搜档网
当前位置:搜档网 › 温度与相对湿度

温度与相对湿度

温度与相对湿度
温度与相对湿度

温度与相对湿度、绝对湿度、饱和湿度的关系

绝对湿度 (1)定义或解释

①空气里所含水汽的压强,叫做空气的绝对湿度。

②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位

绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明

①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。

相对湿度 2

5

4P

su x =?

(1)定义或解释

①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。

②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明

①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。

②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点

(1)定义或解释

①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。

②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位

习惯上,常用摄氏温度表示。 (3)说明

①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg ,

空气的相对湿度.B=(10.52/17.54)×100%=60%。

采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。

②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。

⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

由于未饱和汽的压强随温度的变化是遵循下列规律Pt=P0(1+t/273)。

在日常的温差下,压强的变化很小,所以近似地当作不变来处理。如上例中在某一汽压下,空气气温是20℃,露点是12℃,那么从图中可见直线几乎和t轴平行。

绝热饱和温度

空气的一个状态参数,绝热增湿过程中空气降温的极限。当流动空气同循环水绝热接触时,只要空气的相对湿度小于100%,水就会不断汽化。汽化需要吸收热量,使水温下降。空气通过对流传热将热量传给循环水,所以气体温度也会下降。当水经充分循环后,水温将维持恒定,由于它与空气充分接触,空气中水汽达到饱和,水和空气的温度也相同,空气与水之间在热量传递和质量传递两方面均达平衡。此平衡系统的温度,称为绝热饱和温度。

若取此温度为计算焓的基准温度,空气的焓在上述平衡中保持不变,由空气传给水的热量仍由水汽带回。绝热饱和温度的高低取决于空气的温度(常称干球温度)和湿度。当相对湿度等于100%时,绝热饱和温度就等于干球温度。相对湿度愈小,绝热饱和温度比干球温度降低得愈多。

对于空气和水系统,在数值上湿球温度与绝热饱和温度几乎相等,但两者的物理意义截然不同。湿球温度是少量水同大量流动空气接触,使水达到热量平衡时的温度,但此时水分仍在汽化;空气达到绝热饱和温度时,则水与空气之间在传热和传质两方面均达到了平衡。对于其他系统,如空气和有机液体,这两个温度并不相等

】:农产品产后干燥加工环境普遍采用干湿球测湿法测量空气相对湿度.在温,湿度控制室内,对风速v,温度t,相对湿度U进行试验,结果指出:v的下界为0.2 m·s-1;当v2.5 m·s-1后,按v=2.5m·s-1计算不影响测量精度;t40℃时,干湿球系数A几乎不受t的影响;在40℃t70℃范围内,A值大体上与t的2/3次方成正比;t80℃以后,A与t的关系变得复杂.提出了40℃t70℃范围内A的计算公式.经验证,在0.2v4 m·s-1,40℃t70℃和30%U90%R.H范围内,使用此公式计算获得的相对湿度值,误差1.5%R.H.

【作者单位】:云南农业大学计算机科学系云南农业大学农学与生物技术学院

【关键词】:干湿球测湿法风速温度相对湿度计算方法

【基金】:the National Natural Science Foundation of China(40265001)Yunnan Provincal ScienceFoundation(2002C0038

本标准等效采用国际电工委员会标准IEC 870-2-1(第一版,1987)《远动设备及系统第二部分:工作条件第一篇:环境条件和电源》。

1 主题内容与适用范围

本标准规定了远动设备及系统的工作条件,包括气候环境条件、机械环境条件和电源条件的类别与级别。

本标准适用于远动设备及系统。工业过程测量与控制设备亦可参照使用。

2 气候环境条件

2.1 空调场所(A级)

2.1.1 空调场所特征:

空气温度和湿度可控制在规定限度内的场所。

2.1.2 空调场所的空气温度和湿度分级,见表1和图1。

表 1 空调场所空气温度和湿度分级

注:本标准中的特定级可根据实际情况由供需双方议定。详见附录A之 A2.2.5条。

1)在此极限范围内,其温度偏差为规定值的±2℃。

2)如设备中使用磁带,此值应为1.2℃/h。

图 1 空调场所湿度-温度关系图

2.2 加热和(或)冷却的封闭场所(B级)

2.2.1 加热和(或)冷却的封闭场所特征:

该场所装有加热和(或)冷却设施,环境参数控制在规定的范围内。控制可以是自动的或非自动的。

2.2.2 封闭场所的空气温度和湿度分级,见表2和图2。

表 2 封闭场所空气温度和湿度分级

注:在检修期间,当备件从比设备环境温度低的存贮地取出进行更换时,可能会产生暂时的凝露。

图 2 封闭场所湿度—温度关系图

2.3 遮蔽场所(C级)

2.3.1 遮蔽场所特征:

空气温度和湿度均不受控制(不加热也不供冷);设备不直接暴露在日晒、雨淋、其他沉降物及强风压等各气候因素中;若有通风亦是自然方式;由于遮蔽体不一定是封闭的,在风的作用下,这些场所可能会受到少量雨水及沉降物的影响;其最低温度一般与户外气温相近,而最高温度可能会比户外气温高(太阳对遮蔽体的辐射作用);在某些情况下,湿度可能会达到凝露的程度。

2.3.2 遮蔽场所的空气温度和湿度分级,见表3和图3。

表 3 遮蔽场所空气温度和湿度分级

采用说明:C0是根据我国实际情况增添的级别。主要参数值与GB4798.3《电工电子产品应用环境条件有气候防护场所固定使用》(=IEC721-3-3)之“3K5”相同。

图 3 遮蔽场所湿度—温度关系图

2.4 户外场所(D级)

2.4.1 户外场所特征:

设备直接暴露在户外的大气条件下,经受包括日晒、风吹、雨淋、雹打、积雪和冰冻等气候条件的影响。

在户外场所中,温度有可能会迅速地发生变化,尤其重要的是露天设备在光照区和阴影区之间的温度梯度。

2.4.2 户外场所的空气温度和湿度分级,见表4。

表 4 户外场所空气温度和湿度分级

注:1)上限温度表示设备表面温度,它是由空气温度(阴影处测得)加上阳光辐射效应所形成的。

2)由于对含水量无技术限制,无法给出户外场所的湿度—温度关系图。

2.5 大气压力

使用场所的大气压力分级见表5。

表 5 使用场所大气压力分级 kPa

注:由于大气压力不是恒定值,不可能准确地指明其对应的海拔高度。平均来说,大气压力108kPa (1080 mbar)

对应于0m,86kPa(860 mbar)对应于1000m,66 kPa 1000m,66kPa (660 mbar)对应于3000m。

3 机械环境条件

3.1 振动

当地正弦振动环境的严酷程度可由以下相互联系的参数综合表示:振动频率f,峰值加速度a,峰值位移(振幅)s。振动的严酷程度也可用定动能原理表达,见附录B。

3.1.1 低频振动

3.1.1.1 频率范围从0.1 Hz到150Hz。它包括了设备安装环境和运输中出现的最常见的振动频谱。

3.1.1.2 低频振动严酷程度的表达方式为:频率f<10Hz时,按定位移(振幅)线;频率f>10 Hz时,按定加速度线。

3.1.1.3 低频频段内振动分级,见表6和图4。

表6 低频振动分级

图 4 低频振动分级图

3.1.2 高频振动

3.1.2.1 频率范围从10 Hz到10 kHz。

3.1.2.2 高频振动严酷程度的表达方式为:频率f<60 Hz时,按定位移(振幅)线;频率f>60 Hz时,按定加速度线。

3.1.2.3 高频频段内振动分级,见表7和图5。

表 7 高频振动分级

图 5 高频振动分级图

3.1.3 振动时间分级

振动时间分级,是以规定时间内,振动出现的时间所占的百分比来划分。振动时间的分级见表8。

表 8 振动时间分级 %

3.2 机械冲击

表达冲击现象一般有两种方法:加速度与持续时间法;自由跌落法。

3.2.1 加速度与持续时间法

3.2.1.1 用与半个正弦波持续时间相对应的加速度或减速度值来表达机械冲击。该方式主要用来表示设备在运输和工作期间

出现的冲击现象,或在移动式应用中持续出现的冲击现象。

3.2.1.2 加速度a与持续时间t组合的推荐值见表9。

表 9 机械冲击的a-t组合的推荐值

3.2.1.3 设备运输

典型运输条件下,冲击加速度和持续时间值,见表10。

表 10 冲击加速度值

3.2.2 自由跌落法

3.2.2.1 用自由跌落到指定平面的高度来表达机械冲击,通常用于表示设备在贮存时人力转运过程中及运输时装卸过程中所出现的冲击现象。

3.2.2.2 自由跌落分级

自由跌落的严酷程度可用自由跌落高度与设备质量作为参数来表达,见表11。该表还给出了与自由跌落分级对应的典型运输方式。

3.2.3 冲击重复率

冲击可能以不同的时间周期出现,出现时间周期分级见表12。

表 11 自由跌落高度分级

表 12 冲击重复率分级

3.3 地震效应

用麦氏地震烈度值来描述位于或接近于地质不稳定地区的地震效应。为此应考虑该地区与已知地震活动源的距离。

里氏和麦氏地震强度关系及其定量表示见附录C。

对于安装远动设备的场所,其地震的当地效应,按麦氏烈度定为3级,见表13。

表 13 地震强烈程度分级

4 电源

4.1 概述

本标准所考虑的是有关远动系统(或其部分)用的电源条件,校准和试验用的电源条件不属于本标准范围。

系统运行所需的电能可由如下几种方式提供:

——直接接到电源上;

——连接到一个置于电源和系统(或其部分)之间的供电装置;

——在主电源维修或故障情况下,为维持系统(或其部分)的运行,由辅助或后备电源供电。

本标准未对电源阻抗进行分级。电源阻抗的影响,通过用不同负载情况下它对电压的影响来表示:

——最大电压是最小负载情况下的电压值;

——最小电压是满负载情况下的电压值。

4.2 交流电源

本标准仅考虑与公共电网电源有相同特性的交流电,而不包括较高频率(如 400 Hz)的交流电。

最常用的标称交流电压(50 Hz或60 Hz)见表14。

表 14 标称交流电压V

注:根据IEC第38号出版物,为推荐值。

4.2.1 电压容差

有关远动设备电压容差见表15。

表 15 交流电压容差分级 %

4.2.2 频率容差

有关远动设备频率容差见表16。

表 16 频率容差分级 %

4.2.3 谐波含量

谐波含量定义为:各次谐波电压平方和的平方根值对工频电压值的比值百分数。

谐波含量分为两级,见表17。

表 17 谐波含量分级

注:交流电源中也可能出现来自公共电网的瞬变或音频电压,它是为了形成一个音频控制(或类似)系统而特意诱发的,这种信号的影响类似于谐波所产生的影响。

4.3 直流电源

最常用的标称直流电压见表18。

表 18 标称直流电压V

一些国家通常使用250/220V或125/110V厂站蓄电池组。由于其不良的调节特性和其他设备引入的干扰,不建议在远动设备中应用这种高电压。假使需要用这种高电压,则供需双方应对电压特性取得一致意见。

4.3.1 电压容差

电压容差定为5级,见表19。

表 19 直流电压容差分级%

注:DCB级是用于连续充电电池组供电运行的设备。

4.3.2 接地方式

表20规定了4种接地方式。

表 20 接地方式分类

注:①对于按哪一类接地为佳,此处不作推荐,但实际上一般是正接地。

②当应用浮空方式时,可能有高的静电电压产生并危及电子设备,应采用较高阻值的泄漏电阻(例如 1 MΩ)。

③为避免接地环路,宜采用单点接地。

4.3.3 电压纹波

就本标准而言,纹波电压定义为:在额定负载下,电源电压交流分量的峰—峰值对实测电源电压(平均)值的百分比。

纹波电压应在远动设备所接的直流电源的输入端测量。

电压纹波定为5级,见表21。

表 21 纹波分级 %

4.3.4 偶然瞬变扰动

设计的电源接口应对叠加在直流电源输入端的偶然瞬变扰动有抗冲击能力:

——最大值:±20V;

——最大持续时间:10 ms;

——最大梯度:100 V/ms。

4.4 电源中断

当电源电压跌落到低于特定设备规定的电压容差时,即发生电源中断。中断时间定义为:在设备停止运转之前,电压低于电压容差所持续的最长时间。

超出本标准所规定的电源中断时间,则属于不间断电源(UPS)的范围。

表22的分级对交流电源和直流电源都有效。

当中断持续超过给定时间时,设备将正确地停止运转,并按商定的方式重新启动。

表22给出设备容许中断时间的分级。

表 22 中断时间分级 ms

4.5 耐压

4.5.1 概述

远动设备可能遭受到施加于电力系统、也叠加于远动设备电源上的高压干扰。

干扰性质可有两种:

a.绝缘击穿电压()

持续达1min的干扰,干扰电压基本上是电力系统基频(50Hz或60Hz)的正弦波。这种状况下,绝缘击穿可危及人身和设备安全。

b.直流冲击电压(尖峰电压)

该电压涉及单个高压脉冲(任一极性),正如IEC出版物60-2的第10章所定义,其典型前沿上升时间为1.2μs和衰减时间为50μs。

该脉冲可由邻近雷电放电感应产生,并可引起远动设备内电压敏感元件的永久性破坏。

对大多数远动设备而言,这不是典型的高电压情况。

注:有关干扰电压等更多的信息将在IEC出版物870-2-2中规定。

4.5.2 耐压等级

耐压等级分为4级,见表23。

表 23 耐压分级kV

注:设备的直流工作电压低于60V,按级别VW1和VW2;电源电压为 60~250V,按VW2和VW3级。

附录 A

标准使用说明

(补充件)

A1 概述

远动系统用于对广大地区生产过程的监测和控制,将工作于范围很宽的环境条件之中。

本标准所规定的环境条件,包括了远动设备及系统在运行中及设备安装完毕但尚未使用或贮存、装卸、运输期间所可能遇到的环境条件。维护和修理条件不包括在内。

本标准规定的环境条件不包括:产品内部的微气候条件;生物和化学(包括微粒)环境及电磁环境条件;火灾、爆炸、核辐射、意外事故所造成的环境条件。

本标准所考虑的因素,只限于对设备及系统的工作性能产生直接影响的参数,而不考虑在工作条件下,对操作人员的影响。

本标准的环境条件分级,适用于在考虑了环境因素的影响后,设备仍能持久地保持其运行性能。应注意,设备如长久工作在极限状态下,可能会缩短其寿命。

本标准的目的是规定环境条件参数及严酷程度的标准化分级,以保证设备在各种可能条件下的最佳效能。避免因忽视具体的工作条件而对系统或系统部件的性能造成影响,并避免对设备作不适当的运输与安装。

本标准给出的气候环境条件,是以温度和湿度极限条件的适当组合为基础,并分别将其归入4种场所类型。但温度和湿度范围不一定必须与场所类型相吻合。例如,在无热源或冷却源的遮蔽场所,就可能存在B3级的气候条件。

在运输和存贮期间的某些实际气候环境,可能会有与本标准的场所类型或各级别极限条件不符的情况,这可由供需双方协商而定。

本标准为供需双方提供统一的设备环境条件分级,可用作设备的设计、防护和控制环境的基础,并为制订产品标准或技术要求及进行环境适应性试验提供依据。

A2 气候环境条件

A2.1 当地环境参数的确定

对本标准来说,环境条件是指在设备正常应用中的当地环境条件。其环境参数的测点应设在设备工作环境的邻近,测点应处在空气流通、不太受设备发热影响或太阳直接辐射及类似影响的地点。

A2.2 气候环境条件的选用

气候环境场所分级汇总,见表A1。

A2.2.1 空调场所(A级)

这种场所通常供过程控制计算机和其它需要控制空气环境的电子设备使用。对控制起关键性作用的主控制室及任何有关设备机房,通常属于这个范畴。

A2.2.2 加热和(或)冷却的封闭场所(B级)

表 A1 场所分级汇总

注:各种场所对应的空气温度、相对湿度及绝对湿度的相互关系见图1、图 2、图3。

对操作和维修人员需在其中持续工作一段时间的工作室,建议采用B1级;B3 和B4级适用于大多数远动设备。但应注意,工作人员持续处在B3和B4级的极端温度下会感到不舒适。

A2.2.3 遮蔽场所(C级)

典型的遮蔽场所是仪器、设备的工作栅,贮存用的不加热库房和运输用封闭车厢。既无加热也无冷却设施的封闭场所,应作为遮蔽场所。

可与设备分离的某些部件,如发射机终端控制单元、显示器等及某些维修备件,常常存放在遮蔽场所中。不需要频繁操作的设备,如控制器、记录器和其他设备,也可置于遮蔽场所内。

A2.2.4 户外场所(D级)

传感器、执行机构等以及用于测量气候和污染的特殊仪器,常常被安置于户外场所。

A2.2.5 特定级

各种工作条件的严酷程度是用极限值,而不是用平均值的方法来表示。考虑到在有些应用场所存在着极端的或特殊的工作环境,在这种情况下,其实际环境参数值可能会超过或小于这些规定的极限值,这时可由供需双方议定,归入如表中所列的AX、BX、CX、DX等的“特定”级。对于特定级可给出多于一组的极限值。

A2.2.6 大气压力

通常,大气压力随海拔高度而变化,随气候条件亦有些变化;某些场所可能需要人工密封保压。

图1、图2、图3所示的空气湿度—温度关系图,是按101.3kPa的标准大气压力绘制的。当气压在86kPa和108kPa 之间变化时,空气的含水量相对于标准条件亦会有所变化,但就本标准而言,可以假定这一变化不改变所指定场所的级别。在多数情况下,这种假定可扩展到更低的气压,如66kPa。然而,对这种延展应取慎重态度。

A2.3 各场所的湿度—温度关系图

空气的湿度—温度关系图也称U ta曲线图,它是表示相对湿度U、空气温度t、绝对湿度a的相互关系的图表。其中曲线表示绝对湿度,纵、横坐标分别表示相对湿度和空气温度。

对各种场所的实际气候环境,很难用高温和高湿的实际综合值来进行简单的描述。各个场所分级中的这种相互关系可在相应的U ta图中表示,如图1、图2、图3 所示。为了清晰起见,仅标出与特定级别相符的参数。

A3 机械环境条件

A3.1 振动环境

本标准采用正弦振动来描述当地振动环境。正弦振动可由以下相互联系的参数综合表示:振动频率f,峰值加速度a,峰值位移s,最大速度v,其间关系可用下列公式确定:

其中峰值是指该量与其平均值之间的最大偏差。

在低频范围内最经常出现很小的加速度,而位移可能相当大。在高频范围内出现较大的加速度,而位移相当小。用于分类的是具有低频范围内定位移和高频范围内定加速度的典型频谱。如图4、图5所示。

本标准对远动设备及系统的振动环境分级,只取决于设备的种类或性质,诸如物体的质量、大小,机械零件、电子元件、电路性能的敏感性等等。例如,集成电路内部连接的那种小质量件就不会受频率为1Hz的大振幅的影响,而高频振动的高等级加速度则将使这些连接损坏。换言之,质量越大越容易被较低频率的振动所损坏,实际上它们不能跟随高频振动。

除了正弦振动外,远动设备应用过程中还存在随机振动,目前尚缺乏足够的数据来描述这些环境。

A3.2 机械环境严酷等级的选择

对于一般的陆上、室内固定使用的设备,若其运输环境比极限使用环境更严酷,则严酷等级的选择主要应考虑运输环境。

机械环境严酷等级的选择,应考虑产品的质量、装卸和运输的形式,以及是散装运输、还是装在完整的包装箱内运输等因素。

A4 产品标准中环境条件的确定

A4.1 产品的环境适应性是产品技术条件的重要组成部分。有关产品标准应根据产品在运行和运输、贮存中可能遇到的实际环境条件,规定产品的适应性,如产品对温度、湿度、气压、振动、冲击等适应的程度。环境条件应作为产品标准技术要求中的第一项内容。

A4.2 当产品的实际使用、运输环境未知时,可要求用户提供有关资料。如果用户提供有困难或所提供的资料不能利用时,则可从本标准中选择合适的严酷等级。产品标准编写者所选择的严酷等级最好取得用户的同意。

A4.3 产品技术条件应清楚说明产品在所选定的环境参数严酷等级内必须处于工作状态,还是在非工作状态下承受该种环境条件的考验。

A4.4 制造厂或用户可以采用对产品加防护的办法(即在运输或贮存时装入箱内),或把产品放在防振动或冲击的物体上,以减轻环境参数的严酷程度。本标准列出的环境参数的严酷程度包括连同防护措施在内的产品,不一定是直接用于产品本身。在产品技术条件中应清楚说明,产品在选定的环境参数严酷等级内是否加防护措施。

A5 关于环境试验方法

环境参数等级可以作为选择设计和试验等级的基础,但不应简单地把这些分级的极限值用作设计和试验的等级。要验证产品耐环境条件的能力,需要建立将实际极端环境条件转换成试验条件的转换方法。

本标准的第3.2条“机械冲击”中的表9、表10所列参数,与目前通行的试验参数不完全一致,对此可按下述方法进行转换:

a.现有冲击试验机可产生4ms到30ms范围的脉冲持续时间,对大于30ms 者,可从冲击谱的含义出发,运用等效损伤原则,对冲击试验的脉冲和持续时间进行等效变换;

b.直接按GB2423.5《电工电子产品基本环境试验规程试验Ea:冲击试验方法》及GB2424.3《电工电子产品基本环境试验规程冲击试验导则》,选取相应的严酷等级进行冲击试验。

温湿关系的介绍

在进行加速寿命试验分析时,需要寿命分布和一寿命应力关系。温湿(T-H)关系,是一种巡回关系的变化,在温度和湿度在一个试验中为加速应力的时候,可用来预计使用条件下的寿命。这一复合模型如下式所示:

(1)

其中::

?是三个参数中需要确定的一个;

? b 是三个参数中需要被确定的第二个(相当于湿度的激活);

? A 是一个常量,也是三个参数中需要被确定的第三个;

?U 是相对湿度(十进制或百分比);

?是温度(绝对温度)

T-H关系可以线性化并作出寿命vs.应力图。线性化的方式是在方程(1)的两边同时取自然对数。

因为寿命现在是两种应力的函数,可以通过保持两种应力之一不变改变另一应力的方法获得寿命VS.应力的图像。这么做可以生成方程2所描述的一条直线,其中保持为固定值的应力项成为了另一个常量(ln (A)已是一个常量)。在下列的图1和图2中,分析了来自于一温度和相对湿度的试验的数据,并在坐标纸上做了图。图1是在某一固定相对湿度下寿命与温度的关系图。图2是在某一固定温度下寿命与相对湿度下的关系图。

图1: 寿命vs.温度图,对于一固定的相对湿度

相对湿度与露点对照表

室内温度25℃时露点与相对湿度对照表相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -2 4.49 1 5.0% -3.02 2.2% -24.02 1 6.0% -2.25 2.3% -23.57 1 7.0% -1.15 2.4% -23.14 1 8.0% -0.83 2.5% -22.73 1 9.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

湿度名词解释

【湿度】表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中液态水分的重量占蒸汽总重量的百分比,则称之为蒸汽的湿度。 【绝对湿度】单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干程度。 【相对湿度】空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24Pa (12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,

所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示:例如,空气中含有水汽的压强为1606.24Pa(12.79毫米汞柱),在35℃时,饱和蒸汽压为5938.52Pa(44.55毫米汞柱),空气的相对湿度为 1606.24/5938.52=27%.而在15℃时,饱和蒸汽压是1606.24Pa(12.79毫米汞柱),相对湿度是100%。 湿度与相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和汽压也要随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小,而冬天的相对湿度又比夏天的大。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道绝对湿度或相对湿度,即可算出相对湿度或绝对湿度来。 湿度通常是指大气中所含的水蒸气量。湿度传感器是用以感受大气湿度并变换成适当电信号输出的传感器。 湿度有两种常用的表示方法,即绝对湿度和相对湿度。 绝对湿度是指一定空间中水蒸气的绝对含量,可用kg/m3表示。绝对湿度也可称为水汽浓度或水汽密度。绝对湿度也可用水的蒸气压来表示。设空气的水汽密度为ρv,与之相对应的水蒸气分压为Pv,则根据理想气体状态方程有如下关系:式中: M--水汽的摩尔质量;

室内温度25℃时露点与相对湿度对照表 文档

时露点与相对湿度对照表 ℃时露点与相对湿度对照表 25℃ 室内温度25 相对湿度 露点 相对湿度 露点 0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31 3.3% -19.86 90.0% 23.24 3.4% -19.55 3.5% -19.25 3.6% -18.95 3.7% -18.67 3.8% -18.39 3.9% -18.11

绝对湿度与相对湿度对照表

5%10%15%20%25%30%35%40%45%50%55% 60%65%70%75%80%85%90%95%100%5℃0.340.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06 3.40 3.73 4.07 4.41 4.75 5.09 5.43 5.77 6.11 6.45 6.7910℃0.470.94 1.41 1.88 2.35 2.82 3.29 3.76 4.23 4.70 5.16 5.63 6.10 6.577.047.517.988.458.929.3915℃0.64 1.28 1.92 2.56 3.21 3.85 4.49 5.13 5.77 6.417.057.698.338.979.6210.2610.9011.5412.1812.8220℃0.86 1.73 2.59 3.45 4.32 5.18 6.04 6.917.778.649.5010.3611.2312.0912.9513.8214.6815.5416.4117.2725℃ 1.15 2.30 3.45 4.60 5.75 6.908.059.2010.3511.5112.6613.8114.9616.1117.2618.4119.5620.7121.8623.0130℃ 1.52 3.03 4.55 6.067.589.0910.6112.1213.6415.1616.6718.1919.7021.2222.7324.2525.7627.2828.7930.3135℃ 1.98 3.95 5.937.909.8811.8513.8315.8017.7819.7621.7323.7125.6827.6629.6331.6133.5835.5637.5339.5140℃ 2.55 5.107.6510.2012.7515.3017.8520.4022.9525.5028.0530.6033.1535.7038.2540.8043.3545.9048.4551.0045℃ 3.26 6.529.7813.0416.3019.5622.8226.0829.3432.6135.8739.1342.3945.6548.9152.1755.4358.6961.9565.2150℃ 4.138.2712.4016.5320.6624.8028.9333.0637.1941.3345.4649.5953.7257.8661.9966.1270.2574.3978.5282.6555℃ 5.1910.3915.5820.7825.9731.1736.3641.5646.7551.9557.1462.3367.5372.7277.9283.1188.3193.5098.70103.8960℃ 6.4812.9519.4325.9132.3938.8645.3451.8258.2964.7771.2577.7284.2090.6897.16103.63110.11116.59123.06129.5465℃8.0216.0324.0532.0640.0848.0956.1164.1272.1480.1588.1796.18104.20112.21120.23128.24136.26144.27152.29160.3070℃9.8519.6929.5439.3949.2459.0868.9378.7888.6298.47108.32118.16128.01137.86147.71157.55167.40177.25187.09196.9475℃12.0224.0336.0548.0660.0872.0984.1196.12108.14120.16132.17144.19156.20168.22180.23192.25204.26216.28228.29240.3180℃14.5729.1343.7058.2772.8387.40101.97116.53131.10145.67160.23174.80189.36203.93218.50233.06247.63262.20276.76291.3385℃17.5535.1052.6570.2087.75105.29122.84140.39157.94175.49193.04210.59228.14245.69263.24280.78298.33315.88333.43350.9890℃21.0242.0463.0584.07105.09126.11147.13168.14189.16210.18231.20252.22273.23294.25315.27336.29357.31378.32399.34420.3695℃25.0350.0675.09100.12125.15150.18175.21200.24225.27250.30275.33300.36325.39350.42375.45400.48425.51450.54475.57500.60100℃ 29.65 59.30 88.94 118.59 148.24 177.89 207.54 237.18 266.83 296.48 326.13 355.78 385.42 415.07 444.72 474.37 504.02 533.66 563.31 592.96 绝对湿度与相对湿度对应表(大气压:1bar) 相对湿度 (RH) 绝对湿度 g/m 3 温度

露点与相对湿度对照表

露点与相对湿度对照表(室内温度25℃时)相对湿度露点相对湿度露点0.1% -51.75 4.0% -17.84 0.2% -46.08 4.1% -17.58 0.3% -42.62 4.2% -17.33 0.4% -40.11 4.3% -17.07 0.5% -38.12 4.4% -16.83 0.6% -36.47 4.5% -16.59 0.7% -35.06 4.6% -16.35 0.8% -33.82 4.7% -16.12 0.9% -32.72 4.8% -15.90 1.0% -31.73 4.9% -15.67 1.1% -30.82 5.0% -15.46 1.2% -29.99 6.0% -13.47 1.3% -29.22 7.0% -11.77 1.4% -28.50 8.0% -10.28 1.5% -27.82 9.0% -8.95 1.6% -27.19 10.0% -7.75 1.7% -26.59 11.0% -6.65 1.8% -26.03 1 2.0% -5.64 1.9% -25.49 13.0% -4.71 2.0% -24.98 14.0% - 3.83 2.1% -24.49 15.0% - 3.02 2.2% -24.02 16.0% -2.25 2.3% -2 3.57 17.0% -1.15 2.4% -2 3.14 18.0% -0.83 2.5% -22.73 19.0% -0.15 2.6% -22.33 20.0% 0.50 2.7% -21.94 30.0% 6.24 2.8% -21.57 40.0% 10.48 2.9% -21.20 50.0% 1 3.86 3.0% -20.85 60.0% 16.70 3.1% -20.51 70.0% 19.15 3.2% -20.18 80.0% 21.31

露点和相对湿度

露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度。所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金。 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为 1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释:压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况).

环境湿度基本常识

湿度的基本概念 空气中含有一定量的水蒸气,来自江河湖海和土壤水分的不断蒸发。空气中的水蒸气含量越多,就越潮湿,反之就越干燥。空气中的干燥和潮湿程度,就叫空气的湿度。空气的湿度通常有以下几个概念: 1.绝对湿度(absolute humidity) 单位体积内的空气中,实际所含的水蒸气量,称为空气的绝对湿度。用密度单位“g/m3”表示。如lm3的空气中含有水蒸气,绝对湿度就是m3。某温度下的绝对湿度,也可以用水汽压强单位毫米高水银柱( mmHg)近似地表示。如水汽压强是8mmHg,绝对湿度可近似地表示为8g/m3。湿度与温度和水的蒸发强度有直接的关系,一般温度高,蒸发到空气中的水汽就多,绝对湿度就大,反之就小。绝对湿度与温度成正比。 设空气的水汽密度为ρv,与之相对应的水蒸气分压为Pv,则根据理想气体状态方程有如下关系 ρv=PvM/RT (1)式中,M为水汽的摩尔气体质量;R为摩尔气体常数;T为绝对温度。 2.饱和湿度(saturated humidity)在一定温度下,空气中水蒸气的最大含量,称为饱和湿度。饱和湿度的单位以g/m3表示。在一定的温度下,空气中的水蒸气含量不会无限制地增多。当空气中的水蒸气含量达到最大限度时,空气中的水蒸气量就达到饱和。大气是由干空气和水蒸气组成的混合气体,大气具有一定的压强,就是通常所说的大气压。水蒸气也具有一定的压强,称为水蒸气分压力。大气压等

于空气的分压力与水蒸气分压力之和。 饱和湿度不是固定不变的,饱和湿度随温度的上升而增大,温度越高,单位体积中所能容纳的水蒸气含量就越多,水汽压就越大,直到达到饱和,此时饱和水汽压也增大到该温度下的最大值,多余的水蒸气就会出现凝结现象。例如:20℃时饱和水汽压为m3, 30℃时增大到m3。饱和湿度与温度成正比。 3.相对湿度(relative humidity)在一定温度下,空气中实际含有的水汽量与同温度下的空气最大水汽量之比的百分数,称为相对湿度。即一定温度下绝对湿度占饱和湿度的百分比数。 相对湿度=绝对湿度/饱和湿度×100% 绝对湿度=饱和湿度×相对湿度 RH=(Pv/Pw)T×100% (2)式中,Pv为空气水蒸气分压;Pw为空气温度T同温时水的饱和水汽压。 相对湿度只表示空气离饱和的程度,不表示空气湿度的绝对大小。例如,温度在10℃、15℃时,若相对湿度均为70%,其绝对湿度是不同的,10°C时绝对湿度是m3,15℃时为8. 95g/m3。通常所说的相对湿度小,就表示空气距同温度下的饱和湿度远,空气较干燥;相反就表示距离同温度下的饱和湿度近,空气较潮湿。某温度下的相对湿度为100%时,水汽达到饱和,水汽压达到同温度下的最大值。 温度与相对湿度的关系是:如果某一时刻的温度不变,绝对湿度的高低决定相对湿度的大小。因为在一定的温度下,空气的饱和湿度

相对湿度

在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 绝对湿度是指每立方米的空气中含有水蒸气的质量。 相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。

凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式 计算相对湿度可按照下述公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克 湿空气 大气中的空气总含有水蒸气,通常称为湿空气。在许多工程实际中都要利用湿空气,它所含的水蒸气量虽不多,却显得特别重要。由于水蒸气的性质不同于气体,而有其本身的特殊性,因此本章专题讨论湿空气的基本知识。

露点与相对湿度

绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg,12℃时的饱和蒸汽压为lO.52mmHg。则此时:空气的绝对湿度p=10.52mmHg, 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。 由于未饱和汽的压强随温度的变化是遵循下列规律Pt=P0(1+t/273)。

绝对温度与相对湿度

温度与相对湿度、绝对湿度、饱和湿度的关系 作者:不详来源:网上收集更新日期:2009-6-10 阅读次数:1042 四、相对湿度、露点温度转换的基本原理说明 湿度研究对象是气体和水汽的混合物。无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 压力为P,温度为T的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T和压力P下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 实际水汽压与同一温度条件下的饱和水汽压的比值: 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压;实际水汽压除以饱和水汽压,就可以得到相对湿度。 相对湿度换算为露点温度:由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。因此,可以用对饱和水汽压求逆的方法计算露点温度。 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位

温度与相对湿度要点

温度与相对湿度、绝对湿度、饱和湿度的关系 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 2 5 4P su x =? (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg , 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

相对湿度和绝对湿度有什么区别

相对湿度和绝对湿度有什么区别 【湿度】表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中液态水分的重量占蒸汽总重量的百分比,则称之为蒸汽的湿度。 【绝对湿度】单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。 【相对湿度】空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24Pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比 ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示: 例如,空气中含有水汽的压强为1606.24Pa(12.79毫米汞柱),在35℃时,饱和蒸汽压为5938.52Pa(44.55毫米汞柱),空气的相对湿度 而在15℃时,饱和蒸汽压是1606.24Pa(12.79毫米汞柱),相对湿度是100%。 绝对湿度与相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和汽压也要随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小,而冬天的相对湿度又比夏天的大。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道绝对湿度或相对湿度,即可算出相对湿度或绝对湿度来。

绝对湿度与相对湿度和露点

绝对湿度、相对湿度、露点、绝热饱和温度 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是

跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg,12℃时的饱和蒸汽压为lO.52mmHg。则此时:空气的绝对湿度p=10.52mmHg, 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。

相对湿度 、露点温度转换的计算公式

相对湿度、露点温度转换的计算公式 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、压力为P,温度为T 的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T 和压力P 下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。 但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to 饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to 饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to 饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。

湿度的计算

空气相对湿度RH%的计算 空气相对湿度RH%,计算 内容摘要:相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是% 相对湿度 相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是%。相对湿度为100%的空气是饱和的空气。相对湿度是50% 的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高空气中可以含的水就越多,也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低。因此在提供相对湿度的同时也必须提供温度的数据。通过相对湿度和温度也可以计算出露点。 以下是计算相对湿度的公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克

「绝对湿度」指一定体积的空气中含有的水蒸气的质量,一般其单位是克/立方米。绝对湿度的最大限度是饱和状态下的最高湿度。绝对湿度只有与温度一起才有意义,因为空气中能够含有的湿度的量随温度而变化,在不同的高度中绝对湿度也不同,因为随着高度的变化空气的体积变化。但绝对湿度越靠近最高湿度,它随高度的变化就越小。 下面是计算绝对湿度的公式: 其中的符号分别是: [编辑]相对湿度(RH) 一台溼度計正在紀錄相對濕度 「相对湿度」(RH)是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。相对湿度为100%的空气是饱和的空气。相对湿度是50%的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高,空气中可以含的水就越多。也就是说,在同样多的水蒸气的情况下,温度降低,相对湿度就会升高;温度升高,相对湿度就会下降低。因此在提供相对湿度的同时也必须提供温度的数据。通过最高湿度和温度也可以计算出露点。

干湿球温度计的相对湿度对照表

相对湿度对照表 本表格不太全,精度也有限,适合要求不高的场合。 如要求较高,另有以下选择: 1。根据干湿球温度的相对湿度计算程序(汇编)50元: 环境条件:风速:0.4m/s 0.8m/s 2.5m/s三种可选 大气压:110,100,90,80kPa四种可选 干球温度范围:0~100摄氏度 干湿球温度差:不限 程序入口:干球温度(精确到0.1度) 湿球温度(精确到0.1度) 程序出口:相对湿度(精确到1%) 2.相对湿度对照表(JPG文件)100kPa 0.8m/s 干球温度范围:15~100摄氏度 30元。 请联系wt9405@https://www.sodocs.net/doc/f45748642.html, ;--------------------------相对湿度表 ;干球温度 0 ~ 40 度, ;每度16档温差:0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,.....14.0, 14.5, 15.0 ;温差0.0档应为100,为了只用一字节十进制表示,100用99代 SD_TAB:DB 99H,91H,83H,75H,67H,61H,54H,48H,42H,37H,31H,27H,22H,18H,14H,10H DB 07H,04H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _1:DB 99H,91H,83H,76H,69H,62H,50H,44H,39H,34H,30H,25H,21H,17H,14H,10H DB 07H,04H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _2:DB 99H,92H,84H,77H,70H,64H,58H,52H,47H,42H,37H,33H,28H,24H,21H,17H DB 14H,11H,08H,05H,02H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H,00H _3:DB 99H,92H,85H,78H,72H,65H,60H,54H,49H,44H,39H,35H,31H,27H,23H,20H DB 17H,14H,11H,08H,06H,03H,01H,00H,00H,00H,00H,00H,00H,00H,00H,00H _4:DB 99H,93H,86H,80H,74H,68H,63H,57H,53H,48H,44H,40H,36H,32H,29H,25H DB 22H,19H,17H,14H,12H,10H,07H,05H,03H,02H,00H,00H,00H,00H,00H,00H _5:DB 99H,93H,86H,80H,74H,68H,63H,57H,53H,48H,44H,40H,36H,32H,29H,25H DB 22H,19H,17H,14H,12H,10H,07H,05H,03H,02H,00H,00H,00H,00H,00H,00H _6:DB 99H,93H,87H,81H,75H,69H,64H,59H,54H,50H,46H,42H,38H,34H,31H,28H DB 25H,22H,19H,17H,15H,12H,10H,08H,06H,05H,03H,01H,00H,00H,00H,00H _7:DB 99H,93H,87H,81H,75H,69H,64H,59H,54H,50H,46H,42H,38H,34H,31H,28H DB 25H,22H,19H,17H,15H,12H,10H,08H,06H,05H,03H,01H,00H,00H,00H,00H _8:DB 99H,94H,88H,82H,76H,71H,66H,62H,57H,53H,49H,46H,42H,39H,35H,32H DB 29H,27H,24H,22H,19H,17H,15H,13H,11H,10H,08H,06H,05H,04H,02H,02H 第 1 页

相对湿度对照表-1

干湿通风表湿度对照表 干湿温差 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 干球温度相对湿度(%) 50 97 94 92 89 87 84 82 79 77 74 72 70 68 66 63 61 49 97 94 92 89 86 84 81 79 77 74 72 70 67 65 63 61 48 97 94 92 89 86 84 81 79 76 74 71 69 67 65 62 60 47 97 94 92 89 86 83 81 78 76 73 71 69 66 64 62 60 46 97 94 91 89 86 83 81 78 76 73 71 68 66 64 62 59 45 97 94 91 88 86 83 80 78 75 73 70 68 66 63 61 59 44 97 94 91 88 86 83 80 78 75 72 70 67 65 63 61 58 43 97 94 91 88 85 83 80 77 75 72 70 67 65 62 60 58 42 97 94 91 88 85 82 80 77 74 72 69 67 64 62 59 57 41 97 94 91 88 85 82 79 77 74 71 69 66 64 61 59 56 40 97 94 91 88 85 82 79 76 73 71 68 66 63 61 58 56 39 97 94 91 87 84 82 79 76 73 70 68 65 63 60 58 55 38 97 94 90 87 84 81 78 75 73 70 67 64 62 59 57 54 37 97 93 90 87 84 81 78 75 72 69 67 64 61 59 56 53 36 97 93 90 87 84 81 78 75 72 69 66 63 61 58 55 53 35 97 93 90 87 83 80 77 74 71 68 65 63 60 57 55 52 34 96 93 90 86 83 80 77 74 71 68 65 62 59 56 54 51 33 96 93 89 86 83 80 76 73 70 67 64 61 58 56 53 50 32 96 93 89 86 83 79 76 73 70 66 64 61 58 55 52 49 31 96 93 89 86 82 79 75 72 69 66 63 60 57 54 51 48 30 96 92 89 85 82 78 75 72 68 65 62 59 56 53 50 47 29 96 92 89 85 81 78 74 71 68 64 61 58 55 52 49 46 28 96 92 88 85 81 77 74 70 67 64 60 57 54 51 48 45 27 96 92 88 84 81 77 73 70 66 63 60 56 53 50 47 43 26 96 92 88 84 80 76 73 69 66 62 59 55 52 48 46 42 25 96 92 88 84 80 76 72 68 64 61 58 54 51 47 44 41 24 96 91 87 83 79 75 71 68 64 60 57 53 50 46 43 39 23 96 91 87 83 79 75 71 67 63 59 56 52 48 45 41 38 22 95 91 87 82 78 74 70 66 62 58 54 50 47 43 40 36 21 95 91 86 82 78 73 69 65 61 57 53 49 45 42 38 34 20 95 91 86 81 77 73 68 64 60 56 52 58 44 40 36 32 19 95 90 86 81 76 72 67 63 59 54 50 56 42 38 34 30 18 95 90 85 80 76 71 66 62 58 53 49 44 41 36 32 28 17 95 90 85 80 75 70 65 61 56 51 47 43 39 34 30 26 16 95 89 84 79 74 69 64 59 55 50 46 41 37 32 28 23 15 94 89 84 78 73 68 63 58 53 48 44 39 35 30 26 21 14 94 89 83 78 72 67 62 57 52 46 42 37 32 27 23 18 13 94 88 83 77 71 66 61 55 50 45 40 34 30 25 20 15 12 94 88 82 76 70 65 59 53 47 43 38 32 27 22 17 12 11 94 87 81 75 69 63 58 52 46 40 36 29 25 19 14 8 10 93 87 81 74 68 62 56 50 44 38 33 27 22 16 11 5 9 93 86 80 73 67 60 54 48 42 36 31 24 18 12 7 1 8 93 86 79 72 66 59 52 46 40 33 27 21 15 9 3 7 93 85 78 71 64 57 50 44 37 31 24 18 11 5 6 92 85 7 7 70 63 55 4 8 41 34 28 21 13 3 5 92 84 7 6 69 61 53 46 36 28 24 16 9 4 92 83 7 5 67 59 51 44 3 6 28 20 12 5 3 91 83 7 4 66 57 49 41 33 2 5 1 6 7 1 2 91 82 7 3 6 4 5 5 4 6 38 29 20 12 1 1 90 81 7 2 62 5 3 43 3 4 2 5 1 6 8 0 90 80 71 60 51 40 30 21 12 3

相关主题