搜档网
当前位置:搜档网 › 精馏塔的计算(技术部)

精馏塔的计算(技术部)

精馏塔的计算(技术部)
精馏塔的计算(技术部)

正戊烷精馏塔工艺计算

正戊烷精馏塔工艺计算 1全塔物料平衡计算 1.1 原始数据获取: 表3-1 原料各组分数据汇总 .1.2物料衡算 物料的年处理量= 77100001000/8000 1299/580.3720.35860.251000.1 kmol h ??=?+?+?+? 根据设计要求选择05n C -为轻关键组分,06n C -正己烷为重关键组分,0 4n C -为轻组分,07n C -为重组分,轻组分和清关键组分从塔顶流出,重组分和重关键组 分从塔釜流出。假定为清晰分割, 4,w x ≈0,7,D x ≈0,则根据物料衡算关系列出下表:

表3-2 各组分物料衡算关系 联立物料衡算式方程: 1383D W += 389.7454.650.050.05W D D +-+= 0.05324.750.05129.9W D W +-+= 表3-3 清晰分割物料衡算计算结果汇总 1.3用泡点方程计算塔底温度: 对于压力低于200kpa 和分子结构相似的组分所构成的系统可按理想物系处理,汽液平衡常数仅与系统的温度和压力有关,与溶液的组成无关。当已知压力和温度时,由P-T-K 图可以直接查得平衡常数。 初设w t =70℃,由K-P-T 图按P=101.3kpa 查得各组分的i k 值, 求得各组分相平衡常数值,计算结果如下表3-3:

表3-4 泡点方程计算塔底温度结果 在所设的72℃条件下,1 |1|0.0030.01c i iW i k X =-=<∑,符合要求。 1.4露点方程计算塔顶温度 ∴塔底温度为72℃。 因为本塔采用全凝气,所以塔顶温度就是塔顶产品的露点温度。 初设d t =30℃,由K-P-T 图按P=101.3kpa,查得t=30℃时各组分相平衡常数值,计算结果如下表3-4: 表3-5 露点方程计算塔顶温度结果 i 1 |(/)1|0.0050.01c D i i X k =-=<∑,符合要求。 ∴塔顶温度为28℃。

精馏塔的工艺标准计算

2 精馏塔的工艺计算 2.1精馏塔的物料衡算 2.1.1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。 2.1.2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2.1 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500 总计 226.8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2.2精馏塔工艺计算 2.2.1操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0.1Mpa ,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544 总计 226.8659 13.2434 213.6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562.2 48.9 甲苯 92 591.8 41.0 乙苯 106 617.2 36.0 名称 A B C D

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

精馏塔的设计计算方法

各位尊敬的评委老师、领导、各位同学: 上午好! 这节课我们一起学习一下精馏塔的设计计算方法。 二元连续精馏的工程计算主要涉及两种类型:第一种是设计型,主要是根据分离任务确定设备的主要工艺尺寸;第二种是操作型,主要是根据已知设备条件,确定操作时的工况。对于板式精馏塔具体而言,前者是根据规定的分离要求,选择适宜的操作条件,计算所需理论塔板数,进而求出实际塔板数;而后者是根据已有的设备情况,由已知的操作条件预计分离结果。 设计型命题是本节的重点,连续精馏塔设计型计算的基本步骤是:在规定分离要求后(包括产品流量D、产品组成x D及回收率η等),确定操作条件(包括选定操作压力、进料热状况q及回流比R等),再利用相平衡方程和操作线方程计算所需的理论塔板数。计算理论塔板数有三种方法:逐板计算法、图解法及简捷法。本节就介绍前两种方法。 首先,我们看一下逐板计算法的原理。 该方法假设:塔顶为全凝器,泡点液体回流;塔底为再沸器,间接蒸汽加热;回流比R、进料热状况q和相对挥发度α已知,泡点进料。 从塔顶最上一层塔板(序号为1)上升的蒸汽经全凝器全部冷凝成饱和温度下的液体,因此馏出液和回流液的组成均为y1,且y1=x D。 根据理论塔板的概念,自第一层板下降的液相组成x1与上升的蒸汽组成y1符合平衡关系,所以可根据相平衡方程由y1 求得x1。 从第二层塔板上升的蒸汽组成y2与第一层塔板下降的液体组成x1符合操作关系,故可用根据精馏段操作线方程由 x1求得y2。 按以上方法交替进行计算。 因为在计算过程中,每使用一次相平衡关系,就表示需要一块理论塔板,所以经上述计算得到全塔总理论板数为m块。其中,塔底再沸器部分汽化釜残夜,气液两相达平衡状态,起到一定的分离作用,相当于一块理论板。这样得到的结果是:精馏段的理论塔板数为n-1块,提馏段为m-n块,进料板位于第n板上。 逐板计算法计算准确,但手算过程繁琐重复,当理论塔板数较多时可用计算机完成。 接下来,让我们看一下计算理论塔板数的第二种方法——图解法的原理。 图解法与逐板计算法原理相同,只是用图线代替方程,以图形的形式求取

化工原理课程设计正戊烷和正己烷

课程设计说明书题目: 分离正戊烷-正己烷用筛板精馏塔设计

安徽理工大学课程设计(论文)任务书 机械工程学院过控教研室

目录 前言 (5) 1.概论 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2.流程简介................... 错误!未定义书签。 3.工艺计算 (7) 3.1物料衡算 (8) 3.2理论塔板数的计算 (9) 3.2.1由正戊烷-正己烷的汽液平衡数据绘出x-y图, (9) 3.2.2 q线方程 (9) 3.2.3平衡线 (10) 3.2.4求最小回流比及操作回流比 (11) 3.2.5求精馏塔的气、液相负荷 (11) 3.2.6操作线方程 (12) 3.2.7逐板法求理论板 (11) 3.2.8实际板层数的求取 (13) 4.塔的结构计算 (13) 4.1混合组分的平均物性参数的计算 (13) 4.1.1平均温度t (13) m 4.1.2平均摩尔质量 (14) (15) 4.1.3平均压强p m 4.1.4平均密度 (15) 4.1.5液体的平均粘度 (17) 4.1.6液相平均表面张力 (18) 4.2塔高的计算 (18) 4.2.1最大空塔气速和空塔气速 (18) 4.2.2塔径 (19) 4.2.3 塔径的圆整 (21) (21) 4.2.4塔截面积A T 4.2.5实际空塔气速u (21) 4.3精馏塔有效高度的计算 (22)

5.塔板主要工艺尺寸的计算 (22) 5.1溢流装置计算 (22) 5.1.1堰长l w (22) 5.1.2溢流堰高度h w 溢流堰高度计算公式 (22) 5.1.3弓形降液管宽度W d 及截面积A f (23) 5.1.4降液管底隙高度h (24) 5.2塔板布置筛板数目与排列 (24) 5.2.1塔板的分块 (24) 5.2.2边缘区宽度确定 (25) 5.2.3开孔面积的计算 (25) 5.2.筛孔计算及其排列............................. 错误!未定义书签。 6.筛板的流体力学验算 (24) 6.1气相通过筛板塔板的压降...................... 错误!未定义书签。4 6.1.1干板电阻 hc .. (26) 6.1.2板上充气液层阻力h 1 (26) 6.2、液泛验算 (26) 6.2.1与气体通过塔板的压降相当的液柱高度h p (27) 6.2.2液体通过降液管的压头损失h D , (27) 6.2.3板上液层高度,取h L =0.05m ................... 错误!未定义书签。 6.3液沫夹带 (27) 6.4漏液的验算 (27) 7.塔板负荷性能图 (27) 7.1漏液线 (27) 7.2液沫夹带线 (28) 7.3液相负荷下限线 (28) 7.4液相负荷上限 (28) 7.5液泛线 (29) 8.精馏塔的工艺设计结果总表 (32) 9.塔附件设计 (33) 9.1 接管—进料管 (331) 9.2 法兰 (34) 9.3筒体与封头 (34)

精馏塔再沸器工艺计算

目录 目录 (1) 精馏塔再沸器工艺课程设计 (2) 1.设计任务及设计条件 (2) 2.方案论证 (2) 3.估算设备尺寸 (3) 4.传热系数校核 (3) 5.循环流量校核 (7) 6.设计结果汇总 (12) 7.工艺流程图 (13) 8.带控制点的工艺流程图 (13)

精馏塔再沸器工艺设计 1.设计任务及设计条件 (1) 设计任务:精馏塔塔釜,设计一台再沸器 (2) 再沸器壳层和管层的设计条件: 潜热γ 0=812.24kJ/kg 热导率λ =0.023W/(m?K) 粘度=0.361mPa?s 密度ρ0=717.4kg/m3 管层流体83℃下的物性数据: 潜热γi=31227.56kJ/kg 液相热导率λi=0.112 W/(m?K) 液相粘度=0.41 mPa?s 液相密度=721 kg/m3 液相定压比热容=2.094kJ/(kg?K) 表面张力=1.841×10-2N/m 汽相粘度=0.0067 mPa?s 汽相密度=0.032 kg/m3 蒸汽压曲线斜率(Δt/Δp)s=2.35×10-3m2?K/kg 2.方案论证 立式热虹吸再沸器是利用塔底釜液与换热器传热管内汽液混合物的密度差形成循环推动力,使得釜液在精馏塔底与再沸器间流动循环。 立式热虹吸再沸器具有传热系数高,结构紧凑,安装方便,釜液在加热段的停留时间短,不易结垢,调节方便,占地面积小,设备及运行费用低等显著优点。由于结垢原因,壳层不能采用机械方法清洗,因此壳层不适宜用高黏度或较脏的加热介质,本设计中壳层介质为乙醇蒸汽,较易清洗。

3.估算设备尺寸 计算热流量Φ为 )(1038.33600/100024.81215005W q b m b ?=??==Φγ 计算传热温差m t ?为 (11583)(8583) 10.82()(11583)(8583) m t K Ln ---?= =-- 假设传热系数K=XX ,估算传热面积A p 为 拟用传热管规格230?φ,管长L=3000m ,计算总传热管数N T N T = 10063 03.014.334 .2840=??= L d A p π 若将传热管按正三角形排列,则可用N T =3a(a+1)+1,b=2a+1,D=t(b-1)+(2~3)d 0计算壳径D 为 D=32×(37-1)+3×30≈1400mm 取管程进口管径Di=250mm ,出口管直径D 0=600mm 。 4.传热系数校核 (1)显热段传热系数K CL 设传热管出口处汽化率xe =0.048,则可计算循环流量q mt : )/(72.34048 .06000 s kg x q q e mb mt === ① 显热段管内表面传热系数 则计算传热管内质量流速G 为 )(534.01006026.04 14 .34 )]/([03.65534 .072.342222m N di Si s m kg S q G T i mt =??= = ?===π 雷诺数Re 为

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书(一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R min 4.单板压降不大于 (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 p(mmHg) i 2.组分的液相密度ρ(kg/m3) 3.组分的表面张力σ(mN/m) 4.液体粘度μ(mPas) 常数

二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为 kg/kmol 和kmol =+= 6 .112/39.011.78/61.011 .78/61.0F x 2.平均摩尔质量 3.料液及塔顶底产品的摩尔流率 依题给条件:一年以330天,一天以24小时计,有: h kmol 62.5824 330989 .010*******=???= D ,

化工原理课程设计利用浮阀塔分离正戊烷与正己烷的工艺的设计副本

理工大学 课程设计说明书 设计题目:化工原理课程设计 学院、系:机械工程学院 专业班级:过程装配与控制工程 学生:王旦 指导教师:雪斌 成绩: 2013年12月27日 设计任务书

(一)设计题目: 利用浮阀塔分离正戊烷与正己烷的工艺设计分离要求:试设计一座正戊烷—正己烷连续精馏浮阀塔,要求年产纯度99%的正己烷4.5万吨,塔顶馏出液中含正己烷不得高于1%,原料液中含正己烷55%(以上均为质量分数)。(二)操作条件:塔顶压力:4kPa(表压) 进料状态:泡点进料 回流比:1.4Rmin 塔釜加热蒸汽压力:0.5MPa(表压) 单板的压降: 0.7kPa 全塔效率:52% (3)塔板类型:浮阀塔板(F1型) (4)工作日: 330天/年(一年中有一个月检修) (5)厂址:地区 (六)设计容 ①精馏塔的物料衡算 ②塔板数的确定 ③精馏塔的工艺条件及有关物性数据的计算 ④塔体工艺条件尺寸 ⑤塔板负荷性能图 目录

第1章序言 (3) 第2章精馏塔的物料衡算 (6) 2.1. 物料衡算 (6) 2.2. 常压下正戊烷—正己烷气、液平衡组成与温度的关系 (7) 第3章塔板数的确定 (8) N的确定 (8) 3.1. 理论板数 T 3.2. 实际板数的确定 (9) 第4章精馏塔的工艺条件及有关物性数据 (9) 4.1. 操作压力的计算 (9) 4.2. 密度的计算 (10) 4.3. 表面力的计算 (11) 4.4. 混合物的粘度 (12) 4.5. 相对挥发度 (12) 第5章塔体工艺条件尺寸 (13) 5.1. 气、液相体积流量计算 (13) 5.2. 塔径的初步设计 (14) 5.3. 溢流装置 (16) 5.4. 塔板布置及浮阀数目与排列 (17) 第6章塔板负荷性能图 (20) 6.1. 物沫夹带线 (20) 6.2. 液泛线 (21) 6.3. 液相负荷上限 (22) 6.4. 漏液线 (22) 6.5. 液相负荷下限 (23) 第7章结束语 (24)

苯氯苯板式精馏塔的工艺设计工艺计算书

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 化学与环境工程学院 化工与材料系 2004年5月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 1.组分的饱和蒸汽压οi p(mmHg)

2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01238.012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分)

正戊烷-正己烷混合液板式精馏塔设计

正戊烷-正己烷混合液板式精馏塔设计 08(2)班 08233214 缪建芸 [摘要]化工设计在化学工程项目建设的整个过程中,是一个极其重要的环节,是工程建设的灵魂。化工设计是一门综合性很强的专业知识,同时又是一项政策性很强的工作,需要设计工作者拥有坚实的化学知识及化工常识。本文设计了一个常压浮阀精馏塔,分离含正戊烷45%(以下皆为质量分数)的正戊烷—正己烷混合液,其中混合液进料量为12626kg/h,进料温度为35℃,要求获得99%的塔顶产品和小于2%的塔釜产品,再沸器用0.25Mpa(表压)的水蒸汽作为加热介质,塔顶全凝器采用20℃冷水为冷凝介质. 通过翻阅大量的资料进行物性数据处理、塔板计算、结构计算、流体力学计算、画负荷性能图以及计算接管壁厚对浮阀塔展开了全方面的设计。 [关键词]化工设计,常压浮阀塔,物性,塔板

目录 摘要 .................................................... 错误!未定义书签。第一章概论 .. (4) 1.1 塔设备在化工生产中的作用和地位: (4) 1.2 塔设备的分类及一般构造 (4) 1.3 对塔设备的要求 (5) 1.4 塔设备的发展及现状: (5) 1.5 塔设备的用材 (5) 1.6 板式塔的常用塔型及其选用 (5) 1.6.1 泡罩塔 (5) 1.6.2 筛板塔 (6) 1.6.3 浮阀塔 (6) 1.7 塔型选择一般原则 (7) 1.7.1 与物性有关的因素 (7) 1.7.2 与操作条件有关的因素 (8) 1.7.3 其他因素 (8) 1.8 板式塔的强化 (8) 第二章塔板计算 (9) 2.1 设计任务与条件 (9) 2.2 设计计算 (10) 2.2.1 设计方案的确定 (10) 2.2.2 精馏塔的物料衡算 (10) 2.2.3 塔板数的确定 (11) 第三章精馏塔的工艺条件及有关物性数据的计算 (14) 3.1 操作压力 (14) 3.2 操作温度 (14) 3.3 平均摩尔质量.................................... 错误!未定义书签。4 3.4 平均密度......................................... 错误!未定义书签。 3.5 液相平均表面张力................................. 错误!未定义书签。 3.6 液相平均黏度 (19) 3.7物性数据总汇 (21) 第四章精馏塔的塔体、塔板工艺尺寸计算 ................... 错误!未定义书签。 4.1 塔径的计算....................................... 错误!未定义书签。 4.2 精馏塔高度的计算................................. 错误!未定义书签。 4.3 溢流装置计算..................................... 错误!未定义书签。 4.4 塔板布置及浮阀数目与排列 (26) 第五章塔板流体力学验算 (28) 5.1气相通过浮阀塔板的压降 (28) 5.2 淹塔 (28) 5.3 雾沫夹带 (29) 第六章负荷性能图 ....................................... 错误!未定义书签。 6.1雾沫夹带线 ....................................... 错误!未定义书签。 6.2液泛线 ........................................... 错误!未定义书签。 6.3 液相负荷上限线................................... 错误!未定义书签。

精馏塔的设计(毕业设计)讲义

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………

精馏塔的工艺计算

2 精馏塔的工艺计算 2、1精馏塔的物料衡算 2、1、1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212、6868Kmol/h;苯3、5448 Kmol/h;甲苯10、6343Kmol/h 。 (三)分离要求: 馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。 2、1、2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x ,005.0=W LK x , 表2、1 进料与各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2、 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D=226、8659-13、2434=213、6225Kmol/h 0681.1005.06225.21322=?==W X W ,ωKmol/h 编号 组分 i f /kmol/h i f /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500 总计 226、8659 100

5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 2、2精馏塔工艺计算 2、2、1操作条件的确定 一、塔顶温度 纯物质饱与蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位0、1Mpa,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544 总计 226、8659 13、2434 213、6225 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 A B C D

精馏塔的工艺计算

2 精馏塔的工艺计算 精馏塔的物料衡算 基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯h ;苯 Kmol/h ;甲苯h 。 (三)分离要求: 馏出液中乙苯量不大于,釜液中甲苯量不大于。 物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 01.0=D HK x , 005.0=W LK x , 表 进料和各组分条件 由《分离工程》P65式3-23得: ,1 ,,1LK i LK W i HK D LK W z x D F x x =-=--∑ (式2. 1) 2434.13005 .001.01005 .0046875.0015625.08659.226=---+? =D Kmol/h W=F-D= 0681.1005.06225.21322=?==W X W ,ωKmol/h 5662.90681.16343.10222=-=-=ωf d Kmol/h 编号 组分 i f /kmol/h i f /% 1 苯 2 甲苯 3 乙苯 总计 100

132434.001.02434.1333=?==D X D d ,Kmol/h 5544.212132434.06868.212333=-=-=d f ωKmol/h 表2-2 物料衡算表 精馏塔工艺计算 操作条件的确定 一、塔顶温度 纯物质饱和蒸气压关联式(化工热力学 P199): C C S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=- 表2-3 物性参数 注:压力单位,温度单位K 编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 0 2 甲苯 3 乙苯 总计 组份 相对分子质量 临界温度C T 临界压力C P 苯 78 甲苯 92 乙苯 106 名称 A B C D

精馏塔的设计详解-共21页

目录 一.前言 (3) 二.塔设备任务书 (4) 三.塔设备已知条件 (5) 四.塔设备设计计算 (6) 1、选择塔体和裙座的材料 (6) 2、塔体和封头壁厚的计算 (6) 3、设备质量载荷计算 (7) 4、风载荷与风弯距计算 (9) 5、地震载荷与地震弯距计算 (12) 6、偏心载荷与偏心弯距计算 (13) 7、最大弯距计算 (14) 8、塔体危险截面强度和稳定性校核 (14) 9、裙座强度和稳定性校核 (16) 10、塔设备压力试验时的应力校核 (18) 11、基础环设计 (18) 12、地脚螺栓设计 (19) 五.塔设备结构设计 (20) 六.参考文献 (21) 七.结束语 (21)

前言 苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。苯可燃,有毒,也是一种致癌物质。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯具有的环系叫苯环,是最简单的芳环。苯分子去掉一个氢以后的结构叫苯基,用Ph表示。因此苯也可表示为PhH。苯是一种石油化工基本原料。苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。 甲苯是有机化合物,属芳香烃,分子式为C6H5CH3。在常温下呈液体状,无色、易燃。它的沸点为110.8℃,凝固点为-95℃,密度为0.866克/厘米3。甲苯不溶于水,但溶于乙醇和苯的溶剂中。甲苯容易发生氯化,生成苯—氯甲烷或苯三氯甲烷,它们都是工业上很好的溶剂;它还容易硝化,生成对硝基甲苯或邻硝基甲苯,它们都是染料的原料;它还容易磺化,生成邻甲苯磺酸或对甲苯磺酸,它们是做染料或制糖精的原料。甲苯的蒸汽与空气混合形成爆炸性物质,因此它可以制造梯思梯炸药。甲苯与苯的性质很相似,是工业上应用很广的原料。但其蒸汽有毒,可以通过呼吸道对人体造成危害,使用和生产时要防止它进入呼吸器官。 苯和甲苯都是重要的基本有机化工原料。工业上常用精馏方法将他们分离。精馏是分离液体混合物最早实现工业化的典型单元操作,广泛应用于化工,石油,医药,冶金及环境保护等领域。它是通过加热造成汽液两相体系,利用混合物中各组分挥发度的差别实现组分的分离与提纯的目的。 实现精馏操作的主要设备是精馏塔。精馏塔主要有板式塔和填料塔。板式塔的核心部件为塔板,其功能是使气液两相保持密切而又充分的接触。塔板的结构主要由气体通道、溢流堰和降液管。本设计主要是对板式塔的设计。

精馏塔的工艺计算

2 精馏塔得工艺计算 2、1精馏塔得物料衡算 2、1、1基础数据 (一)生产能力: 10万吨/年,工作日330天,每天按24小时计时。 (二)进料组成: 乙苯212、6868Km ol/h;苯3、5448 Kmol/h;甲苯10、6343Kmo l/h 。 (三)分离要求: 馏出液中乙苯量不大于0、01,釜液中甲苯量不大于0、005。 2、1、2物料衡算(清晰分割) 以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。 表2、1 进料与各组分条件 由《分离工程》P65式3-23得: ? Km ol /h W=F-D =226、8659-13、2434= 213、6225Kmol/h Km ol/h K mo l/h K mol/h Kmo l/h 表2-2 物料衡算表 2、2精馏塔工艺计算 2、2、1操作 编号 组分 /kmol/h /% 1 苯 3、5448 1、5625 2 甲苯 10、6343 4、6875 3 乙苯 212、6868 93、7500 总计 226、8659 100 编号 组分 /km ol/h 馏出液 釜液 1 苯 3、5448 3、5448 0 2 甲苯 10、6343 9、5662 1、0681 3 乙苯 212、6868 0、1324 212、5544 总计 226、8659 13、2434 213、6225

条件得确定 一、塔顶温度 纯物质饱与蒸气压关联式(化工热力学 P199): 表2-3 物性参数 注:压力单位0、1Mp a,温度单位K 表2-3饱与蒸汽压关联式数据 以苯为例, . 033213.1434.098273.6()434.01()(1?+?-? -=-C S P P In 同理,可得 露点方程:,试差法求塔顶温度 表2-4 试差法结果统计 二、塔顶压力 塔顶压力 三、塔底温度 泡点方程: 试差法求塔底温度 组份 相对分子质量 临界温度 临界压力 苯 78 562、2 48、9 甲苯 92 591、8 41、0 乙苯 106 617、2 36、0 名称 A B C D 苯 -6、98273 1、33213 -2、62863 -3、33399 甲苯 -7、28607 1、38091 -2、83433 -2、79168 乙苯 -7、48645 1、45488 -3、37538 -2、2304 8

相关主题