感器:

环境温度,环境湿度,光照度,空气CO2,根系温度,根系湿度,叶面湿度,液体温度,EC电导率,PH酸碱等。

控制节点:

根系喷雾水泵,迷雾水泵,CO2补气,加温机,风机,补光灯等设备。

根系喷雾逻辑如下:

保证当前有一个方案在运行。

室内温度大于室内温度上限,且室内湿度小于下限时,根系喷雾方案设置为方案一。

室内温度小于室内温度下限或室内湿度大于上限,根系喷雾方案设置为方案二。

方案一和方案二为:打开喷雾水泵X秒,关闭喷雾水泵Y秒(方案一与方案二的X/Y不同)

空气迷雾逻辑如下

室内温度大于室内温度上限时,执行X3,Y3时间断续,即执行X3秒,暂Y3秒迷雾,以达到降温效果.

室内温度大于室内温度上限时风机运行,关加热器开关

室内温度低于设定下限时,关风机,停止迷雾执行循环。打开加热器开关。

室内二氧化碳逻辑如下

室内二氧化碳浓度小于下限时,开二氧化碳开关,,二氧化碳浓度大于上限时关二氧化碳。

灯光逻辑如下:

统计光照高于设定值上限时的时长总小时数。

8:00以后,如果当前光照时长小于设置光照总时长,则开灯补光。补足剩余时长关灯。

更多设备及传感器,可按照用户需求配备。

四、监控管理软件的主要功能

1 操作人员的权限管理:

2 图形化动态显示各种参数;

3 自动记录各个监测点传来的数据;

4 自动分析各点传来的数据;

5 可随时干预控制各点的状态;

6 对所分的区进行各种参数设置;

7随时记录操作员的信息;

8 随时记录操作信息;

9 能随时显示各站点的状态;

10 能随时查询数据库中记录的各种信息;

11 能对管理员有档案管理;

12 历史记录的随时打印;

空调自动化控制原理.

空调自动化控制原理说明 自动化系统是智能建筑的一个重要组成部分。楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。空调机组内有大功率的风机,但它的能耗很大。在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。以下将从控制策略角度对与监控系统相关的问题作简要讨论。 2 空调系统的基本结构及工作原理 空调系统结构组成一般包括以下几部分[2] [3]:

(1) 新风部分 空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。 (2) 空气的净化部分 空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。 (3) 空气的热、湿处理部分 对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

石灰石石膏湿法脱硫系统的设计计算

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。(4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分

SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其它污染物 烟气中的其它污染物如SO3、Cl-、F-和尘都被循环浆液吸收和捕集。SO3、HCl和HF与悬浮液中的石灰石,按以下反应式发生反应: SO2+H2O→2H++SO32- Ca CO3 +2HCl<==>CaCl2 + H2O+ CO2 Ca CO3 +2HF <==>CaF2 +H2O+ CO2 3.工艺流程

过渡季节VAV空调系统送风温度的优化控制策略

过渡季节VAV空调系统送风温度的优化控制策略 摘要:良好洁净的空气质量与节能效果间的权衡一直以来是变风量空调系统研究的热点话题。本文对多个地区变风量空调系统进行严格对比和分析,通过固定的状况下来科学分析了系统其节能的效果,详细的对比了各种环境因素以及影响因素,且在此基础上提出了一种可行的优化方案。针对混合型送风系统提出了相关的优化控制方案和取得科学研究结果。 关键词:多区域;部分负荷;变风量系统;节能 工业的快速发展,给人们生活带来方便的同时,对于相关性产品的科技技术和特定作用有了更高的要求,以满足人们日益增长的需求。变风量空调系统自身具有追踪负荷功能,且节能效果远远高于传统空调系统的优点,受到了人们的喜欢和适用。 在我国,过渡季节的昼夜温差一般都波动较大,有必要对VAV 系统的送风温度进行实时优化并重设定。送风温度重设定(supply air temperature reset,SAT-reset)是指在一定工况下提高系统送风的送风温度,从而达到节能目的的一种控制策略。我们在稳定工况下分析了送风优化控制的节能效果,并在此基础上提出了一个可行的送风温度控制优化方案。 1. 稳定工况下的SAT-reset结果比 1.1 AHU空调 首先,将AHU和空调区看作是一个稳定在恒定的设定温度的开口系统环境,系统本身是具有热源,空调区域的内部负荷,系统流入的能量,流出的能量,和AHU负荷,直接用T 来表示温度,F来表示流量,“oa”代表新风,“ca”代表排风,“set”代表设定的温度,由能量方程式可以得出以下的结论:当t oa等于t ea时,Q r始终等于Q i;当t oa低于t ea时,F oa越大,即直线斜率越大,AHU 负荷就越小,能耗也越小;当t oa高于t ea时,F oa越大,AHU 负荷就越大,能耗也越大。从节能角度考虑,新风温度较低时应当尽量增大新风量;新风温度较高时,应当在保证空调区域最小新风要求的前提下尽量减少新风量。 1.2 BIN法改进 实验证明,各种环境因素都有可能会影响到空调负荷,比如:气温、含湿量、太阳总负荷。从某种意义上讲,现有的BIN法具有不足之处,此方法主要是依靠频段中的干球温度以及对应的湿球温度的平均值来测定出,没有直接的反映出各个量之间的变化。 我们则是联合频率表来进行操作,不仅仅是从外观上科学的比对出两个变量之间的变化,更加重要的是其准确性较高。常规 BIN 法掩盖了各 BIN 段下的含湿量极值,减弱了各

淮北交警支队高速雾区智能防碰撞警示系统技术标准和要求

淮北交警支队高速雾区智能防碰撞警示系统技术标准和要 求 一、项目背景: 为有效提升我市高速公路交通管理工作水平,根据省政府2017年第226号专题会议纪要精神,省政府办公厅转发了由省公安厅、省交通运输厅和省气象局分别牵头制定的《关于全省高速公路全程视频监控管理系统建设的实施方案》(皖政办秘[2017]34号)、《关于全省高速公路恶劣气象条件监测预警系统建设的实施方案》(皖政办秘[2017]35号)(以下简称“两个系统”),以及省交警总队3月14日下发了《关于深入推进“两个系统”建设工作的通知》(皖公交管〔2018〕123号),要求尽快推进高速公路恶劣气象条件监测预警系统建设,确保“两个系统”建设工作深入推进,故我支队申请建设高速公路雾天防碰撞系统。 二、货物需求一览表

三、技术要求 (一)大气能见度仪要求 安装在团雾易发、多发路段,把检测到的能见度信息传送到后端管理平台,管理平台根据检测到的能见度信息判断是否启动防撞警示单元预警模式;能见度采用太阳能供电方式,数据采用无线传输。 前向散射式能见度传感器技术指标要求: (1)材料:阳极化处理铝,外表面加喷漆保护,自然铝本色。 (2)采用前向散射原理,前向散射角为30°~40°。

(3)测量范围:10m~50km。 (4) 准确度:±10%。 (5)功耗:非加热状态,≤3W;加热状态,-25℃时,≤7W;加热状态,-45℃时,≤11W。 (6)供电:在12*(1±5%)V直流供电条件下,设备能够正常工作。 (7)更新间隔:60 秒; (8)通讯接口:RS232; (9)数据帧格式:ASCII; (10)工作环境温湿度:-40~+60℃,0~100%; (二)防撞警示单元要求 设备安装在团雾易发、多发路段,每1公里40组160只,间隔25米建设一对智能检测防撞引导灯,集成车辆检测模块、引导发光模块,可对经过的车辆实时检测,并通过数据处理系统统一管理控制。 雾天公路行车安全诱导装置技术指标要求: 1、外观及尺寸 外部壳体表面应平整、光滑、清洁,无划痕、锈蚀点、永久性污渍;边角过渡圆润,无毛刺、飞边等缺陷; 外表颜色应均匀一致,表面涂、镀层不应有起泡、龟裂和脱落、机械损伤; 发光显示组件的LED阵列布置均匀 各零部件应紧固、无松动;

水培和雾培技术

第6章水培和雾培技术 ?学习目标: 掌握深液流技术和营养液膜技术的特征、设施结构与栽培管理要点;理解雾培、 浮板毛管水培、浮板水培技术等其他水培设施的构成与管理要点。 ?学习提示; __________________________________________________________________ 水培是植物根浸润在营养液中的一类无土栽培方法,又称水耕栽培或营养液栽培。雾培是指植物根系生长在雾状营养液环境中的一类无土栽培方法。本章介绍常见的几种水培技术和雾培技术。 第一节深液流技术 深液流技术简称DFT(Deep Flow Tech niq ue), 是最早开发成可以进行农作物商品生产的无土栽培技术。从20世纪30年代至今,通过改进,被认为是比较适用于第三世界国家的类型。DFT在日本普及面广,我国的台湾、广东、山东、福建、上海、湖北、四川等省市也有一定的推广面积,成功地生产出番茄、黄瓜等果菜类和萬苣、茼蒿等叶菜类蔬菜。因此,这种类型的水培设施也比较适合我国现阶段的国情。 一、设施结构 深液流水培设施一般由种植槽、定植板(或定植网框)、贮液池、营养液循环流动系统等四大部分组成。由于建造材料不同和设计上的差异,已有多种类型问世。例如日本就有两大类型,一种是全用塑料制造,由专业工厂生产成套设备投放市场供用户 购买使用,用户不能自制(日本的M式和协和式等);另一种是水泥构件制成,用户 可以自制(日本神园式)。实践中试用,认为神园式比较适合中国国情。现将改进型神园式深液流水培设施作一介绍(图 6 - 1 )。 (一)种植槽 种植槽一般宽度为80?100cm,槽深15?20cm,槽长10?20m=原来神园式种植槽是用水泥预制板块加塑料薄膜构成,为半固定的设施,现将其改成水泥砖结构永久 固定的设施(华南改进型)。槽底用5cm厚的水泥混凝土制成,然后在槽底的基础上用水泥砂浆将火砖结合成槽周框,再用高标号耐酸抗腐蚀的水泥砂浆抹面,以达防渗防蚀的效果(见图6 —2)。

空调控制策略-最终版

微软研发中心空调系统控制策略 一、变风量空调机组:单风机,四管制,带风阀,带加湿,地板送 风 原理图

对应的空调机组编号为:

控制说明 系统停止:水阀、风阀、加湿阀与风机状态连锁,当风机关闭时,水阀、风阀和加湿阀关闭。 系统启动:自动模式下,可以通过时间表设置风机的启停;当系统启停命令为开、送风机无故障报警,且无低温报警时,送风机命令变为开,送风机开始正常运转。送风机频率控制:监测送风静压,通过PI调节风机频率,使送风静压保持在设定值;当送风静压低于设定值,频率趋于增大调节;当送风静压高于设定值,频率趋于减小至最小值。 回风CO2浓度控制: 当10°≤室外温度<25°时,新风阀开度为100%。 当室外温度<10°或室外温度≥25°时,系统启动后新风阀开度50%持续5分钟;5分钟之后根据回风CO2浓度PI调节新风阀,使回风CO2浓度维持在500ppm。 新风阀设最小开度,开度值为30%。 回风阀开度与新风阀开度互补,排风阀开度与新风阀开度保持一致。 回风阀控制策略: 回风阀开度总量与新风阀开度互补,即始终保持回风阀开度总量+新风阀开度=100%; 一次回风阀开度=回风阀开度总量*85%;二次回风阀开度=回风阀开度总量*15%。

(备注:设计院设计说明要求二次回风为回风总量的15%) 地板送风变静压控制策略 备注:由于地板送风阀门阀门开度没有预留控制接口,江森自控无法对阀门直接进行控制操作。 收集楼层地板腔送风阀门的开度,由于单个空调机组送风区域分为4个大的送风腔,可以将4个大送风腔作为4个基本单元,每个单元的送风阀门开度取这个大送风腔内各个送风阀门开度的平均值,依据地板腔送风阀门开度调节送风总管压力设置如下表: 表1 送风机频率调整优化表 *送风管道压力设定值增大减少的设定值/周期:10Pa/2min *送风管道压力设定值的起始值:200Pa(暂定值,依据一次风平衡的试验数据进行参考) *压力设定值不能无限减小和增大,压力设定值最小值需满足送风区域最小新

高速公路智能雾灯诱导系统

高速公路智能雾灯诱导系统 摘要:公路的道路能见度受天气的影响较大,尤其是当高速公路出现浓雾的气候时会对驾驶员掌握交通路况产生不良影响,提升交通事故发生的概率。高速公路上事故的发生会造成严重的拥堵,对高速公路的正常运行产生影响。通过对高速公路智能雾灯诱导系统的应用能够对这种情况进行有效的改善。主要通过在高速公路两侧安装智能雾灯,根据智能雾灯诱导系统本身根据天气状况自动调节亮度的能力,在特殊天气提高高速道路的能见度,提高司机驾驶的视野范围,增强驾驶员驾车的安全性。本文将对介绍高速公路智能雾灯诱导系统的基本情况和具体功能进行简要介绍,并对其设计理论进行简要的分析。 关键词:高速公路智能雾灯诱导系统 科学技术的进步使智能雾灯能够运用在高速公路的行车指导上。相关部门能够根据高速公路具体的长度情况进行雾灯的安装,并在智能雾灯的使用过程中与网络进行连接饿,在提高道路能见度的同时掌握道路的故障情况。及时发现道路的故障问题并及时解决问题。为道路的通畅运行提供保障。除此之外,使用GPRS 控制智能雾灯诱导系统能够减少人工对雾灯自动开关的操作。系统能够根据道路能见度情况对雾灯亮度进行自动调节,对保障高速公路的道路安全有重大意义。 一.高速公路智能雾灯诱导系统简介 高速公路智能雾灯的诱导系统构成复杂,由多种装置组合而成,其中包括高科技和智能元件。这些元件组合之后在运用的过程中能够对车流量进行检测,并实时将监测数据和公路气候状况传输给电脑。因此,雾灯诱导系统在具备照明功能的同时还能够对天气进行检测,从而实时掌握路况和高速公路天气的能见度情况。当高速公路上出现浓雾天气时,智能雾灯能够根据空气中雾滴密度的变化自行调节灯光的亮度,增加驾驶员的视野,在路上保持合理合适的车距,提高驾驶员在高速公路上行车的安全性,减少公路安全事故的发生。除此之外,在智能雾灯上的探测控制器能够通过对浓雾的情况的检测对雾区面积进行计算,并将所得数据发送至控制中心,计算机将控制高速公路上各个位置的智能雾灯启动,或者运用GPRS对雾灯诱导系统进行控制,调节雾灯的照射范围。高速公路智能雾灯诱导系统是具实时监测,数据传输,能见度警示等功能于一体的系统,能够为特殊天气下高速公路的驾驶员提供安全驾驶的保障。其工作方式如图所示: 二.高速公路智能雾灯诱导系统具体功能 2.1 亮度自动调节功能 通常而言,雾的情况根据空气中雾滴的浓度分为浓雾、大雾和薄雾等。雾天的能见度较低,驾驶员驾驶的视野小,很难与前车保持恰当的车距和车速,容易造成追尾事故,堵塞高速公路交通,造成人员伤亡。智能雾灯的安装能有效解决此类问题。智能雾灯诱导系统能够检测空气中的浓雾指数,明确天气的情况之后通过中央控制系统和提示屏幕,将高速公路上雾灯的亮度逐步增强。同时电子屏幕可以起到提示板的作用,通过播放标语提示驾驶员减速慢行也提供了灯光扩大驾驶员的视野,观察路况,控制驾驶速度和车距。具体的雾灯实际运行状况如下图所示: 2.2 应用GPRS实现对雾灯的有效控制 高速公路安装智能雾灯之后能够通过GPRS控制雾灯诱导系统,全面掌握雾

各种水培方式的简介和对比

各种水培方式的简介和对比 水培技术的核心是如何处理根系的水气矛盾。大部分水培植物并不是水生植物,他们的根系既需要接触营养液来吸收水分和营养,又需要裸露在空气中进行呼吸作用,两者缺一不可,否则就会发生干枯或者烂根。 这段话是水培技术的核心,所有的水培技术的核心都是怎样来解决这个问题。 本资料为网上收集整理而来,加入了自己的思考,没有版权,欢迎使用。 一:低调的水培蔬菜 水培是植物根浸润在营养液中的一类无土栽培方法,又称水耕栽培或营养液栽培。雾培是指植物根系生长在雾状营养液环境中的一类无土栽培方法。 水培蔬菜,相对于有机蔬菜的神话,虽然显得不那么时尚潮流,且营养和微量元素的丰富性也比不上有机蔬菜;但水培蔬菜具备安全性高、产量大、受自然环境影响小等优点,尤其对于一些叶菜,综合来看水培方式其实更胜一筹。 水培蔬菜具有以下一些优点: 菊苣这样的叶菜还以生食为主,这就要求产品鲜嫩、洁净、无污染。

士培蔬菜容易受寄生虫和细菌污染,沾有泥土,清洗起来不方便,而水培叶菜类比土培叶菜质量好,洁净、鲜嫩、口感好、品质上乘。可直接食用。 叶菜类蔬菜不易贮藏,但为了满足市场需求,需要周年生产。土培叶菜倒茬作业繁琐,需要整地作畦,定植施肥,浇水等作业,而无土栽培换茬很简单,只需将幼苗植入定植孔中即可,例如生菜,一年365天天天可以播种、定植、采收。不间断地连续生产。所以水培方式便于茬口安排,适合于计划性、合同性生产。 要增加支架设施,故设施投资小于果菜类无土栽培。水培蔬菜生长周期短,周转快。水培方式又属设施生产,在大棚内生长,一般不易被台风所损坏。沿海地区台风季节能供应新鲜蔬菜的农户往往可以获得较高利润。 如果中途无大的生理病害发生,一般从定植到采收只需定植时配一次营养液,无需中途更换营养液。果菜类由于生长期长,即使无大的生理病害,为保证营养液养分的均衡,则需要半量或全量更新营养液。 施运转率一年高达20茬以上,生产经济效益高。 二:常见的几种水培方式

石灰石-石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO )由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 3 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其他污染物

VRV 空调系统特性与控制策略研究(一)――――电子膨胀阀―.

VRV 空调系统特性与控制策略研究(一)――――电子膨胀阀――蒸发器联合调节特性与控(1) 通过对影响蒸发器换热量的讲因素――膨胀阀开度、空气温度、风量、蒸发温度、和冷凝温度等参数的分析,得出了不同参数对系统的影响和调节特性,提出了新的更适合于制冷系统的控制方法――风量控过热度、开度控室内温度的独立控制原理和方法,这种控制方法更适合用于制冷空调系统。 关键词:蒸发嚣电子膨胀闪工调节特性控制方法独立控制 符号 C D ――开度系数 Z――轴向长度,m T e . T c ――蒸发、冷凝温度,℃ T in ――室内温度,℃ T α――换热器进口风温,℃F i ――压缩机频率,Hz G r ――制冷剂流量,kg/s G α――风量,m 3/h T su ――过热度,℃ T sb ――过冷度,℃ Q――换热量,kW ρ――介质密度,kg/m3 P-压力,Pa h――介质焓,J/kg A――管内截面积,m2 S――管内截面周长,m A(z)――开度对应的截面积d――管径 τ――管内表面切应力,N/m2 q――热流密度,W/m2 α――两相流空泡系数 g――重力加速度,9.8m/s2 u――流速,m/s O v ――电子膨胀阀开度

下标 l――液相制冷剂 v――汽相制冷剂 a――空气 1.引言 随着制冷空调技术的迅速发展,空调器正在从传统的单室内机、单室外机的结构逐渐向单室外机多室内机及多室内机和多室外机系统发展,系统结构逐渐趋于复杂,具有代表性的变流量制冷系统(Variable Refrigerant Volume Air - conditioning System, 简称VRV)也从单元变流量制冷系统(SVRV)向多元变流量制冷系统发展(MVRV)[1-3]。对于多室内机的热回收系统来说,室内机可能同时做冷凝器或蒸发器使用,而且随着人民生活水平的提高,对室内热舒适性也提出了更高的求,传统的一些控制方法已不能再适应新空调系统的需。由于系统的复杂程度的增加,传统的一些基于制冷空调系统整体的控制算法都由于其兼容性和可扩展性等因素而受到了很大的局限,因此各室内机和室外机独立控制的思想已经被引入到制冷空调系统的控制之中,一些控制理论和算法如矩阵电子控制算法、人工神经元算法和模糊控制算法都已经被引用到实际的制冷空调系统中[4-8]。为使制冷空调系统能安全稳定的运行,除了在控制技术上提高之外,更注重研究制冷空调系统本身的运行调节特性。本文在通过分析系统在制冷模式下电子膨胀阀开度、室内温度、室内机风量、蒸发温度、冷凝温度等对室内机换热的影响的基础上,得出了室内机的调节特性,找出了对室内机制冷模式下更合理的控制策略。 2.数学模型 2.1 电子膨胀阀 电子膨胀阀是通过步进电机等手段使阀芯产生连续位移,从而改变制冷剂流通面积的节流装置。研究表明,电子膨胀阀的流量特性可借鉴热力膨胀阀的研究成果[9-12],其模型描述为: 能量方程: h in =h out (1) 动量方程: 2.2 蒸发管路及蒸发器模型 2.2.1管内制冷剂侧稳态模型 在VRV空调系统中,由于膨胀阀可能设置在离蒸发器较远的位置,节流后的两相制冷剂沿膨胀阀后的管路进入蒸发器,所以在该段管路及蒸发器内部的大部分区域制剂处于两相流动状态;当液体过冷度较小时,由于管道阻力及上升立管中重力的影响,液态制冷剂将会出现闪蒸,闪蒸之后管路内的流动也为气、液两相流动;当室内换热器制热采用其出口电子膨胀阀控制制冷剂过冷度时,膨胀阀之后的高压液体管内仍然可能呈气、液两相状态。在制冷空调领域内,蒸发管路内制冷剂两相流呈环状流[13,14],故本文以环状流建模。因制冷剂蒸发现象可能发生上述管段的任何位置,建模时必须在动量议程中考虑重力项。

暖通空调系统的自动控制探讨 覃大朋

暖通空调系统的自动控制探讨覃大朋 摘要:随着经济和科技水平的快速发展,以及人们生活水平的不断提高,暖通 空调系统不仅提高了人们的生活质量,更是营造了良好的居住环境。然而,在大 量空调使用的过程中,出现的能耗问题、空气污染等问题也逐渐引起人们的重视。不论是对单位,或个人来说,其使用空调消耗的各种能耗几乎占总建筑能耗的50%左右。以中央空调的使用情况为例,其消耗的电能几乎占到整栋建筑电能消耗的60%左右。鉴于此,加强空调使用过程中的节能工作成为促进我国社会可持续发 展的重要任务之一。下面,本文就相关方面展开论述。 关键词:暖通空调;系统;自动;控制;方式 引言 暖通空调系统在室内温湿度调整控制起着关键作用,但其在应用中也存在能 源消耗过多、造成浪费的问题,而且不能满足室内人员的需求,这是传统暖通空 调的优缺点。在自动化技术和设备问世并应用在暖通空调系统中后,空调系统可 以根据实际情况自动调节运行状态,如此可在实现功能的基础上,落实节能环保 理念。相关人员要对空调系统和自动化控制系统进行分析与研究,以便使空调系 统的自动化程度更强。 1自动控制在暖通空调系统中应用的主要特征 目前,相关领域对自动化控制研究的相关理论正不断完善,我国空调自动化 控制方面也取得了一些比较瞩目的成绩,但很多技术层面仍需进一步探索。关于 自动控制在暖通空调系统中应用的相关研究,主要分为三个阶段:首先,在上个 世纪八十年代,中央空调的控制系统,只是简单的开关键;换言之,就是利用压 力继电器或热继电器,完成对设备的控制。其次,随着工业技术的不断发展,开 始使用PID控制器,或是在此基础上的改造控制设备,而几乎84%的空调控制系统,都是通过单纯地操作PID控制器来完成的。最后,发展到当前阶段,智能控制、自动化控制的相关理论开始在暖通空调系统中国得以应用。 2暖通空调系统中的自动化控制 2.1对室内温度的自动控制 暖通空调的主要作用之一便是温度调控。在这种自动控制系统中,相关的传 感器主要为干球温度传感器,在执行自动控制流程中,会将扰量作为监控对象, 在其发生变化时,传感器负责收集信号,最终调节机构会根据数值的变化来调控 送风温度。在温度调控中,加热器和送风装置会受到调控,如果需要升温,加热 器的加热量会增多,送风装置中的新回风混合比也会作出对应的调整。热水和热 蒸汽会为温度升高提供帮助。在自动化控制系统中,一般采取电加热方式来使室 内温度重新适宜。不同结构类型或不同规模大小的建筑,室内温度的调控要求不同,受到的干扰因素也不同,房间围护结构的保温效果有差异,基于此,相关人 员还要选择合适的温度调控方式。可供选择的方式有多种,比如双位控制、比例 积分控制等。在自动化控制系统中,施工人员要对温度传感器的安装位置进行确定,该种装置的安装环境以及与暖通空调的距离都会影响传感器对温度信号的感 应效果。对于太阳辐射比较严重的地方或其它能产生热源的设备,都要远离。如 果是安装在墙体围护结构附近,还要对其温度进行测量。要避免传感器与墙体结 构的直接接触,在正式安装应用中,可悬挂,使其不受墙体温度的影响。大多数 建筑的室内温度在四季都有变化,尤其是冬、夏季节,温度变化非常大,这意味

可变限速以及超速拍照解决方案

可变限速拍照系统 1 可变限速拍照系统主要实现功能 本系统是专门针对雾区道路交通环境设计的智能可变限速拍照系统,是一款借助气象站激光能见度检测系统的反馈,依据《中华人民共和国道路交通安全法》,能见度小于200米限速60公里/小时、能见度小于100米限速40公里/小时、能见度小于50米限速20公里/小时。智能调节,智能抓拍;解决恶劣天气环境下,超速行车车辆的抓拍难题; 2.系统架构 本系统分为三个部分:前端各个子系统,前端控制中心主系统,后台主系统; 前端子系统:测速拍照系统;可变限速显示标志子系统;LED大屏信息发布系统;激光能见度测量系统;4G网络系统; 前端控制中心:完成各个子系统之间的通信以及控制;完成与后台主平台的通信; 后台主系统:数据的接收与上传系统;信息的远程发布已经前端信息的采集系统;

车牌补光 雷达交通基站 由 器机 高清 电子警察超速拍照 3.前端子系统 3.1可变限速标志指示系统 可变限速标志系统由户外LED显示屏、屏显控制主机、前端智能控制中心;前端智能控制中心在获取到能见度信息后,依据道路安全法标准,智能投放限速值到户外限速指示标志牌上; 可变限速标志牌显示屏 ●由用超高亮的LED 和优质的塑胶件 ●高对比度可达到良好的显示效果 ●重量轻易于安装、拆卸 ●采用恒流方式驱动LED,发光均匀,功耗低 ●像素间距为8mm,共有40*20个像素点,每个像素点由1R1G1B 组成

●颜色、亮度可在能见度低的环境下,自适应,自动调节;确保司机能够观测到限速信息; 3.2超速拍照测速系统 考虑到系统前端都部署在室外,环境比较恶劣,而且需要全天24小时不间断工作,对系统的稳定性和可靠性要求很高,因此本系统前端的内嵌服务器操作系统采用Linux技术构建嵌入式系统。 1)高清成像 一体化抓拍单元中的高清摄像机采用“图像传感器+ISP+DSP”技术方案,通过对ISP和DSP的精细化控制来确保高清图像的成像质量,使得高清摄像机在不同环境、不同光照条件下均可达到满足业务

中央空调节能控制策略

中图分类号:TU83文献标识码:B文章编号:1006-8449(2007)05-0073-030引言 中央空调耗电量大,电力浪费也大,很有节能潜力。在中央空调系统中,冷水泵和冷却水泵的容量是按照最大热负载设计的,水泵长期在固定的最大水流量下运行,因季节、昼夜的温度变化及用户负荷的变化,空调实际的热负载在大部分时间内远比设计负载低。水泵系统长期在低温差、大流量下工作,从而增加了管路系统的能量损失、浪费了水泵的输送能量。 变频控制特别适合于风机、水泵类负载,既可以节省能量,又由于降速运行和软启动,从而减少了振动、噪声和磨损,延长了设备维修周期和使用寿命,并减少了对电网的冲击,所以中央空调系统普遍采用变频技术。另外运行时调整冷水机等设备的运行台数也是常用的控制技术。 1节能控制策略 1.1变频控制技术 中央空调系统的能耗由冷水机组电耗及冷水泵、冷却水泵和冷却塔风机的电耗构成。如果各冷水末端用户都有良好的自动控制,而冷水机组的制冷量必须满足用户的需要,那么节能就要靠调节冷水机组运行数量,提高其COP值,降低冷水泵、冷却水泵及冷却塔风机电耗来获得。有两种方法可以达到最大限度的节能效果。 (1)通常冷水机组根据负荷变化,自动调节电机的输出功率,制冷效率有一个最佳的工作条件,即有一个最佳转速,此时,压缩机的工作效率最高。在该工况下,加入变频技术,改变压缩机的转速,就会使压缩机偏离最佳工作条件,降低工作效率。以往,大型中央空调系统中冷水机组通常不采用变频调速控制。但随着科技的不断发展,未来冷水机组压缩机采用变频调速将可以提高机组部分负荷工作时的性能指标,同时变频驱动机组启动电流不会超过机组的满负荷时的工作电流,可减少设备投资,延长设备寿命。目前中央空调的变频技术主要仅应用于冷水泵、冷却水泵以及冷却塔风机。风机、水泵负载转速n与流量Q、扬程h、功率N有如下关系: (n1/n2)3=(Q1/Q2)3=N1/N2 (n1/n2)2=h1/h2 在理论上,转速下降到额定转速的1/2时,流量下降到额定流量的1/2,扬程下降到额定扬程的1/4,而消耗的功率却是额定功率的1/8,故节能效果显著。若水泵或风机的特性与管道阻力特性不相匹配,则节能效果就差些。 (2)由多台冷水机组、冷水泵、冷却水泵、冷却塔风机的并联系统,通过冷水机等设备的台数控制来满足空调冷负荷,并及时响应空调冷负荷的变化,实现冷水机房的供冷量与末端用户的实际需冷量的匹配,在满足空调负荷的前提下通过负荷预测和优化控制以提高系统的运行效率。 1.2冷水机组群控 目前大中型建筑中广泛采用的离心式、螺杆式压缩制冷机组及蒸汽或燃气式吸收冷水机组都具有较好的冷量调节手段,使机组可以在部分负荷下工作。然而,不论采用哪种调节手段,制冷机的COP总随冷量变化,在最大制冷量附近出现效率最高点。当冷水机组蒸发器出口温度不变,并且通过蒸发器的水量也不 中央空调节能控制策略 邱东1,章明华2,宋勤锋2,朱文海2 (1.广州大学城能源发展有限公司,广东广州511436;2.杭州华电华源环境工程有限公司,浙江杭州310030) 摘要:介绍了大型中央空调通过设备群控、变频控制等策略,以实现系统最大节能运行。 关键词:群控;变频控制;自控系统;控制策略

中央空调系统节能策略分析

中央空调系统节能策略分析 中央空调系统作为建筑的重要组成部分,在给人们带来舒适建筑环境的同时,也消耗了大量的能量,对中央空调系统的节能优化是建筑节能优化的重点。基于此,笔者进行了相关介绍。 1、中央空调工作原理 中央空调系统是一个极其复杂的系统,主要由2部分组成,即水系统部分和空气处理系统部分。其中,制冷机组为中央空调系统的正常运行提供所需要的冷负荷,不仅将制造的冷量传递给冷冻水循环系统,且把工作过程中释放的热量传递给冷却水循环系统,是中央空调系统中最重要的组成部分。冷却水泵、冷冻水泵以及冷却塔为中央空调系统提供水循环,是进行热交换的载体。冷冻水将制冷机组制造的冷量带到风机盘管系统中与室内空气进行热交换,并将室内热量带回到制冷机组中;冷却水将制冷机组在工作和热交换中产生的大量废热排放到室外空气中,经过冷却塔降温后的冷却水又流回制冷机组的冷凝器中进行热交换,如此循环往复。 2、控制策略 不同的控制策略对中央空调系统总能耗的影响特别明显,由于中央空调的系统由冷水机组、冷冻水系统、冷却水系统、冷却塔风机系统组成,冷水机组的控制由其自身的控制策略直接控制,但其制冷效果会受中央空调系统中水系统控制的影响。某酒店主楼高18层,辅楼高4层,拥有178余间客房。酒店中央空调系统原控制策略采用冷冻水恒压控制,冷冻水回水压力作为反馈值,0.558MPa作为目标值;冷却水出水恒温控制,冷却水出水温度作为反馈值,目标值设为31℃;冷却塔风机工频控制。经过对系统运行状况的评估同时考虑现场条件,节能改造采用以下的控制方式:冷冻水恒温差控制,冷冻水进出水温差作为反馈值,5℃做目标值;冷却水恒温差控制,冷却水进出水温差作为反馈值,目标值为5℃;冷却塔

中央空调系统的数据分析与控制策略

中央空调系统的数据分析与控制策略 一、问题的背景 随着全球气候的变迁和空调技术的发展,越来越多的大型建筑物利用中央空调系统来实现室内温度和湿度的调节控制。特别是随着“智慧城市”建设步伐的快速推进,如何围绕智慧城市建设实现中央空调系统的智能控制与节能,这是智慧城市建设中的重要研究课题之一。中央空调系统的优化控制策略研究也是实际中的一个很有普遍意义的重要课题。 图1给出了常见的一类中央空调系统的基本结构示意图,该系统包括三套冷却装置Chiller,记为CH-1/2/3)、两个冷却塔(Cooling Tower,记为CT-1/2,二者等效)、三个冷凝水泵(Condenser Water Pump,记为CWP-1/2/3)和四个冷水泵(Chilled Water Pump,记为CHWP- 1/2/3/4)。三套冷却装置的额定功率分别为550RT,550RT和235RT(RT为冷却吨,即表示制冷能力的功率单位,1 RT = 3.517kw )。 图1. 中央空调系统的基本结构示意图 图2给出了中央空调系统的基本工作原理图。每一套(水冷)中央空调系统都包含内循环和外循环两个热交换循环系统。在内循环(图2下方)中,冷水泵将冷却装置中由冷却器冷却的冷水推进大楼, 通过热交换对大楼内部的空气进行降温和除湿。循环水在吸收了室内空气中的热量以后温度升高,重新回流至冷却器中冷却降温,并通过冷却装置将其热量传送到外循环。在外循环(图2上方)中,冷凝器水泵推动冷凝器中的水来吸收冷却器降温所产生的热量到冷却塔,冷却塔把水中的热量排放到室外空气中,水流再流回冷凝器。依次循环。内循环中的冷却器和外循环中的冷凝器被封装在一起,称为中央空调系统的冷却装置(Chiller)。中央空调通过能量转换实现将室内的热量

自动控制在暖通空调系统中的发展与应用 周楠

自动控制在暖通空调系统中的发展与应用周楠 摘要:随着国家经济的迅猛发展,城市化建设的推进使得人民的生活有了极大 的提高,不仅能够为人们营造良好的生活环境,而且还可以提高人民的生活质量。然而,随着暖通空调系统在人们生活中的大量应用,造成了一定的环境问题和能 源消耗问题,尤其是空气污染等方面获得了社会关注。不论单位还是个人应用空 调造成的能源消耗基本占总建筑能耗的1/2,以中央空调为例,中央空调消耗的 电能基本占整栋建筑电能消耗的六成左右。空调的应用在带来极大的生活便利的 同时,也造成了能耗和环境问题,因此需要深入研究空调使用过程中的节能工作,促进国家社会与经济的可持续发展,建立环境友好型社会。 关键词:暖通空调系统;自动化控制;应用 1 引言 随着国家在节能减排、节能降耗的号召,人们尝试在利用能源方面提高资源 利用率,其中建筑暖通空调系统是节能关注的重点领域,它的能耗占整栋建筑耗 能的50%。中央空调电能消耗比例大约在60%,鉴于此能源利用情况,人们发现 通过在空调暖通系统中应用自动化控制,对于节能具有很大的促进作用,这也是 暖通空调系统自动化控制取得较大发展的原因。 2 自动控制在暖通空调系统中应用的主要特征 当前各行各业都对自动化控制和生产有着一定的要求,因此相关领域对于自 动化控制提出了较高的要求。目前,国内空调自动化控制已经有了一定成果,但 是还需要深入在科研领域进行探索。在暖通空调系统中,自动化控制的应用涉及 如下三个阶段:(1)20世纪80年代左右,所采用的中央空调控制系统仅有简单的一个开关键,其借助热继电器或压力继电器进行管理,从而达到对设备进行自 动控制的目的。(2)工业技术的不断发展带来的新变化,PID控制器在自动管理 领域的实际应用使得自动控制系统更加完善和健全,在PID的基础上来改造和完 善控制设备,有超过80%的空调控制系统采用了该控制系统和理念。(3)当前 研究阶段,智能技术的发展使得空调系统也在逐渐追求智能控制和更高等级的自 动化控制,国内逐渐将新的智能控制系统应用于暖通空调系统。 3 暖通空调系统自动化控制具体应用 3.1 冷、热源系统监控 空调制冷方式主要有压缩式、吸收式、冰蓄冷三种。其中压缩式制冷采用氟 利昂、氨作为制冷剂,消耗大量的电能为补偿,针对这一制冷方式的监控,主要 是在空调启停方面的控制,通过监控它的运行状态,如测量冷冻水、冷却水的进 出口温度和压力,出现过载情况则自动报警。同时控制冷却水旁通阀、台数,测 量水流量、冷量。吸收式制冷所采用的制冷剂为水,吸收剂为溴化锂,消耗热量 作为补偿。冰蓄冷制冷,通常在制冷设备处于低负荷状态时运行,在用电高峰期 为输送空间提供冷源。三种制冷方式互相配合,构成了空调制冷监控系统。 3.2 热力系统监控 热力系统主要监控蒸汽、热水出口的压力、温度和流量,当汽包达到特定水 位则为监控人员显示相应数值以及自动报警。同时它还对热力系统的各控制设备 运行状态进行监测,如顺序启停、设备故障信号、运行设备台数、热交换器控制 进汽(水)量、热交换器进汽(水)量阀与热水循环泵连锁控制。例如,针对热 水锅炉的监控,利用温度传感器测量锅炉出口水温,利用流量计测量锅炉出口热 水流量,利用压力变送器测量热水出口压力。锅炉补水泵的自动化控制,主要是

设施农业自动监控系统实现设施农业管理的智能化

设施农业自动监控系统实现设施农业管理的智能化 近年来随着传统农业向产业化、规模化的现代农业方向转变,设施农业得到了蓬勃的发展。设施农业也已经成为带动农民致富的好产业,但是要大力发展设施农业,还需要解决劳动力成本急剧上升等问题,因此将设施农业与物联网相结合已经成为了必然的趋势,设施农业自动监控系统的应用,可以实现设施农业管理的智能化,利用科技来进行设施栽培。 设施农业虽然在我国发展很快,但是自动化、智能化的程度还较低,主要便现在土法温室大棚多,土壤直接栽培多现代化温室大棚少,水培、雾培、基质栽培少。而设施栽培属于投入很高的农业,因此只有利用好设施农业自动监控系统等高科技技术,才有可能在降低成本投入的同时实现高产出、高效益。 配备有设施农业自动监控系统的现代化设备栽培在管理和控制方面优势明显,由于它采取的是从温、光、湿、水、肥、气等方面综合全面的管理方式,根据植物生长的适宜生态条件在现代化设施农业内进行四季恒定的环境自动控制,使其不受气候条件的影响,生产自动化、标准化和智能化,农产品周年生产、均衡上市,实现生产高速度、高产出和高效益。 农业作为国家的第一产业,国家一直以来对其都非常重视,近年来更是加大了科技的投入,基于农业物联网技术的设施农业自动监控系统采用硬件软件双管齐下的管理控制方式,让现代设施农业的管理更加智能化,帮助种植大户、合作社、企业龙头等进一步简化了操作流程,实现了农业工业化及工厂运作,不再局

限在传统农业,从而获得最大的经济效益。 一、云平台 1、设施农业智能监测系统 通过物联网系统可连接传感器采集土壤温度、土壤水份、土壤盐分、PH值、降水量、空气温湿度、气压、光照强度、植物营养指标(养分、水分、微量元素等)以及植物生理生态指标(植物茎秆微变化、果实膨大、叶温、茎流等)来获得作物生长的最佳条件,并根据参数变化实时调控或自动控制温控系统、灌溉系统等; 总体概况:

相关主题