搜档网
当前位置:搜档网 › 实验四-SIMULINK仿真模型的建立及仿真

实验四-SIMULINK仿真模型的建立及仿真

实验四-SIMULINK仿真模型的建立及仿真
实验四-SIMULINK仿真模型的建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一)

一、实验目的:

1、熟悉SIMULINK模型文件的操作。

2、熟悉SIMULINK建模的有关库及示波器的使用。

3、熟悉Simulink仿真模型的建立。

4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。

二、实验内容:

1、设计SIMULINK仿真模型。

2、建立SIMULINK结构图仿真模型。

3、了解各模块参数的设定。

4、了解示波器的使用方法。

5、了解参数、算法、仿真时间的设定方法。

例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK模型,并进行仿真运行。

步骤:

1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK 模块浏览器。

图一:SIMULINK模块浏览器

2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。

图二:已经复制进库模块的新建模型窗

3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。

4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。

5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示:

图三:已构建完成的新模型窗

6、根据理论数学模型设置模块参数:

①设置增益模块参数,双击模型窗重的增益模块,引出如图四所示的参数设置窗,把增益栏中默认数字改为2,单击[OK]键,完成设置;

图四:参数已经修改为2的增益模块设置窗

②参照以上方法把增益模块的增益系数改为100;

③修改求和模块输入口的代数符号,双击求和模块,引出如图五所示的参数设置窗,把符号栏中的默认符号(++)修改成所需的代数符号(--),单击[OK]键,完成设置;

图五:改变输入口符号的求和模块参数设置窗

④对积分模块的初始状态进行设置:双击积分模块,引出如图六所示的参数设置窗,把初始条件Initial condition栏中的默认0初始修改为题目给定的0.05,单击[OK]键,完成设置。

图六:实现初始位移0.05设置的设置窗

7、仿真运行参数采用默认解算器“ode45”、默认“变步长”和默认仿真终止时间10

8、把新建模型保存为exm070101.mdl

9、试运行,以便发现问题加以改善

①双击示波器模块,引出示波器显示窗,并使它不与exm070101模型窗重叠。

②单击exm070101模型窗上的仿真启动键,使该模型运行,在示波器上呈现的运行结果可能如图七所示。

图七:坐标范围设置不当时的信号显示

③单击Scope显示窗上的纵坐标范围自动设置图标,示波器显示窗改变为如图八所示。在显示窗中,可以看到位移x(t)的变化曲线,同时可以发现:纵坐标的适当范围大致在[-0.06,0.06];仿真时间取[0,5]即可,显示曲线不够光滑。

图八:采用轴自动设置功能后的信号显示

10、据试运行结果,进行仿真参数的再设置

①示波器纵坐标设置:用鼠标点击示波器的黑色显示屏,在弹出菜单中选择

Axes Properties,引出纵坐标设置对话窗(如图九),把纵坐标的下限、上限分别设置为-0.06和0.06,点击[OK]键,完成设置;

图九:对显示屏的纵坐标范围进行设置

②示波器时间显示范围的修改:单击示波器的参数设置图标,引出示波器参数设置窗(如图十);在General卡片的Axes区的Time range栏中填写5或auto,点击[OK]键,完成设置;

图十:对示波器时间显示范围的设置

③显示曲线的光滑化设置:选中exm070101模型窗的下拉菜单项

Simulation\Configuration Parameters,引出仿真参数配置窗(如图十一);再在该窗左侧的选择栏中,选中Data Import/Export项,与之相应的参数设置栏便出现在窗口的右侧;把右半窗下方Save options区中Refine factor栏中的默认值改为5,点击[OK]键,完成设置;

图十一:通过仿真参数配置窗设置输出曲线光滑因子

④完成以上修改后的模型窗(如图十二),再次运行exm070101,可得比较满意的位移变化曲线,如图十三。

图十二:仿真参数调整运行后的exm070101模型

图十三:适当地显示仿真所得的位移变化曲线

三、实验小结

在本次实验中,根据物理定理建立微分方程,并以此微分方程创建SIMULINK 模型的完整步骤:微分方程的整理,模块的复制,信号线的构画,模块参数设置,示波器的调整,仿真参数的设置。通过这次实验,让我知道了连续时间系统的建模与仿真,在实验中,要根据理论数学模型,从系统角度出发,对各模块的非结构参数进行设置,还要根据经验或采用默认方法,对仿真解算器和仿真终止时间进行设置。

计算机仿真实验-基于Simulink的简单电力系统仿真

实验七 基于Simulink 的简单电力系统仿真实验 一. 实验目的 1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用; 3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。 二.实验内容与要求 单机无穷大电力系统如图7-1所示。平衡节点电压0 44030 V V =∠? 。负荷功率10L P kW =。线路参数:电阻1l R =Ω;电感0.01l L H =。发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流 70 fn i A =;额定频率50n f Hz =。发电机定子侧参数:0.26s R =Ω, 1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。发电机阻尼绕组参数:0.0224kd R =Ω, 1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。发电机转动惯量和极对数分别 为224.9 J kgm =和2p =。发电机输出功率050 e P kW =时,系统运行达到稳态状态。在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点 V 负 荷 l R l L L P 图 7.1 单机无穷大系统结构图 输电线路 三.实验步骤 1. 建立系统仿真模型 同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。模块的第1个输入端子(Pm)为电机的机械功率。当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。在发电机模式下,输入可以是一个正的常数,也可以是一个函数或者是原动机模块的输出;在电动机模式下,输入通常是一个负的常数或者是函数。模块的第2个输入端子(Vf)是励磁电压,在发电机模式下可以由励磁模块提供,在电动机模式下为一个常数。 在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造仿真模型,三相电压源幅值为4403,频率为50Hz。按图连接好线路,设置参数,建立其仿真模型,仿真时间为5s,仿真方法为ode23tb,并对各个单元部件模型的参数进行修改,如图所示。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

实验七 SIMULINK仿真集成环境

实验七 SIMULINK 仿真集成环境 一、实验目的 熟悉SIMULINK 的模型窗口、熟练掌握SIMULINK 模型的创建,熟练掌握常用模块的操作及其连接。 二、实验内容 (1) SIMULINK 模型的创建和运行。 (2)一阶系统仿真 三、实验步骤 1. Simulink 模型的创建和运行 (1) 创建模型。 ① 在MATLAB 的命令窗口中输入simulink 语句,或者单击MATLAB 工具条上的SIMULINK 图标,SIMULINK 模块库浏览器。 ②在MA TLAB 菜单或库浏览器餐单中选择File|New|Model ,或者单击库浏览器的图标,即可新建一个“untitle ”的空白模型窗口。 ③打开“Sources ”模块库,选择“Sine Wave ”模块,将其拖到模型窗口,再重复一次;打开“Math Operatioins ”模块库选取“Product ”模块;打开“Sinks ”模块库选取“Scope ”模块。 (2) 设置模块参数 ① 修改模块注释。单击模块的注释处,出现虚线的编辑框,在编辑框中修改注释。 ② 双击下边“Sine Wave ”模块,弹出参数对话框,浆“Frequency ”设置为100;双击“Scope ”模块,弹出示波器窗口,然后单击示波器图标,弹出参数对话框,修改示波器的通道数“Number of axes ”为3. ③如图所示,用信号线连接模块。 (3) 启动仿真 ① 单击工具栏上的图标或者选择Simulation|Start 菜单项,启动仿真;然后双击“Scope ”模块弹出示波器窗口,可以看到波形图。 ② 修改仿真步长。在模块窗口的Simulation 菜单下选择“Configuration Parameters ”命令,把“Max step size ”设置为0.01;启动仿真,观察波形是不是比原来光滑。 ③再次修改“Max step size ”为0.001;设置仿真终止时间为10s ;启动仿真,单击示波器工具栏中的按钮,可以自动调整显示范围,可以看到波形的起点不是零点,这是因为步长改小后,数据量增大,超出了示波器的缓冲。 浆示波器的参数对话框打开,选择“Data history ”页,把“Limit data point tolast ”设置为10000;再次启动仿真,观察示波器将看到完整的波形。 2.. 一阶系统仿真 使用阶跃信号作为输入信号,经过传递函数为1 6.01 s 的一阶系统,观察其输出。 ①设置“Step ”模块的“Step time ”为0;浆仿真参数的最大步长“Max step size ”设置为0.01. 把结果数据输出到工作空间。 ②打开“Sources ”模块库,选取“Clock ”模块添加到模型窗口中。 ③代开“Sinks ”模块库,选取两个“To workspace ”模块添加到模型窗口中,两个模块分别连接输出和“Clock ”模块。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

自动实验一——典型环节的MATLAB仿真 报告

班级 姓名 学号 XXXXXX电子与信息工程学院实验报告册 课程名称:自动控制原理实验地点: 实验时间同组实验人: 实验题目:典型环节的MATLAB仿真 一、实验目的: 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理及SIMULINK图形: 1.比例环节的传递函数为22 12 11 ()2100,200 Z R G s R K R K Z R =-=-=- == 其对应的模拟电路及SIMULINK图形如图1-3所示。 2.惯性环节的传递函数为 2 21 121 121 2 ()100,200,1 10.21 R Z R G s R K R K C uf Z R C s =-=-=-=== ++ 其对应的模拟电路及SIMULINK图形如图1-4所示。 3.积分环节(I)的传递函数为 uf C K R s s C R Z Z s G1 , 100 1.0 1 1 ) ( 1 1 1 1 1 2= = - = - = - = 其对应的模拟电路及SIMULINK图形如图1-5所示。 图1-5 积分环节的模拟电路及及SIMULINK图形 图1-4 惯性环节的模拟电路及SIMULINK图形

4.微分环节(D)的传递函数为 uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<< 其对应的模拟电路及SIMULINK 图形如图1-6所示。 5.比例+微分环节(PD )的传递函数为 )11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<=== 其对应的模拟电路及SIMULINK 图形如图1-7所示。 6.比例+积分环节(PI )的传递函数为 )11(1)(11212s R s C R Z Z s G +-=+-=-= uf C K R R 10,100121=== 其对应的模拟电路及SIMULINK 图形如图1-8所示。 三、实验设备: 计算机 Matlab 软件 四、试验内容: 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01)(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G 图1-6 微分环节的模拟电路及及SIMULINK 图形 图1-7 比例+微分环节的模拟电路及SIMULINK 图形 图1-8 比例+积分环节的模拟电路及SIMULINK 图形曲线

simulink仿真实验报告

电机与拖动控制实验及其MATLAB仿真: 《电机与拖动控制实验及其MATLAB仿真》是2014年11月18日清华大学出版社出版的图书,作者是曹永娟。 内容简介: 本书分上、下两篇。上篇为电机与拖动控制实验教程,针对MCL 系列电机实验教学系统进行介绍,包括变压器、同步电机、异步电机、直流电机以及直流调速系统、交流调速系统拖动控制实验内容。 目录: 上篇电机与拖动控制实验 第1章电机实验装置和基本要求 1.1MCLⅡ型电机教学实验台 1.2实验装置和挂件箱的使用 1.2.1MCLⅡ型电机实验装置交流及直流电源操作说明 1.2.2仪表的使用 1.2.3挂件箱的使用 1.2.4交直流电机的使用 1.2.5导轨、测速发电机及转速计的使用 第2章电机与拖动控制实验基本要求和安全操作规程 2.1实验基本要求 2.2实验前的准备 2.3实验的进行 2.4实验报告

2.5实验安全操作规程 第3章变压器实验 3.1单相变压器 3.1.1实验目的 3.1.2预习要点 3.1.3实验项目 3.1.4实验设备及仪器 3.1.5实验方法 3.1.6实验报告 3.2三相变压器 3.2.1实验目的 3.2.2预习要点 3.2.3实验项目 3.2.4实验设备及仪器 3.2.5实验方法 3.2.6实验报告 3.3三相变压器的连接组和不对称短路3.3.1实验目的 3.3.2预习要点 3.3.3实验项目 3.3.4实验设备及仪器 3.3.5实验方法

3.3.6实验报告 3.3.7附录 3.4三相变压器的并联运行3. 4.1实验目的 3.4.2预习要点 3.4.3实验项目 3.4.4实验设备及仪器 3.4.5实验方法 3.4.6实验报告 第4章同步电机实验 4.1三相同步发电机的运行特性4.1.1实验目的 4.1.2预习要点 4.1.3实验项目 4.1.4实验设备及仪器 4.1.5实验方法 4.1.6实验报告 4.1.7思考题 4.2三相同步发电机的并联运行4.2.1实验目的 4.2.2预习要点 4.2.3实验项目

实验三__SIMULINK仿真实验

实验三 SIMULINK 仿真实验 一、实验目的 1.熟悉Simulink 的操作环境并掌握绘制系统模型的方法。 2.掌握Simulink 中子系统模块的建立与封装技术。 3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。 二、实验设备及条件 计算机一台(带有MATLAB7.0软件环境)。 三、实验内容 1.建立下图5-1所示的Simulink 仿真模型并进行仿真,改变Gain 模块的增益,观察Scope 显示波形的变化。 图3-1 正弦波产生及观测模型 2.利用Simulink 仿真下列曲线,取πω2=。 t t t t t t x ωωωωωω9sin 9 17sin 715sin 513sin 31sin )(++++=。 仿真参考模型如下图3-2,Sine Wave5模块参数设置如下图3-3,请仿真其结果。

图3-2 ()x t 的仿真参考模型图 图3-3 Sine Wave5模块参数设置图 3. 已知某控制系统的传递函数如题3-4图所示。试利用SIMULINK 建模仿真,并用示波器显示该系统的阶跃响应曲线。(注:系统中e -0.4 s 环节表示的是控制中的延时环节,可用SIMULINK 的连续系统模块库中的“Transport Delay”模块表示) 图3-4 4、已知某控制系统的传递函数如题3-5图所示。 试利用SIMULINK 建模,并实现以下功能: (1) 将已建模型转化为一个名为“mysys”的子系统; (2) 将已建子系统进行适当的封装; (3) 封装完毕后双击子系统图标,在弹出的属性设置窗口中对变量进行赋值(Tm = 0.5,Tp = 1),并在模型中加入源模块和显示模块,观察系统的阶跃响应曲线。

Matlab SIMULINK仿真实验报告

西安邮电学院《Matlab》实验报告(四)2011- 2012 学年第 1 学期自动化专业:自动0903 班级:学号:姓名:

2011 年11 月10 日 第四次SIMULINK仿真实验一、实验目的1.熟悉Simulink的操作环境并掌握绘制系统模型的方法。 2.掌握Simulink 中子系统模块的建立与封装技术。 3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。二、实验设备及条件计算机一台(带有MATLAB6.5以上的软件环境)。三、实验内容1.建立下图5-1所示的Simulink仿真模型并进行仿真,改变Gain模块的增益,观察Scope显示波形的变化。图5-1 正弦波产生及观测模型92.利用simulink仿真来实现摄氏温度到华氏温度的转化:(fc c5),参考模型为图5-2。范围在-10℃~100℃图5-2 摄氏温度到华氏温度的转化的参考模型3.利用Simulink仿真下列曲线,取。21111。 3579仿真参 考模型如下图5-3,Sine Wave5模块参数设置如下图5-4,请仿真其结果。图5-3 的仿真参考模型图图5-4 Sine Wave5模块参数设置图x(t) 4.如图5-5所示是分频器仿真框图,其组成仅有三台设备:脉冲发生器,分频器和示波器。分频器送

出一个到达脉冲,第一路cnt(计数),它的数值表示 在本分频周期记录到多少个脉冲;第二路是hit(到达),就是分频后的脉冲输出,仿真出结果来。 图5-5 分频器仿真框图 5. Simulink 综合演示实验 ---悬吊式起重机动力学仿 真悬吊式起重机结构简图 1. 悬吊式起重机动力 学方程 2小车水平方向受力方程 pt2dt2d吊绳垂直方pp2向受力方程dt2d小车 的力矩p2dt平衡方程式中,mt、mp、I、c、l、F、x、分别为起重机的小车质量、吊重、 吊重惯量、等价粘性摩擦系数、钢丝绳长(不计绳重),小车驱动力、小车位移以及钢丝绳的摆角。由(2)、(3)式去掉P,则有 2. 悬吊式起重机动力学Simulink仿真为便于建模,将起重机动力学方程改写为: p由以上二式可建立如图所示的起重机 Simulink模型:1图中:lmp=mpl 在运行仿真模型前,须先计算出k1、k2和lmp。设mt =50kg,mp=270kg,l=4m,,在MATLAB指令窗输入以下指令 l=4; c=20; mp=270; mt=50; I=mp*l^2; %计算吊重转动惯量 lmp=l*mp;

实验报告simulink

班级:姓名:学号:

实验一:AM 信号的调制与解调 实验目的:1.了解模拟通信系统的仿真原理。 2.AM 信号是如何进行调制与解调的。 实验原理: 1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。 + m(t) S AM (t)A 0 cos ωc t AM 信号的时域和频域的表达式分别为: ()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++ -++=2 1 0 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是 随机信号,但通常认为其平均值为0,即。其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。 2.解调原理:AM 信号的解调是把接收到的已调信号还 原为调制信号。 AM 信号的解调方法有两种:相干解调和包 络检波解调。 AM 相干解调原理框图如图。相干解调(同步解调):利用

相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。 LPF m0(t) S AM(t) cosωc t AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分。(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。实验内容: 1.AM相干解调框图。

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

adams和simulink联合仿真的案例分析

相信大家在联合仿真ADAMS和SIMULINK时都会遇到很多的问题:ADAMS/contro中的例子ball_beam通过联合仿真,更容易理解adams和simulink的联合仿真精髓。小球在一脉冲力的作用下沿着横梁滚动,此时梁的两端受力不平衡,梁的一段倾斜,为了使得小球不掉下横梁,在横梁上施加一个绕Z轴的力矩,横梁达到一定的角度之后逆向转动,然后小球就在这个作用力矩的控制下来回滚动而不掉下横梁!其中控制力矩在整个过程中是个动态变化的,力矩Torque_In是通过位移Position 和横梁转角Beam_Angle确定,这个是在simulink中通过框图完成的。 首先我申明一下我用的是adams2003和matlab6.5 以下我说明一下我的操作步骤: 1、把control中的ball_beam文件copy到另外一个文件夹下,同时设置adams和matlab的默认路径即为ball_beam文件夹,这样可以省略很多不必要的麻烦! 2、用aview打开ball_beam.cmd文件,先试试仿真一下,可以看到小球会在脉冲的作用下滚动,仿真时间最好大于8s 3、载入control模块,点击tools|plugin manager在control框选定。 4、点击control|plant export在file prefix下输入你的文件名,这个可以随便的,我输入的是myball,在plant input点击右键点

击guess选定tmp_MDI_PINPUT,在tmp_MDI_PINPUT中就是输入力矩Torque_In,只有一个输入参数;同样在plant output 中点击右键guess选定tmp_MDI_POUTPUT,这是模型的输出变量横梁转角Beam_Angle和小球与横梁中心轴的距离position。control package选择matlab,type是non_linear,初始化分析选择no,然后按ok!此时m文件已经生成了! 5、打开matalb,设置你的工作路径在ball_beam文件夹上,键入myball,马上有 %%% INFO : ADAMS plant actuators names : 1 Torque_In %%% INFO : ADAMS plant sensors names : 1 Beam_Angle 2 Position 出现 6、再键入adams_sys,弹出一个控制框图,这时可以新建一个mdl文件,将adams_sub拖入你新建的mdl框图中,其实再这里有一个偷懒的办法,就是在matlab中打开ball_beam.mdl文件,然后把他的那个adams_sub用你的刚产生的这个代替,然后另存为my_ball.mdl!

实验报告五SIMULINK仿真实验

实验五SIMULINK仿真实验 一、实验目的 考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔对Ts 对系统稳定性的影响 二、实验步骤 开机执行程序,用鼠标双击图标,进入MA TLAB命令窗口:Command Windows在Command Windows窗口中输入:simulink,进入仿真界面,并新建Model文件在Model界面中构造连续时间系统的结构图。作时域仿真并确定系统时域性能指标。 图(6-1) 带零阶保持器的采样控制系统如下图所示。作时域仿真,调整采样间隔时间Ts,观察对系统稳定性的影响。 图(6-2) 参考输入量(给定值)作用时,系统连接如图(6-1)所示: 图(6-3) 三、实验要求 (1)按照结构图程序设计好模型图,完成时域仿真的结构图 (2)认真做好时域仿真记录 (3)参考实验图,建立所示如图(6-1)、图(6-2)、图(6-3)的实验原理图; (4)将鼠标移到原理图中的PID模块进行双击,出现参数设定对话框,将PID 控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。

1. 单击工具栏中的图标,开始仿真,观测系统的响应曲线,分析系统性 能;调整比例增益,观察响应曲线的变化,分析系统性能的变化。 2. 重复步骤2-3,将控制器的功能改为比例微分控制,观测系统的响应曲线, 分析比例微分控制的作用。 3. 重复步骤2-3,将控制器的功能改为比例积分控制,观测系统的响应曲线, 分析比例积分控制的作用。 4. 重复步骤2-3,将控制器的功能改为比例积分微分控制,观测系统的响应曲 线,分析比例积分微分控制的作用。 5. 参照实验一的步骤,绘出如图(6-2)所示的方块图; 6. 将PID控制器的积分增益和微分增益改为0,对系统进行纯比例控制。不断 修改比例增益,使系统输出的过渡过程曲线的衰减比n=4,记下此时的比例增益值。 7. 修改比例增益,使系统输出的过渡过程曲线的衰减比n=2,记下此时的比例 增益值。 8. 修改比例增益,使系统输出呈临界振荡波形,记下此时的比例增益值。 9. 将PID控制器的比例、积分增益进行修改,对系统进行比例积分控制。不断 修改比例、积分增益,使系统输出的过渡过程曲线的衰减比n=2,4,10,记下此时比例和积分增益。 10、将PID控制器的比例, 积分, 微分增益进行修改,对系统进行比例、积分、 微分控制。不断修改比例、积分、微分增益,使系统输出的过渡过程曲线的衰减比n=2、4、10记下此时的比例、积分、微分增益值。 四、实验报告要求 (1)叙述零阶保持器的作用 (2)讨论采样时间间隔Ts对系统的影响。 (3)写出完整实验报告 附:step模块在sources库中 sum模块在math operations库中 scope模块在sinks库中 transfer fcn模块在continuous库中 zero-order hold模块在discrete库中

Simulink实验报告

实验一:AM 信号的调制与解调 实验目的:1.了解模拟通信系统的仿真原理。 2.AM 信号是如何进行调制与解调的。 实验原理: 1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。 + m(t) S AM (t)A 0 cos ωc t AM 信号的时域和频域的表达式分别为: ()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++ -++=2 1 0 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是 随机信号,但通常认为其平均值为0,即。其频谱是DSB SC-AM 信号的频谱加上离散大载波的频谱。 2.解调原理:AM 信号的解调是把接收到的已调信号还 原为调制信号。 AM 信号的解调方法有两种:相干解调和包 络检波解调。 AM 相干解调原理框图如图。相干解调(同步解调):利用

相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。 LPF m0(t) S AM(t) cosωc t AM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。包络检波器一般由半波或全波整流器和低通滤波器组成: (1)整流:只保留信号中幅度大于0的部分。(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。实验内容: 1.AM相干解调框图。

《MATLAB与控制系统。。仿真》实验报告

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一MATLAB环境的熟悉与基本运算(一)实验二MATLAB环境的熟悉与基本运算(二)实验三MATLAB语言的程序设计 实验四MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MATLAB常用命令 表1 MATLAB常用命令 变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

SIMULINK仿真实验

SimuLink 仿真二阶微分方程的求解 专业:信息 姓名:王钢明 1031020118 姓名:王某某 1031020124 姓名:何正长 1031020217 指导老师:刘老师 日期:2012—12—25

题目:二阶微分方程的求解 一、实验目的 1、熟悉Simulink 基本用法。 2、了解simulink 的一些模块的意义。 3、掌握模块的选取、复制、删除操作。 4、学会simulink 模块的连接以及模块参数的设置。 二、实验仪器 1、计算机 2、MATLAB 软件环境 三、实验内容 1、求解二阶微分方程x (t)0.4x (t)0.9x (t)0.7u (t)++= 的方程解,其中u (t)是脉冲信号。需要使用Simulink 求解x (t)。 2 、求解二阶微分方程x (t)0.2x (t)0.4x (t)0.2u (t)++= ,其中u (t)是脉冲信号。需要使用Simulink 求解x(t)。 3、求解二阶微分方程x (t)0.5x (t)0.8x (t)0.9u (t)++= 的解x (t);其中初值为 , 并且 是一个余弦信号。 四、实验过程 1、求解二阶微分方程x(t)0.4x(t)0.9x(t)0.7u(t)++= 的方程解, 其中u(t)是脉冲信号。需要使用Simulink 求解x(t)。 1.1)用matlab 求解此二阶微分方程: 在matlab 中输入程序: syms t y; u=sin(t); uu=0.7*u; y=dsolve(['D2y+0.4*Dy+0.9*y=',char(uu)]); 程序运行结果:y = exp(-1/5*t)*sin(1/10*86^(1/2)*t)*C2+exp(-1/5*t)*cos(1/10*86^(1/2)*t)*C1-7/17*sin(t)-28/17*cos(t) 1.2)利用simulink 求解此二阶微分方程 x (0)1x (0)3=?? =? u (t)cos(t)=

simulink仿真实验报告

simulink仿真实验报告 根据永磁同步电机的应用场合不同,可将转子永磁磁链的位置定在不同的坐标轴上,在不同的坐标轴下,有几种用得比较多的磁场定向控制方式:气隙磁链的定向控制,定子磁链的定向控制,转子磁链的定向控制,阻尼磁链的定向控制。而对于某些运动控制系统,若是以永磁同步电机为执行机构,那么此系统主要采用转子磁链定向控制方式,该方式非常适用于一些小容量调速系统。 永磁同步电机的矢量控制主要方法有: 1、id=0控制 id=0时,从电机端口看,相当于一台他励直流电动机,定子中只有交轴分量,且定子磁动势空间矢量与永磁体空间正交,值等于90度,电动机转矩中只有永磁转矩分量,其值为: 控制时的时间向量如右图所示,反电动势向量与定子电流向量相同。对表面凸出式转子磁路结构电机来说,此时单位电流可获得最大转矩。或者说,在产生所需求的转矩情况下,只需要较小的定子电流,从而使铜耗下降,效率提高,这也是表面凸出式转子磁路结构的永磁电机通常采用的id=0的控制原因,目前,很多无刷直流电机,伺服

电机普遍采用此方案控制电机。 2、最大转矩电流比控制(MPTA) 最大转矩电流比控制也称单位电流输出最大转矩控制,它是凸极永磁同步电机用的较多的一种控制策略,而对于隐极电机来说,最大转矩电流比控制就是id=0控制。 根据电机理论得知,对于凸极转子来说,只有在电压极限圆与电流极限圆共同包含的区域,电机才可以工作,转速越高,电压极限圆越小,即随着转速升高,电压极限圆是一簇以A4为心的椭圆。 电动机最大转矩电流比轨迹为一二次曲线,代表随着转速变化,DQ 轴电流值得选择只有在此曲线上选择时,才可以得到单位电流下的最大转矩。在OA1段上,电动机可以以该轨迹上的各点做恒转矩运行,且通过A1点的电压极限圆所对应的转速即为在该转矩下的转折速度,同时,A1点对应于输出转矩最大时的转折速度。 3、弱磁控制 永磁电机弱磁控制思想来自对他励直流电动机的调磁控制。当他励直

实验七 SIMULINK仿真实验

实验七 SIMULINK 仿真实验 一、实验目的 1.熟悉Simulink 的操作环境并掌握绘制系统模型的方法。 2.掌握Simulink 中子系统模块的建立与封装技术。 3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。 二、实验设备及条件 计算机一台(带有MATLAB6.5以上的软件环境)。 三、实验内容 1.建立下图5-1所示的Simulink 仿真模型并进行仿真,改变Gain 模块的增益,观察Scope 显示波形的变化。 图5-1 正弦波产生及观测模型 2.利用simulink 仿真来实现摄氏温度到华氏温度的转化:325 9c f += T T (c T 范 围在-10℃~100℃),参考模型为图5-2。 图5-2 摄氏温度到华氏温度的转化的参考模型 3.利用Simulink 仿真下列曲线,取πω2=。 t t t t t t x ωωωωωω9sin 917sin 7 15sin 5 13sin 3 1sin )(+ + + + =。 仿真参考模型如下图5-3,Sine Wave5模块参数设置如下图5-4,请仿真其结果。

图5-3 () 的仿真参考模型图图5-4 Sine Wave5模块参数设置图 x t 4.如图5-5所示是分频器仿真框图,其组成仅有三台设备:脉冲发生器,分频器和示波器。分频器送出一个到达脉冲,第一路cnt(计数),它的数值表示在本分频周期记录到多少个脉冲;第二路是hit(到达),就是分频后的脉冲输出,仿真出结果来。 图5-5 分频器仿真框图

5. Simulink 综合演示实验 ---悬吊式起重机动力学仿真 悬吊式起重机结构简图 1. 悬吊式起重机动力学方程 式中,mt 、mp 、I 、c 、l 、F 、x 、θ 分别为起重机的小车质量、吊重、吊重惯量、等价粘性摩擦系数、钢丝绳长(不计绳重),小车驱动力、小车位移以及钢丝绳的摆角。 由(2)、(3)式去掉P ,则有 2. 悬吊式起重机动力学Simulink 仿真 为便于建模,将起重机动力学方程改写为: 由以上二式可建立如图所示的起重机Simulink 模型 : 图中:lmp=mpl () ) 1(sin 2 2θl x dt d m x c F x m p t ---= () ) 2(cos 2 2θl dt d m g m P p p =-) 3(sin cos )sin (2 2θ θθθ I Pl l x dt d l m p =--小车水平方吊绳垂直方小车的力矩 ()) 5(cos sin 2θθθx l m gl m l m I p p p =++() ) 4(sin 2 2θl x dt d m x c F x m p t ---= ()p t p m m l m x c F x +-+-=θθθθsin cos 2 ()2 sin cos l m I g x l m p p +-=θθθ p t m m += 11k 2 2k l m I l m p p +=

(完整版)matlab_4_SIMULINK仿真及DEE实例步骤

SIMULINK & DEE简介 ※如何进入SIMULINK? Step1:进入MATLAB Step2: 方法一:在workspace输入simulink的指令。 方法二:点选MATLAB Command Window上方之利用以上方法会获得下面的结果

※ 如何利用SIMULINK 解ODE Example1:2311+-='x x Step1:?'=dt x x 11 ? 在Library 中点选Continuous ,在Continuous 中选取integrator ,按住鼠标左键拖曳至untitled 中,分别在各接点拉上连接线并标明各个涵义。 Step2:2311+-='x x (1)从Math 中点选Gain 的图标,拖曳至untitled 中,并选取命令列中Format/Flip Block 使其转ο180

(2)从Math中,拖曳Sum至untitled中 (3)从Source中,用鼠标拖曳Constant至untitled,并把各点连结起来。 (4)从Sink中拖曳Scope至untitled中,并与 x连结 1

(5)把Constant改为2,把Gain改为-3。 Step3:设定参数 (1)选择Simulation/Parameters (2)调整适当的起始时间、结束时间和数值方法。

(3)点选Simulation/Start ,开始仿真。 (4)点选Scope ,显示仿真的结果。 Example2:???+-='+='-)cos(212 211t x x x e x x x t 1)0(0)0(21==x x Step1:???'='=??dt x x dt x x 2211 ? (1)点选Continuous 中之Integrator ,拖曳至untitled 。

相关主题