搜档网
当前位置:搜档网 › 一种改进的联合交互式多模型概率数据关联算法

一种改进的联合交互式多模型概率数据关联算法

一种改进的联合交互式多模型概率数据关联算法
一种改进的联合交互式多模型概率数据关联算法

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

关联规则挖掘基本概念和算法--张令杰10121084

研究生课程论文 关联规则挖掘基本概念和算法 课程名称:数据仓库与数据挖掘 学院:交通运输 专业:交通运输规划与管理 年级:硕1003班 姓名:张令杰 学号:10121084 指导教师:徐维祥

摘要 (Ⅰ) 一、引言 (1) 二、关联规则的基本描述 (1) 三、经典频繁项集挖掘的Apriori算法 (3) 四、提高Apriori算法的效率 (6) 五、由频繁项集产生关联规则 (8) 六、总结 (9) 参考文献 (9)

目前,数据挖掘已经成为一个研究热点。关联规则数据挖掘是数据挖掘的一个主要研究内容,关联规则是数据中存在的一类重要的可被发现的知识。其核心问题是如何提高挖掘算法的效率。本文介绍了经典的关联规则挖掘算法Apriori并分析了其优缺点。针对该算法的局限性,结合Apriori性质,本文对Apriori中连接的步骤进行了改进。通过该方法,可以有效地减少连接步产生的大量无用项集并减少判断项集子集是否是频繁项集的次数。 关键词:Apriori算法;关联规则;频繁项集;候选集

一、 引言 关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。如果两项或多项属性之间存在关联,那么其中一项的属性就可以依据其他属性值进行预测。它在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。 关联规则挖掘的一个典型例子是购物篮分析[1] 。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 最著名的关联规则发现方法是R. Agrawal 提出的Apriori 算法。关联规则挖掘问题可以分为两个子问题:第一步是找出事务数据库中所有大于等于用户指定的最小支持度的数据项集;第二步是利用频繁项集生成所需要的关联规则,根据用户设定的最小置信度进行取舍,最后得到强关联规则。识别或发现所有频繁项目集市关联规则发现算法的核心。 二、关联规则的基本描述 定义1. 项与项集 数据库中不可分割的最小单位信息,称为项目,用符号i 表示。项的集合称为项集。设集合{}k i i i I ,,,21 =是项集,I 中项目的个数为k ,则集合I 称为k -项集。例如,集合{啤 酒,尿布,牛奶}是一个3-项集。 定义2. 事务 设{}k i i i I ,,,21 =是由数据库中所有项目构成的集合,一次处理所含项目的集合用T 表示,{}n t t t T ,,,21 =。每一个i t 包含的的项集都是I 子集。 例如,如果顾客在商场里同一次购买多种商品,这些购物信息在数据库中有一个唯一的标识,用以表示这些商品是同一顾客同一次购买的。我们称该用户的本次购物活动对应一个数据库事务。 定义3. 项集的频数(支持度计数) 包括项集的事务数称为项集的频数(支持度计数)。 定义4. 关联规则 关联规则是形如Y X ?的蕴含式,其中X ,Y 分别是I 的真子集,并且φ=?Y X 。 X 称为规则的前提,Y 称为规则的结果。关联规则反映X 中的项目出现时,Y 中的项目也 跟着出现的规律

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

关联规则算法探讨

关联规则算法探讨 发表时间:2010-01-08T10:11:56.840Z 来源:《企业技术开发》2009年第10期供稿作者:梁伟(中国地质大学信息工程学院,湖北武汉430074 [导读] 本文对关联规则的发展进行了简单的介绍,分析了关联规则的经典算法 作者简介:梁伟(1976-),男,广西崇左人,硕士研究生,主要研究方向:数据库技术数据挖掘。 摘要:本文对关联规则的发展进行了简单的介绍,分析了关联规则的经典算法,介绍进了一种新的关联规则算法,并对这三种算法在挖掘关联规则的特点进行了对比分析,最后对关联规则以后的发展进行了总结。 关键词:数据挖掘;关联规则;算法;探讨 1发展历史 随着信息技术的迅猛发展,许多领域搜集、积累了大量的数据,迫切需要一种新技术从海量的数据中自动、高效地提取所需的有用知识。对这些海量数据进行研究的过程中,数据挖掘技术受到越来越多的关注。我们可以使用数据挖掘技术从海量数据中发掘其中存在的潜在规律。并将这些规律进行总结,用于今后的决策。采用关联规则在大型事务数据库中进行数据挖掘是数据挖掘领域的一个重要研究内容。从大量数据中发现项之间有趣的、隐藏的关联和相关联系正是关联规则目的。 关联规则技术在不断成熟和发展,应用范围不断扩大,由最初的购物篮分析发展到计算机入侵检测、搜索引擎、警务预警、交通事故、保险业、金融业、农业专家系统、教学评估、股票分析等领域。在理论研究方面,由最简单的单维、单层、布尔关联规则逐渐向复杂形式扩展,由频繁模式挖掘不断扩展到闭合模式挖掘、扩展型关联规则、最大模式挖掘、衍生型关联规则、关联规则隐私保护、挖掘后处理、增量挖掘、规则主观兴趣度度量、相关模式、数据流等多种类型数据上的关联规则挖掘等。 2相关概念 设项的集合I = { i l ,i 2 ,…,i m },D为数据库事务集合,每个事务T是一个项目子集,似的T I。每个事务由事务标识符TID标识。若有X I, X T,则称T包含X;如果X有k个元素,称X为k-项集。 关联规则的逻辑蕴含式为:X Y[s,c] ,其中X I ,Y I 且 X Y= 。规则X Y在事务集D中成立,并且具有支s和置信度c。支持s是指事务集X Y含的百分比:support(X Y)=P(X Y),置信度c是指D中包含X的事务同时也包含Y的百分比confidence(X Y)=P(Y|X)。 对于一个事务集D,挖掘关联规则的问题就是找出支持度和可信度分别大于用户给定的最小支持度阀值(minsupp)和最小置信度(minconf)阀值的关联规则,这种规则成为强关联规则。 3经典算法 基于频繁集的方法是关联规则挖掘的主要方法,Aproiri算法是基于频繁集的算法最主要算法之一,在数据挖掘中具有里程碑的作用,但是Apriori算法本身存在着一些固有的无法克服的缺陷,而后出现的基于频繁集的另外一种算法FP-gorwth算法能较好地解决APriori算法存在的一些问题。下面分别介绍两种经典的算法。 3.1产生候选频繁项集 Apriori算法是Rabesh Agrawal等人在1994年提出的,该算法采用了一种宽度优先、逐层搜索的迭代方法:首先产生所有的频繁1-项集,然后在此基础上依次产生频繁2-项集、频繁3-项集……,直到频繁k-项集为空集。在此过程中,产生每个频繁项集都需要扫描一次数据库,通过对数据库D的多趟扫描来发现所有的频繁项目集。 设Ck表示候选k-项集,Lk表示Ck中出现频率大于或等于最小支持数的k-项集,即k-频繁集或者是k-大项集。该算法的基本过程如下。 ①首先计算所有的C1; ②扫描数据库,删除其中的非频繁子集,生成L1(1-频繁项集); ③将L1与自己连接生成C2(候选2-项集); ④扫描数据库,删除C2中的非频繁子集,生成L2(2-频繁项集); ⑤依此类推,通过Lk-1((k-1)-频繁项集)与自己连接生成Ck(候选k-项集),然后扫描数据库,生成Lk(频繁k-项集),直到不再有产生频繁项集为止。 Apriori算法虽然能较有效地产生关联规则,同时也存在着不少缺点: ①数据库太大时对候选项集的支持度计算非常繁琐,当支持度、置信度阀值设置太低会产生过多的规则,致使用户难易人为地对这些规则进行出区分和判断。 ②要对数据进行多次扫描,需要很大的I/O负载,算法的效率不高。 ③当数据库D很大时,会产生庞大的候选集,导致算法的耗时太大。 3.2不产生候选频繁项集 FP-Tree算法由 Jiawei Han提出。它的基本思路是将数据集中的重要信息压缩在一个称为频繁模式树(FP-Tree)的数据结构中,然后基于FP-Tree生成数据集中所有的频繁项集。该算法对所有频繁项集的挖掘分为以下两步:①构造频繁模式树FP-Tree。在 FP-Tree中,每个结点有4个域组成结点名称、结点计数、结点链及父结点指针。另外,为方便树遍历,创建一个频繁项头表,它由两个域组成:项目名称及结点链头,其中结点链头指向 FP-Tree中与之名称相同的第一个结点;②调用FP-Growth挖掘出所有频繁项集,具体算法描述如下。 ①生成频繁模式树,首先,扫描事务数据库 D一次,产生频繁1-项集,并把它们按降序排列,放入L表中。其次,创建 FP-Tree的根结点,以“null”标记。再一次扫描D,对于D中的每个事务按 L中的次序排序,并对每个事务创建一个分枝。 ②挖掘频繁项集,首先,从FP-tree的头表开始,按照每个频繁项集的链接遍历,列出能够到达此项的所有前缀路径,得到条件模式基。其次,用条件模式基构造对应的条件FP-tree。第三,递归挖掘条件FP-tree,直到结果FP-tree为空,或者只含有唯一的一个路径(此路径上的每个子路径对应的项集都是频繁项集)。 FP-Growth算法是一种基于模式增长的频繁模式挖掘算法,采用了“分而治之”策略,它能够在不产生候选频繁项集的情况下挖掘全部频繁项集,直接将数据库压缩成一个频繁模式树FP-tree,只需要两次扫描数据库,相对于Apriori算法效率快一个数量级。该算法虽然可以避

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

概率初步知识点总结和题型

概率初步知识点和题型 【知识梳理】 1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件,那么0

3.概率应用: 通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。 【练习】 随机事件与概率: 一. 选择题 1. 下列事件必然发生的是() A. 一个普通正方体骰子掷三次和为19 B. 一副洗好的扑克牌任抽一张为奇数。 C. 今天下雨。 D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。 2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?() A. 甲袋 B. 乙袋 C. 两个都一样 D. 两个都不行 3. 下列事件中,属于确定事件的是() A. 发射运载火箭成功 B. 2008年,中国女足取得冠军 C. 闪电、雷声出现时,先看到闪电,后听到雷声 D. 掷骰子时,点数“6”朝上 4. 下列事件中,属于不确定的事件的是() A. 英文字母共28个 B. 某人连续两次购买两张彩票,均中头奖 C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9 D. 哈尔滨的冬天会下雪 5. 下列事件中属于不可能的事件是() A. 军训时某同学打靶击中靶心 B. 对于有理数x,∣x∣≤0 C. 一年中有365天 D. 你将来长到4米高 6、一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为0.25, 那么袋子中共有球的个数为() A. 15 B. 18 C. 20 D. 25 用列举法求概率: 填空题:

数据结构与算法设计的关系

数据结构与算法设计的关系 学号:2009221104220066 姓名:曹丹专业:09软工 摘要:分别介绍数据结构和算法设计所研究的内容,以及数据结构和算法设计的区别和联系,最后举例说明。 关键字:数据结构算法设计 正文: 一、数据结构研究的内容 数据结构是指数据以及相互之间的联系,可以看做是相互之间存在着某种特定关系的数据元素的集合,因此,可以把数据结构看成是带结构的数据元素的集合。主要包括以下几个方面: (1)数据元素之间的逻辑关系,即数据的逻辑结构。 (2)数据元素及其关系在计算机存储器中的存储方式,即数据的存储结构,也称为数据的物理结构。 (3)施加在该数据上的运算,即数据的运算。 数据的逻辑结构包括:集合、线性结构、树形结构、图形结构等;存储结构包括:顺序存储结构、链式存储结构、索引存储结构、哈希(散列)存储结构等。 二、算法设计的研究内容 算法设计作为用计算机解决问题的一个步骤,其任务是对各类具体问题设计出良好的算法。算法设计作为一门课程,是研究设计算法的规律和方法。 算法是指在解决问题时按照某种机械步骤一定可以得到问题的

结果(有解时给出解,无解时给出无解的结论)的处理过程。简言之,算法就是计算机解决问题的步骤。当面临某个问题时,需要找到用计算机解决这个问题的方法和步骤,算法就是解决这个问题的方法和步骤的描述。所谓机械步骤是指,算法中有待执行的运算和操作,必须是相当基本的。换言之,他们都是能够精确地被计算机运行的算法,计算机甚至不需要掌握算法的含义,即可根据该算法的每一步骤要求,进行操作并最终得出正确的结果。 算法由操作、控制结构、数据结构3要素构成。 算法分析的主要任务是对设计出的每一个具体的算法,利用数学工具,讨论其复杂度。对算法的分析一方面能深刻地理解问题的本质以及可能的求解技术,另一方面可以探讨某种具体算法实用于哪类问题,或某类问题宜采用哪种算法。算法分析就是研究算法从而达到优化计算机解决问题的效率的目的。 对算法的分析和评价,一般应考虑正确性、可读性、稳健性、高效率与低存储量需求等诸多因素。其中评价算法的3条主要标准是:(1)算法实现所耗费的时间; (2)算法实现所好费的存储空间,其中主要考虑辅助存储空间;(3)算法应易于理解,易于编码,易于调试等。 其中时间复杂度是评价算法优劣的一条最重要的标准。 三、数据结构与算法设计的关系 算法设计的实质是对实际问题要处理的数据选择一种恰当的存储结构,并在选定的存储结构上设计一个好的算法,实现对数据的处

关联规则基本算法

关联规则基本算法及其应用 1.关联规则挖掘 1.1 关联规则提出背景 1993年,Agrawal 等人在首先提出关联规则概念,同时给出了相应的挖掘算法AIS ,但是性能较差。1994年,他们建立了项目集格空间理论,并依据上述两个定理,提出了著名的Apriori 算法,至今Apriori 仍然作为关联规则挖掘的经典算法被广泛讨论,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。 关联规则最初提出的动机是针对购物篮分析(Market Basket Analysis)问题提出的。假设分店经理想更多的了解顾客的购物习惯(如下图)。特别是,想知道哪些商品顾客可能会在一次购物时同时购买?为回答该问题,可以对商店的顾客事物零售数量进行购物篮分析。该过程通过发现顾客放入“购物篮”中的不同商品之间的关联,分析顾客的购物习惯。这种关联的发现可以帮助零售商了解哪些商品频繁的被顾客同时购买,从而帮助他们开发更好的营销策略。 1.2 关联规则的基本概念 关联规则定义为:假设12{,,...}m I i i i =是项的集合,给定一个交易数据库 12D ={t ,t ,...,t }m , 其中每个事务(Transaction)t 是I 的非空子集,即t I ∈,每一个交易都与 一个唯一的标识符TID(Transaction ID)对应。关联规则是形如X Y ?的蕴涵式, 其中X ,Y I ∈且X Y φ?=, X 和Y 分别称为关联规则的先导(antecedent 或left-hand-side, LHS)和后继(consequent 或right-hand-side, RHS)。关联规则X Y ?在D 中的支持度(support)是D 中事务包含X Y ?的百分比,即概率()P X Y ?;置信度(confidence)是包含X 的事务中同时包含Y 的百分比,即条件概率(|)P Y X 。如果满足最小支持度阈值和最小置信度阈值,则称关联规则是有趣的。这些阈值由用户或者专家设定。

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

多目标跟踪数据关联方法综述

龙源期刊网 https://www.sodocs.net/doc/fb12149106.html, 多目标跟踪数据关联方法综述 作者:杨凡弟 来源:《科技视界》2016年第06期 【摘要】本文首先介绍了目标跟踪的基本概念和原理,并对在此过程中最重要的数据关 联进行了论述;再对经典的数据关联方法进行了分析与总结,指出了经典的数据关联方法的基本特征;并对近几年受到广泛关注的“多对一”问题、以及实际应用中基于特征的数据关联进行了总结。最后,基于数据关联的研究现状,提出了需要进一步研究的若干问题。 【关键词】多目标跟踪;数据关联;综述 【Abstract】Firstly, the basic concept, principle of target tracking are introduced, and the importance of data association is analyzed; Secondly, the classical data association methods are summarized and the basic feature of those methods are presented; For tracking a target when more than one target originated measurement may exist within the validation gate, the many-to-one measurement set-to-track association methods are summarized, as well methods based on features. Finally, the future study problems of development of data association methods are presented. 【Key words】Multi-target tracking; Data association; Summary 0 引言 目标跟踪是对传感器接收到的量测信息进行处理,从而维持对目标当前状态估计的过程[1]。目标跟踪在军事和民用领域具有重要的应用价值,随着航空航天、机器人以及智能交通 系统等领域的迅速发展,目标跟踪的越来越受到各国的广泛关注;因此,在近几十年来,这方面的研究相当活跃。目标跟踪的基本原理如下所示[2]: 由于在传感器观测过程和目标跟踪环境中存在的各种不确定性以及随机性,破坏了传感器量测与产生量测的目标源之间的对应关系,因此确定传感器接收到的量测和目标源之间对应关系的数据关联方法是多目标跟踪系统中最重要的内容。 1 经典的数据关联方法 最近邻算法[3]主要思想是,在相关跟踪门内“唯一”地选择与被跟踪目标预测位置距离最近的观测与其相关联,即测量值与目标之间是是一一对应的关系。 概率数据关联(PDA)算法[4],其主要思想是将跟踪波门中所有量测进行概率意义上的 加权平均作为滤波输出。对多目标跟踪门相交情况进行了详尽的研究之后,Shalom提出了联 合概率数据关联(JPDA)算法[5],该算法首次引入了聚的概念,按照多目标的跟踪门之间的几何关系将量测划分成多个聚。JPDA算法依次处理每个聚中的量测与目标的关联概率,该方

概率论中几种概率模型方法总结

概率论中几种概率模型方法总结 绪论:概率论中几种常用的概率模型是古典概型、几何概型、贝努里概型.本文对概率论中几种概率模型方法进行了总结。 1 古典概型 古典概型及其概率是概率论的基础知识,它既是进一步学习概率的基础,下面就一些典型事件的分析来说明古典概型的概率计算方法。古典概型的概率计算可以分为三个步骤:确定所研究的对象为古典概型;计算样本点数;利用公式计算概率。即如果随机试验只有有限个可能结果,而且每一个可能结果出现的可能性相同,那么这样的随机试验就是古典概型问题。若设Ω是一个古典概型样本空间, 则对任意事件A 有: A m P ( A ) ==Q n 中的样本点数中的样本点数。在计算m 和n 时,经常使用排列与组合计算公式。在确定一个试验的每个基本事件发生的可能性相同时,经常根据问题本身所具有的某种“对称性”,即利用人们长期积累的关于“对称性”的实际经验,认为某些基本事件发生的可能性没有理由偏大或偏小。关于古典概型的数学模型如下: 1.1 袋中取球问题 1.1.1 随机地同时从袋中取若干球问题 随机地同时从袋中取若干球问题是古典概型中的一类最基本问题,其特点是所考虑的事件中只涉及球的结构而不涉及取球的先后顺序,计算样本点数时只需考虑组合数即可。概率中的很多问题常常可以归结为此类问题来解决。 事件1 一袋中有m + n 个球,其中m 个黑球, n 个白球,现随机地从袋中取出k 个球( k ≤m + n) ,求其中恰好有l 个白球( l ≤n)的概率。 分析:随机地从袋中取出k 个球有k m+n C 种可能的结果,其中“恰好有l 个白球”这 一事件包含了l k-l n m C C 种结果,因此所求概率为l k - l n m k m + n C C P =C 这个结论可以作为一个公式来应用。用它可以解决一些类似的问题。 1.1.2 随机地从袋中不放回地取球若干次 随机地从袋中不放回地取球若干次就是指随机地从袋中每次只取一个球,取后不再放回袋中,连续进行若干次。这样的取球过程实际上是按顺序取的,所考虑的事件也会涉及到取球的顺序,所以要用排列数计算样本点数。 事件2 一袋中装有m + n 个球,其中m 个黑球, n 个白球,现随机地从中每次取出一

数据挖掘算法之关联规则

数据挖掘算法之-关联规则挖掘(Association Rule) (2009-09-20 21:59:23) 转载 标签: 分类:DM dm 在数据挖掘的知识模式中,关联规则模式是比较重要的一种。关联规则的概念由Agrawal、Imielinski、Swami 提出,是数据中一种简单但很实用的规则。关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法。 一、关联规则的定义和属性 考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙。那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知识模式。更确切的说,关联规则通过量化的数字描述物品甲的出现对物品乙的出现有多大的影响。 现实中,这样的例子很多。例如超级市场利用前端收款机收集存储了大量的售货数据,这些数据是一条条的购买事务记录,每条记录存储了事务处理时间,顾客购买的物品、物品的数量及金额等。这些数据中常常隐含形式如下的关联规则:在购买铁锤的顾客当中,有70 %的人同时购买了铁钉。这些关联规则很有价值,商场管理人员可以根据这些关联规则更好地规划商场,如把铁锤和铁钉这样的商品摆放在一起,能够促进销售。 有些数据不像售货数据那样很容易就能看出一个事务是许多物品的集合,但稍微转换一下思考角度,仍然可以像售货数据一样处理。比如人寿保险,一份保单就是一个事务。保险公司在接受保险前,往往需要记录投保人详尽的信息,有时还要到医院做身体检查。保单上记录有投保人的年龄、性别、健康状况、工作单位、工作地址、工资水平等。这些投保人的个人信息就可以看作事务中的物品。通过分析这些数据,可以得到类似以下这样的关联规则:年龄在40 岁以上,工作在A 区的投保人当中,有45 %的人曾经向保险公司索赔过。在这条规则中,

电商数据挖掘之关联算法(一):“啤酒+尿布”的关联规则是怎么来的

电商数据挖掘之关联算法(一):“啤酒+尿布”的关联规则是怎么来的 Posted on 2013年09月16日 by admin in 消费者研究, 用户研究, 电子商务with 0 Comments 所谓关联,反映的是一个事件和其他事件之间依赖或关联的知识。当我们查找英文文献的时候,可以发现有两个英文词都能形容关联的含义。第一个是相关性relevance,第二个是关联性association,两者都可以用来描述事件之间的关联程度。其中前者主要用在互联网的内容和文档上,比如搜索引擎算法中文档之间的关联性,我们采用的词是relevance;而后者往往用在实际的事物之上,比如电子商务网站上的商品之间的关联度我们是用association来表示的,而关联规则是用association rules来表示的。 如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。简单地来说,关联规则可以用这样的方式来表示:A→B,其中A被称为前提或者左部(LHS),而B被称为结果或者右部(RHS)。如果我们要描述关于尿布和啤酒的关联规则(买尿布的人也会买啤酒),那么我们可以这样表示:买尿布→买啤酒。 关联算法的两个概念

在关联算法中很重要的一个概念是支持度(Support),也就是数据集中包含某几个特定项的概率。 比如在1000次的商品交易中同时出现了啤酒和尿布的次数是50次,那么此关联的支持度为5%。 和关联算法很相关的另一个概念是置信度(Confidence),也就是在数据集中已经出现A时,B发生的概率,置信度的计算公式是:A与B同时出现的概率/A出现的概率。 数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联等。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,或者即使知道也是不确定的,因此关联分析生成的规则带有置信度。 关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。它在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。 关联规则挖掘的一个典型例子是购物篮分析。关联规则研究有助于发现交易数据库中不同商品(项)之间的联系,找出顾客购买行为模式,如购买了某一商品对购买其他商品的影响。分析结果可以应用于商品货架布局、货存安排以及根据购买模式对用户进行分类。 关联规则的发现过程可分为如下两步: 第一步是迭代识别所有的频繁项目集(Frequent Itemsets),要求频繁项目集的支持度不低于用户设定的最低值; 第二步是从频繁项目集中构造置信度不低于用户设定的最低值的规则,产生关联规则。识别或发现所有频繁项目集是关联规则发现算法的核心,也是计算量最大的部分。

超几何和二项分布概率模型总结

高考理科数学知识归纳——概率 一.离散型随机变量的期望(均值)和方差 X 1x 2x … n x P 1p 2p … n p 1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称112 2...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++ 性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值 μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ. 方差2221122()()...()n n DX x p x p x p μμμ=-+-++- 2.方差公式也可用公式22221()()n i i i D X x p EX EX μ==-=-∑计算. 3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X 的标准差,即 ()D X σ=. 1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。 X -1 0 1 P 9 5 对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,不合格品数X X 0 1 2 … l P 0n M N M n N C C C - 11n M N M n N C C C -- 22n M N M n N C C C -- … l n l M N M n N C C C -- 其中min(,)l n M =

相关主题