搜档网
当前位置:搜档网 › 叶轮机原理

叶轮机原理

计算流体动力学分析-CFD软件原理与应用_王福军--阅读笔记

计算流体动力学(简称CFD)是建立在经典流体动力学与数值计算方法基础之上的一门新型独立学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点。 第一章节 流体流动现象大量存在于自然界及多种工程领域中,所有这些过程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。本章向读者介绍这些守恒定律的数学表达式,在此基础上提出数值求解这些基本方程的思想,阐述计算流体力学的任务及相关基础知识,最后简要介绍目前常用的计算流体动力学商用软件。 计算流体动力学((Computational Fluid Dynamics简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制卜对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 1.1.2计算流体动力学的工作步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体地说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数值模拟的出发点。没有正确完善的数 学模型,数值模拟就毫无意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2}}寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些内容,可以说是c}}的核心。 (3})编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入、控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较复杂,比如Na}ier-Stakes方程就是一个讨,分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲.数值模拟又叫数值试验。应该指出,这部分工作不是轻而易举就可以完成的。 4})显示计算结果。计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要参考意义。 以上这些步骤构成了CFD数值模拟的全过程。其中数学模型的建立是理论

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

叶轮机设计与实验

“叶轮机设计与实验” 教学实验指导书 教学实验名称:叶轮机设计与实验 Turbomachinery Design and Experiment 学分/学时:0.5/16 适用专业:航空发动机设计、交通运输工具 先修课程和环节:航空发动机原理、叶轮机械原理 一、实验目的 1) 掌握离心式压气机和向心式涡轮的基本气动设计方法; 2) 掌握离心式压气机和向心式涡轮的基本性能测量。 二、实验内容及基本原理 实验内容 应用所学过的叶轮机原理基本知识,进行离心式压气机和向心式涡轮的气动设计,包括:压气机和涡轮共同工作参数确定、压气机和涡轮进出口速度三角形设计、叶型(中弧线)设计、转子和静子叶片数目确定等。加工和制作试验用压气机和涡轮,并进行压气机/涡轮的增压比/落压比、流量和转速等叶轮机基本性能参数的测量。 基本原理 1) 基本方程: Δh * =Lu =ω(r 2C 2u -r 1C 1u ) 方程给出了气流经过以角速度ω旋转的叶栅时的滞止焓的变化,C u 表示气流的周向分速度,该方程基于简单力学原理并且假定流动过程为绝热过程。当气流通过静子叶栅 时(ω=0),滞止焓不变。对压气机来说,滞止焓变化Δh * 为正值;对涡轮来说,滞止焓 变化Δh * 为负值。 当流动过程为不可压流动时: ** *1 c c c P h η ρ ?= ? ** *T T T P h ηρ ?= ? 其中ΔP *c 和ΔP * T 分别表示气流流经压气机和涡轮时的总压变化。 当空气从静止的大气环境中被吸入压气机时,在进入压气机时没有周向分速度,即C 1u =0。当气体离开涡轮时,如果气流的周向分速度不为零,将会增加涡轮出口至真空泵进口管路中的流动摩擦损失。因此,在设计状态下,涡轮转子出口气流的周向分速度应该为零(C 4u =0)。 压气机和涡轮的转子或静子的进、出口径向分速度可通过连续方程得出: Cr= m/(2 πρr h) 其中m 为流量, h 为叶片的轴向宽度,ρ为空气密度。 知道径向和周向两个分速度后,可计算出相对静叶和动叶的气流方向。

CFD—计算流体动力学软件介绍

CFD 流体动力学软件介绍 CFD—计算流体动力学,因历史原因,国一直称之为计算流体力学。其结构为: 提出问题—流动性质(流、外流;层流、湍流;单相流、多相流;可压、不可压等等),流体属性(牛顿流体:液体、单组分气体、多组分气体、化学反应气体;非牛顿流体) 分析问题—建模—N-S方程(连续性假设),Boltzmann方程(稀薄气体流动),各类本构方程与封闭模型。 解决问题—差分格式的构造/选择,程序的具体编写/软件的选用,后处理的完成。 成果说明—形成文字,提交报告,赚取应得的回报。 CFD实现过程: 1.建模——物理空间到计算空间的映射。 主要软件: 二维: AutoCAD: 大家不要小看它,非常有用。一般的网格生成软件建模都是它这个思路,很少有参数化建模的。相比之下AutoCAD的优点在于精度高,草图处理灵活。可以这样说,任何一个网格生成软件自带的建模工具都是非参数化的,而对于非参数化建模来说,AutoCAD应该说是最好的,毕竟它发展了很多很多年! 三维: CATIA:航空航天界CAD的老大,法国人的东西,NB,实体建模厉害,曲面建模独步武林。本身可以生成有限元网格,前几天又发布了支持ICEM-CFD的插件ICEM-CFD CAA V5。有了它和ICEM-CFD,可以做任何建模与网格划分! UG:总觉得EDS脑袋进水了,收了I-deas这么久了,也才发布个几百M的UG NX 2.0,还被大家争论来争论去说它如何的不好用!其实,软件本身不错,大公司用得也多,可是就这么打市场,早晚是走下坡路。按CAD建模的功能来说它排不上第一,也不能屈居第二,尤其是加上了I-DEAS更是如虎添翼。现

叶轮机械原理作业教材

D2 60U2 1300 60 90.44 1300 3.14 = 1.329 取整,确定D2 =1.3m U2 1.3二1300 二1.3 3.14 1300 60 60 二88.44 m s P _4000 u;88.442 2 2 = 0.853 (2)确定叶轮入口参数。叶轮机械原理作业 张硕201520503005 离心通风机设计 设计一台离心通风机,其流量 Q=90000m3/h,压力P=4000pa,介质为空气,进气状态为通风机的标准状态。要求确定流通部分的形状和尺寸,并进行主要零部件的强度计算和材料选用。 一、叶轮设计 制定 Q =90000/3600 =25m3 / s ; P=4000pa;进口压力R n =101325pa,进口温度垢=20°,空气密度P air = 1.205kg/m3 (1)转速、叶片出口角和轮径的确定 选取转速n=1300r/min, 比转速为n s =5.54 Q =5.54 1300 ' 253 =71.6 pN 4000" 根据比转速值,由图 5-5预选’-:二0.8,根据比转速和压力系数估算出叶片出口角 1 b2: 屮0 8 +1.4410-5n S—0.3835 ' +1.44% 10七71.62 -0.3835 '-b^- 3- 332.3 2 2.7966 10 2.7966 10 '■b2值与通风机的压力 P关系密切。经过多次试算,为了保证获得所需要的通风机压力, 确定:b2 = 35。 压力系数为: :=2 0.3835 2.7966 10” 35-1.44 10* 71.6^-0.815 2 4000 90.44 m s 1.2 0.815

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

CFD计算流体动力学入门教程选择

非流体、热动专业CFD新手入门 首先掌握流体力学基本原理,丁祖荣主编的流体力学这本教材,仔细看两天,这样就会知道gambit中为什么会有边界层设置,边界层厚度如何设置;雷诺系数如何确定来判断层流与湍流;马赫数如何确定来判断流体是可压还是不可压,这样就能解决Fluent,是基于压力还是基于密度求解。能够对实际中一些看似简单的流体现象有深刻的认识,能够准确判断是定常流还是非定常流。 CFD网格划分 网格划分对于初学者所接触案例,其实非常简单。但实际工程中,大项目,特别涉及到整套工程,如环保,飞机,网格质量与数量都要求非常高,往往服务器类的PC才能解决问题,所谓的内存128G,CPU四核主频3.0以上。初学者,简单的管道,一般的机器还是没问题。有机械三维软件基础的,对于gambit建模就非常容易了。往往大项目,复杂的结构gambit 建模显得力不从心,所以对于流体工作者来说,学习三维软件对于建模有莫大的帮助,如Proe。 1.1Gambit介绍 网格的划分使用Gambit软件,首先要启动Gambit,在Dos下输入Gambit,文件名如果已经存在,要加上参数-old。 一.Gambit的操作界面 图1 Gambit操作界面 如图1所示,Gambit用户界面可分为7个部分,分别为:菜单栏、视图、命令面板、命令显示窗、命令解释窗、命令输入窗和视图控制面板。 文件栏 文件栏位于操作界面的上方,其最常用的功能就是File命令下的New、Open、Save、Save as和Export等命令。这些命令的使用和一般的软件一样。Gambit可识别的文件后缀为.dbs,而要将Gambit中建立的网格模型调入Fluent使用,则需要将其输出为.msh文件

燃气轮机起动过程原理

燃气轮机起动过程原理 (2007-12-25 22:02:35) 转载▼ 标签: 杂谈 燃气轮机起动过程原理 2.1 燃气轮机启动运行原理 燃气轮机主机由压气机,燃烧室和透平三大部件组成。压气机需要从外部输入机械功才能把空气压缩到一定的压力供入燃烧室。透平则用高温高压的燃气做工质将其热能转变为机械能从而对外输出机械功。在正常运行的时候,压气机是由燃气透平来驱动的。一般讲,透平功率的2/3要用来拖动压气机,其余的1/3功率作为输出功率。显然存在一个问题,在启动过程中点火之前和点火之后透平发出的功率小于压气机所需的功率这一段时间内,必须由燃气轮机主机外部的动力来拖动机组的转子。换言之,燃气轮机的启动必须借助外部动力设备。在启动 之后,再把外部动力设备脱开。机组启动扭矩变化,如图3-1所示。图中MT曲线为透平自点心后所发出的扭矩;Mc曲线是压气在被带转升速过程中的阻力矩变化;Mn 是机组起动时所需要的扭矩特性,即由起动系统所提供的扭矩;n1为机组点火时的转速,即由起动带转机组转子所达到的转速。在n1转速下,进入燃烧室的空气在其规定参数下,由点火器并藉联焰管快速且可靠地点燃由主喷油嘴喷射出来的燃料,并且在机组起动升速过程中,不会发生熄火、超温和火焰过长等现象。n1转速通常为15%~22%SPD范围内,机组不同,n1数值亦不同。图3-1 机组启动扭矩变化 燃气轮机的起动是指机组从静止零转速状态达到全速空载并网状态,在起动过程中要求机组起动迅速、可靠、平稳和不喘振。为了防止压气机在起动过和中喘振,机组起动前和起动过程中某一阶段内气机进口导叶处于34度,即所谓关闭状态,放气阀处于打开放气位置。压气机进口可转导叶角度关小,能使压气机喘振边界线朝着流减小的方向变动,扩大了压气机的稳定工作范围。同时由于空气流量减小,因而减小了起动力矩,使起动机功率减小;在起动功率不变的情况下,可以缩短起动加速时间。防喘放气阀的放气是在于减小压气机高压级的空气流量而不致阻塞,同时又能增加压气机放气口前的气流流量,从而提出高了流速,也使压气机避免喘振。 机组起动过程中,压气进口导叶(IGV)角度,不能总在34度关闭状态;放气阀也不能总在放气位;因机组起动时工质设计参数的需要,6型机当转速为87%SPD时,IGV由34度打开增至57度,当机组转速达到满转速并且加负荷,直到所带负荷达到在约1.54万KW时,IGV继续打开直到84度。而放气防喘阀,当机组转速达到97.5%SPD(转速继电器具14HS 动作)时,即关闭停止放气。 机组起动运行包括起动、带负荷、遥控起动和带负荷。起动包括正常起动和快速起动。带负荷又分自动和手动进行。在起动运行过程中的控制调节又分转速控制、同期控制和温度控制阶段。 燃气轮机的起动过程可以分段进行,亦可以自动按程序控制进行,要分步调试过程中,可以分段进行。一旦分步调试正常后,便无需再分段进行机组起动,而是采用自动程序控制。机组起动过程分以下几步。

计算流体力学大作业报告(翼型空气动力分析)

课程综合作业课程名称:计算流体力学 专业班级:研究方向: 学生姓名:学号: 完成日期:

计算流体力学课程综合报告 1.简介 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。其基本思想为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理星,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 2.计算流体动学的特点: ①流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能找出满足工程需要的数值解。 ②可利用计算机进行各种数值试验,例如,选择不同流动参数进行物理方程中各项有效性和敏感性试验,从而进行方案比较。 ③它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性,能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、易燃等真实条件和实验中只能接近而无法达到的理想条件。 ④数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差。 ⑤它不像物理模型实验一开始就能给出流动现象并定性地描述,往往需要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数学模型进行验证。

先进的叶轮机械叶片设计方法

先进的叶轮机械叶片设计方法 对于透平机械叶片的设计,CAESES是一个功能灵活强大的平台,并包含了先进的端壁造型优化方法等。所有参数化叶片模型都可以与网格划分和仿真工具紧密关联,从而运行自动化CFD仿真分析及优化设计。应用案例包括涡轮增压器、汽轮机、风扇和泵等——包括轴流、离心或者混流等形式。 西门子,丰田,MTU,KSB,Spencer Turbine和IHI等国际知名的公司都正在使用CAESES来设计叶轮机械部件。 为何(选用)CAESES? ●灵活稳定的参数化模型; ●高度客户定制,开放所有细节,并全面整合到现有工作流程中; ●综合考虑模型设置中的几何/制造约束; ●智能地减少参数数量; ●提供了综合调整模型细节的可能性,例如,能够更好地控制空化或漩涡等局 部流动现象; ●针对所有设计变体的一次性预处理; ●一切都以自动化为目标,以实现高效的形状优化; ●来自CAESES支持团队超快的技术支持。

涡轮增压器里的压气机模型,全参数化可调节,自动化设计 将叶片模型连接到CFD并自动进行分析 叶片设计——高效和灵活 CAESES里的叶片模型可以快速手动创建,也可以自动创建。创建单个叶片或分离叶片的模型,都可以采用现有模板或进行客户定制,例如: ●创建任意参数化2D轮廓,包括以现有叶片作为基准进行自动化拟合; ●基于任意子午轮廓(导入的数据,创建的参数化曲线),可以将二维叶片截 面映射到三维流面上; ●定义任意前尾缘形状,包括圆形,椭圆形,钝的,弯曲的; ●任意的中弧线定义方式,基于beta角或者theta角,即叶片气流角或者叶型 包角等;

●任意厚度分布定义(导入的数据,参数化曲线,数学公式定义); ●基于半径(常数,可变)并考虑到应力和结构约束的圆角控制; ●先进的3D曲面生成技术,可以生成高质量的形状和确定可行的设计方案。参数化的几何模型 对于新设计模型的自动化CFD分析,CAESES可以提供自动处理后的参数化几何模型,例如周期性的流体域。它(允许客户)调整叶片的形状同时可以自动生成网格而不需要手动操作。 参数化静子模型,为自动化网格生成的包含端壁造型的周期性流体域 在一个循环中全自动化完成CFD和应力分析 CAESES先进和稳定的CAD功能使得您可以同时方便的创建参数化的周期性固体区域模型,包括特殊的星型结构等。因此,在一次循环中,可以同时进行应力分析和CFD分析。使用CAESES提供的模型,通过一次自动化循环将这两个进程融合在一起可以节省很大一部分的手动工作。

第二章航空燃气轮机的工作原理

第2章航空燃气轮机的工作原理 Principle of Aero Gasturbine Engine 第2.1节概述 Introduction 涡轮喷气发动机是航空燃气轮机中最简单的一种,它是飞机的动力装置。涡轮喷气发动机在工作时,连续不断地吸入空气,空气在发动机中经过压缩、燃烧和膨胀过程产生高温高压燃气从尾喷管喷出,流过发动机的气体动量增加,使发动机产生反作用推力(图2.1.1) 图2.1.1 单轴涡轮喷气发动机 涡轮喷气发动机(图2.1.2)作为一个热机,它将燃料的热能转变为机械能。涡轮喷气发动机同时又作为一个推进器(,它利用产生的机械能使发动机获得推力。

图2.1.2 表示热机和推进器的单轴涡轮喷气发动机 涡轮喷气发动机,作为热机,它和工程中常见的活塞式发动机一样,都是以空气和燃气作为工作介质。它们的相同之处为: 均以空气和燃气作为工作介质。它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。 它们的不同之处为: ?进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。 ?活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。 下面给出了涡轮喷气发动机的简图,图中标出了发动机各部件名称和各个截面的符号。 对于单轴和双轴涡轮喷气发动机的尾喷管,若为收敛性喷管,其出口截面9在临界或超临界状态下成为临界截面,故也可以标注为8。 0---远前方,1---发动机进气道入口,2---压气机入口,3---燃烧室入口, 4---涡轮入口,5---尾喷管入口,8---尾喷管临界截面,9---尾喷管出口 图 2.1.3涡轮喷气发动机各部分名称 请记住上图涡轮喷气发动机各个截面符号的含义。

主流CAE流体动力学分析软件

主流CAE流体动力学分析软件 CFD(计算流体动力学)作为CAE 的重要分支,是通过数值方法来描述流体的运动状态,包含流动、传热、化学反应以及流体 和固体之间的相互作用等。CFD 描述质量传输、动量传输和能 量传输三种过程,并通过数值方法在一个控制体内将这三种守恒的数学方程通过数值方法来进行求解,获取丰富的流场信息。 接下来将介绍一些主流的CAE流体动力学分析软件。 1、Abaqus 公司介绍: 达索系统作为一家为全球客户提供3DEXPERIENCE解决方案的 领导者,为企业和客户提供虚拟空间以模拟可持续创新。其全球领先的解决方案改变了产品在设计、生产和技术支持上的方式。达索系统的协作解决方案更是推动了社会创新,扩大了通过虚拟世界来 改善真实世界的可能性。达索系统为140多个国家超过20万个 不同行业、不同规模的客户带来价值。 产品介绍: Abaqus 统一FEA产品套件为涵盖大范围工业应用程序的常规和 复杂工程问题提供强大且完整的解决方案。在自动化行业中,工程工作团队能够通过常见模型数据结构和集成式解决技术考虑车辆 满载、动态振动、多体系统、影响/碰撞、非线性静态、热耦合和声振耦合。Abaqus 统一 FEA 整合期流程和工具可以降低成本、 提高效率并获得竞争优势。 评价: 就中国市场而言,为后起之秀。其在非线性问题的求解方面比较占优势,计算和收敛的速度也快。

2、ANSYS Fluent 公司介绍: ANSYS公司成立于1970年,目前雇员人数近3000人,其中大部分是有限元分析、计算流体动力学、电子、半导体、嵌入式软件 和设计优化等领域的专家硕士和博士工程师。ANSYS的杰出员工 热衷于推进世界一流的仿真技术,让客户能够将他们的设计理念以更低成本、更快地转化为成功的创新产品。 产品介绍: Fluent是计算流体动力学(CFD)软件工具,能够更深入更快速地优化自己的产品性能。Fluent内含经充分验证过的物理建模功能,能为广泛的CFD和多物理场应用提供快速、精确的结果。 评价: Fluent 通用性最强,湍流模型、辐射模型全面,欧拉多相流模型 也具备优势。可以解决各种复杂边界问题,在计算一些简单的流动问题的时候速度也比较快。 3、ANSYS CFX 公司介绍:

流体主要计算公式

1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 二、沿流线的积分

1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。 (应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标 (3-19) 式中:——无旋运动的流速势函数,简称势函数。 ?势函数的拉普拉斯方程形式 对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有: 或(3-20) 适用条件:不可压缩流体的有势流动。 点击这里练习一下 极坐标 (3-21) 流函数

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

燃气轮机原理(精华版)

QD20燃机轮机机组 第 1章概述 1.1 燃气轮机简介 燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。 走马灯是燃气轮机的雏形我国在11 世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。15世纪末,意大利人列奥纳多〃达芬奇设计的烟气转动装臵,其原理与走马灯相同。 现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。图1-2为开式简单循环燃气轮机工作原理图。压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。 燃气轮机动力装臵是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。为了保证整个装臵的正常运行,除了主机三大部件外,还应根据不同情况配臵控制调节系统、启动系统、润滑油系统、燃料系统等。 燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。 燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;另是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。 自 20 世纪60 年代首次引进6000kW 燃气轮机发电机组以来,我国已建成不少烧油气的燃气轮机及其联合循环发电机组。但由于我国一次能源以煤为主的消费结构,并受到规定的“发电设备只准烧煤”的前燃料政策的制约,目前我国燃气轮机在现有发电设备装机容量中,占有量很小,只有700 万kW 左右,且绝大部分为进口的。但发展速度很快,正在建设和计划的就超过800 万kW,正在建设的一批大型35 万kW 级燃用天然气的联合循环电站。随 着天然气和液体燃料在一次能源中比例的上升和燃气轮机燃煤的技术成熟之后,燃气轮机在我国发电设备中的比例将会愈来愈大。研究表明,由于燃气轮机在效率,环保和成本方面的优势,我国在电站基本负荷发电、老电站技术更新改造、洁净煤发电技术、石油与天然气的输运和高效利用以及舰船、机车交通动力等领域对燃气轮机都将有较大的需求。许多专家还强调燃气轮机在西部大开发中的重要性,国家构想实施的新世纪四大工程:西气东输,西电东送,青藏铁路,南水北调,前三个都与燃气轮机有关。总之,以燃气轮机为核心的总能系统也将成为我国跨世纪火电动力的主要发展方向,我国将是世界最大的燃气轮机潜在市场。 第2章燃气轮机热力循环 2.1热力循环的概念 热力循环是指热力系统经过一系列状态变化,重新回复到原来状态的全部过程。热力循环分为正向循环及逆向循环。将热能转换为机械功的循环称为正向循

计算流体动力学概述

计算流体动力学概述 作者:王福军 1 什么是计算流体动力学 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的“三维”流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。对于非线性情况,只有少数流动才能给出解析结果。 “三维”流体力学示意图 实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。 而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。就好像在

燃气轮机工作原理

燃气轮机工作原理 当您来到机场看到从事商业运营的喷气飞机时,一定会注意到为飞机提供动力的巨大发动机。大部分商用喷气飞机都采用涡轮风扇发动机,这种发动机属于一个大类,叫做燃气轮 机。 您可能从未听说过燃气轮机,其实在您意想不到的各种场所都会出现它的身影。例如,您看到的许多直升机,大量的小型发电厂,甚至M-1坦克,它们使用的都是燃气轮机。在 本文中,我们将看一看燃气轮机到底有哪些能力让它们如此受欢迎。 涡轮机的种类很多: 您可能听说过蒸汽涡轮机。大部分发电厂使用煤、天然气、石油,甚至核反应堆来产生蒸汽。通过一台巨大、设计精密的多级涡轮机,蒸汽带动输出轴旋转,输出轴再带动发 电机,从而产生电力。

水电站大坝使用水力涡轮机(水轮机)产生动力,这种涡轮机的工作原理与蒸汽涡轮机相同。由于水的密度要远远大于空气,而且流动速度慢,因此水电站使用的涡轮机与蒸 汽涡轮机完全不同,不过,二者的基本原理是一致的。 风力涡轮机,也被称为“风磨”,是一种以风为动力的涡轮机。由于风的速度较慢,而且重量很轻,因此风力涡轮机看上去一点儿也不像蒸汽涡轮机或水力涡轮机,不过,它 们的基本原理是一致的。 燃气轮机也是相同原理的延伸。它采用压缩气体转动涡轮。所有现代燃气轮机,都是通过燃烧丙烷、天然气、煤油或喷气燃料等,自己产生压缩气体。燃料燃烧产生的热量使 得空气膨胀,热空气高速冲出,带动涡轮旋转。 那么,为什么M-1坦克要使用1,500马力的燃气轮机,而不使用柴油发动机呢,事实 上,与柴油机相比,涡轮机有两大优势: 燃气轮机的功率重量比远优于往复式发动机。也就是说,涡轮发动机的输出功率与自 身重量的比率非常好。 在相同输出功率下,燃气轮机的体积要小于往复式发动机。燃气轮机的主要劣势在于,与同体积的往复式发动机相比,它的造价昂贵。由于涡轮机的转速快,而且工作温度高,因此从工程和材料的角度看,燃气轮机的设计和制造都是一个很棘手的问题。此外,燃气轮机空转时消耗的燃料更多,而且要求负载恒定,不要有波动。这一点使得燃气轮机成为建造横贯大陆的喷气式飞机,以及发电厂的首选,同时也可以解释为什么汽车上不使用燃

叶轮机原理复习A4

叶轮机:又称叶片机,是在旋转的轴或轮盘上装有叶片,通过叶片与工质的相互作用传输或转换能量的机械装置。如:风扇、压气机和涡轮等。 轴流式和径流式叶轮机的比较:轴流式优点1、迎风面积小2、适合于多级结构3、高压比时效率较高4、流通能力强5、可采用叶栅理论 径流式优点1、单级压比高2、构造简单,制造方便3、叶片沾污时性能下降小4、轴向长度小5、稳定工作范围大 压气机沿着高压比、高效率、高速不断地发展。涡轮的发展方 1.从结构上看 压气机主要由两部分组成: 转子——转 动部分 静子——静止不动部分;工作叶片——转子上的叶片;整流叶片——静子上的叶片;级:转子叶片和整流叶片交错排列,每一排转子叶片和后一排静子叶片组成一个级。空气在工作轮中,通过与工作轮叶片的相互作用而获得自外界输入的机械功,在提高其压力的同时,动能也有所增加。随后,在整流器中,空气沿着叶片通道逐渐减速,进一步把动能变换为压力 1、转静叶排交替排列 2、叶排由叶片周向排列形成 3、轴向间隙 4、径向间隙 1.连续方程 (1 )定坐标系中的热焓方程 动坐标系 (根据热力学第一定律和动坐标系下的热焓方程可得) 工作轮对单位质量气体所做的功称为轮缘功 压缩功 以压缩过程为例:(1)P-V 图 等熵压缩功 多变压缩功 热阻功 焓增 流动损失 工作轮: 整流器: 多级轴流压气机的简化 简化的必要性:内部流动复杂,研究困难。简化过程第一步:多级压气机→单级。简化条件:忽略级与级之间的相互干扰单 级压气机是多级压气机的一个基本单元 压气机叶型:叶型是就是叶片的横截面形状,是构造叶片的基本元素。叶片可以看作无数个叶型沿着叶高方向叠加而成的。 气流流过工作轮后:气体的总温、总压、静压及动能同时增加!气流流过整流器后:气体的总温不变,静压增加,总压及动能有所减小!气流流过整个基元级之后:气体的总温、总压及静压都是增加的! 基元级速度三角形的作用1、可反映压力变化2、反映流动损失情况3、反映各速度间的相互制约关系 U ↑、C 1a ↑?W 1↑(W 1

相关主题