搜档网
当前位置:搜档网 › 高通多模多频 LTE 技术

高通多模多频 LTE 技术

Roche_454(GS_FLX_Titanium_System)超高通量测序技术原理

Roche 454(GS FLX Titanium System)超高通量测序技术原理 2005年底,454公司推出了革命性的基于焦磷酸测序法的超高通量基因组测序系统——Genome Sequencer 20 System,被《Nature》杂志以里程碑事件报道,开创了边合成边测序(sequencing-by-synthesis)的先河。之后,454公司被罗氏诊断公司以1.55亿美元收购。2007年,他们又推出了性能更优的第二代基因组测序系统—— Genome Sequencer FLX System (GS FLX)。2008年10月,454推出了全新的GS FLX Titanium系列试剂和软件,让GS FLX的通量一下子提高了5倍,准确性和读长也进一步提升。 想当年,GS 20的出现,揭开了测序历史上崭新的一页。Jonathan Rothberg博士就是大规模并行测序的发明者,同时也是454的创始人。上世纪90年代,很多学者也都想到了大规模并行测序,他们试图将Sanger测序移到芯片上,但都以失败告终,因为这项技术没有可扩展性。1999年,Rothberg的儿子出世,他放了两个星期的陪产假。小家伙出生后被送入婴儿特护病房,Rothberg非常担心,甚至想获取儿子的基因组信息。这段担惊受怕的经历给了他灵感,他突然意识到焦磷酸测序(pyrosequencing)不仅简单,而且具有可扩展性。两个星期之后,Rothberg就开始设计芯片和流动室,让测序在更小的反应室中进行,并同时进行几百万个反应。 硬件的设计和制造也只是成功的一半,在样品制备上还有同样漫长的路要走。Rothberg摒弃了传统的细菌克隆与挑选,将DNA打断成随机片段,并寻找一种方法来克隆每个片段。受到其他学者乳液实验的启发,他也想将DNA放入油包水的乳液中,这样就省去了反应管。一个好汉三个帮。在Joel Bader等人的帮助下,Rothberg验证了这些想法的可行性,并利用了炸药中的表面活性剂来维持乳液的热稳定性。就这样,乳液PCR终于诞生了。 对细菌的16S rDNA的V6/V3可变区进行测序分析,不需进行克隆筛选,测序的通量高,获得的数据量大,周期短,能更加全面的反映微生物群体的物种组成,真实的物种分布及丰度信息。 GS FLX 测序原理 GS FLX系统的测序原理和GS 20一样,也是一种依靠生物发光进行DNA序列分析的新技术;在DNA聚合酶,ATP硫酸化酶,荧光素酶和双磷酸酶的协同作用下,将引物上每一个dNTP 的聚合与一次荧光信号释放偶联起来(图 1)。通过检测荧光信号释放的有无和强度,就可以达到实时测定DNA序列的目的。此技术不需要荧光标记的引物或核酸探针,也不需要进行电泳;具有分析结果快速、准确、灵敏度高和自动化的特点。 Roche GS FLX System是一种基于焦磷酸测序原理而建立起来的高通量基因组测序系统。在测序时,使用了一种叫做“Pico TiterPlate”(PTP)的平板,它含有160多万个由光纤组成的孔,孔中载有化学发光反应所需的各种酶和底物。测序开始时,放置在四个单独的试剂瓶里的四种碱基,依照T、A、C、G的顺序依次循环进入PTP板,每次只进入一个碱基。如果发生碱基配对,就会释放一个焦磷酸。这个焦磷酸在各种酶的作用下,经过一个合成反应和一个化学发光反应,最终将荧光素氧化成氧化荧光素,同时释放出光信号。此反应释放出的光信号实时被仪器配置的高灵敏度CCD捕获到。有一个碱基和测序模板进行配对,就会捕获到一分子的光信号;由此一一对应,就可以准确、快速地确定待测模板的碱基序列。

三代测序原理技术比较

导读从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序 技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1:测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法或者是1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解). 并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2’和3’都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP(分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为 sanger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了Sanger法之外还出现了一些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2–4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP。

基因测序技术的优缺点及应用

基因测序技术的优缺点及应用 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序 (next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的 DNA 片段存在于反应体系中,具有单个碱基差别的 DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用 Sanger 直接测序 FGFR 2 基因证实单基因 Apert 综合征和直接测序 TCOF1 基因可以检出多达 90% 的

高通平台之GSM Rx校准原理_简中

GSM Rx Calibration
GSM Rx Structure
在探讨 GSM Rx Calibration 前,我们先了解一下 GSM Rx 架构。 以 Rx (Receiver)而言,LNA ( Low noise amplifier ) 的 Gain,会影响整体电路的 NF ( Noise Figure )。NF 公式如下 :
(1)
f 为各级电路的 NF, 则是各级电路的 Gain。 G 由于第二级电路之后的 NF 与 Gain, 对整体电路性能影响不大, 故多半只取前两级做计算。 由(1)式得知, 若提升 LNA 的 Gain,便可使整体电路的 NF 下降。
然而,若 LNA 的 Gain 过大,会使后端电路饱和,导致线性度下降。因此 LNA 的 Gain 必须适中,才能使整体电路的 NF 与线性度优化。
但是, 消费者在使用手机时, 很可能会因为处于移动状态, 导致与基地台间的Path loss一直更动,加上附近周遭环境的Shadowing effect,导致手机所接收的讯号强弱 不一。也就是LNA的输入讯号强度,会有很大范围的变动。
1

Path loss 与 Shadowing effect 示意图
(2)
由(2)知当 LNA 的输入讯号不固定时,若 Gain 为单一固定值,则输出讯号也会 不固定。很可能当输入讯号过大时,后端电路饱和,线性度下降。或输入讯号过 小时,后端电路 SNR 下降,NF 上升。因此要有 AGC ( Automatic gain control ) 的机制,如此即便输入讯号的动态范围过大,也能尽可能缩减输出讯号的动态范 围,使整体电路的 NF 与线性度优化。因此 GSM 四个频带的 LNA,都采用 Gain-stepped 架构,其 Gain 皆非单一固定值,即 VGA(Variable gain amplifier) 架 构。
2

焦磷酸测序技术的原理

Pyrosequencing技术的原理 Pyrosequencing是一项全新的DNA测序技术,可以快速、准确地测定一段较短的目标片段。其基本原理如下: 第1步:1个特异性的测序引物和单链DNA模板结合,然后加入酶混合物(包括DNA Polymerase、ATP Sulfurylase、Luciferase和Apyrase)和底物混合物(包括APS和Luciferin)。 第2步:向反应体系中加入1种dNTP,如果它刚好能和DNA模板的下一个碱基配对,则会在DNA 聚合酶的作用下,添加到测序引物的3‘末端,同时释放出一个分子的焦磷酸(PPi)。 第2步图示(图片来自互联网) 第3步:在ATP硫酸化酶的作用下,生成的PPi可以和APS结合形成ATP;在荧光素酶的催化下,生成的ATP又可以和荧光素结合形成氧化荧光素,同时产生可见光。通过CCD光学系统即可获得一个特异的检测峰,峰值的高低则和相匹配的碱基数成正比。 第3步图示(图片来自互联网) 第4步:反应体系中剩余的dNTP和残留的少量ATP在Apyrase的作用下发生降解。 第4步图示(图片来自互联网) 第5步:加入另一种dNTP,使第2-4步反应重复进行,根据获得的峰值图即可读取准确的DNA序列信息。

第4步图示(图片来自互联网) Pyrosequecing技术操作简单,结果准确可靠,可应用于SNP位点检测、等位基因频率测定、细菌和病毒分型等领域。 →如果您认为本词条还有待完善,请编辑词条 上一篇SNP(单核苷酸多态性)下一篇阅读质粒图谱 具体事例 【摘要】建立了一种将序列标记反转录聚合酶链反应(PCR)与焦磷酸测序技术结合的相对基因表达量测定法(简称“SRPP”)。先用来源特异性引物对不同来源的同一基因通过反转录标记上特异性标签,PCR后用焦磷酸测序法对扩增产物进行序列解码,使得测序结果中的序列代表基因的来源,峰高代表基因在不同来源中的相对表达量。用实时荧光定量PCR法对本方法的准确性进行了验证,结果表明,SRPP可以同时准确测定同一基因在3个不同来源中的表达量,并实际测定了Egr1基因在糖尿病、肥胖和正常小鼠肝中的表达量差异。 【关键词】序列标记反转录, 聚合物链反应,焦磷酸测序,基因表达 1 引言 差异表达基因与疾病密切相关,深入研究可在基因水平揭示疾病的发病机制。目前,用于检测基因表达水平的技术主要有SAGE法[1]、实时荧光定量PCR法[2,3]和基因芯片法[4]等。但这些方法存在仪器设备昂贵、定量性能差以及同时测定基因表达量的来源数目受限等缺点。 焦磷酸测序技术是新近发展起来的一种基于酶催化化学反应的测序技术[5~8],不需要使用荧光标记,定量性能好。目前,焦磷酸测序技术多用于单核苷酸多态性(SNP)分析、微生物分型和基因甲基化分析等。本研究将焦磷酸测序技术用于基因表达量差异的比较分析,考察了其可行性和准确性,并将其应用于检测Egr1基因在糖尿病、肥胖症和正常小鼠中的差异表达。 2 实验部分 仪器、试剂与材料

高通平台分析步骤

一,下载分析步骤: 高通软件分为烧录部分(ARM9)和下载部分(ARM11),MEMORY在贴片前要先烧录ARM9部分。 高通7227平台为例,当软件只有AMR9部分时开机电流会跑到150mA左右才正常(其它平台电流不一定一样)。 正常下载方式夹具需要VBAT(电池电压,设置为通道1)和VCHG(充电电压,设置为通道2)两路电压同时设置为3.8V供电。当电脑设备管理器能找到ADB interface(fastboot mode)端口就能下载ARM11软件。 正常下载时手机不能找到ADB端口时,故障分析步骤如下: (1)小电流(70mA以下)和大电流(200mA以上)请考虑贴片或物料问题,参考原理图分析问题。 (2)固定不动电流(70mA)较大可能是MEMORY里没有ARM9软件或软件不能运行造成。正常的板子拆下MEMORY,开机电流就是固定在70mA。固 定不动电流(100 mA)可能是ARM9软件错误或CPU不能正常工作造成。 (3)电流在70至150 mA间跳动,但连接到PC不能找到ADB端口。此时需要加LCD看板子的状态,正常是开机后进入fastboot mode(LCD显示纯黑色 背景,有三行英文字符);不正常的大多是开机白屏,多是CPU或软件问 题。 备注:当一块板子在下载位不能下载时,要清楚知道板子的状态。以上描述针对从未下载过ARM11软件的板子。当下载ARM11失败的(开机白屏或定在开机LOGO不动的),要重新下载软件只能通过强行进入下载模式去下载软件,因为用正常下载方式只能进入关机充电模式;如果强行进入下载模式无效则只能拆下MEMORY重新烧录。 二,校准分析(BT1): ->A00001 Serial Connect:开机后,PC识别手机端口。如果PC在设备管理器上识别端口,但测试程序还是不能连接端口,此时要检查QPST有没有把端口加入。 ->A00002 Change Mode to FTM:转化模式进入工程测试模式(BT1时是在FTM模式下运作) ->A00003 SWVersion1201-151-286-562-M76XX-TFNCKNLYM-60301

高通量测序技术

高通量测序技术(High-throughput sequencing)又称“下一代”测序技术 ("Next-generation" sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。 根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA 纳米球测序(DNA nanoball sequencing)等。 高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。 实验过程 1.样本准备(sample fragmentation) 2.文库构建(library preparation) 3.测序反应(sequencing reaction) 4.数据分析(data analysis) 测序平台 自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来,因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,曾推出过3730xl DNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),,另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。(见表一) 公司名称技术原理技术开发者 Apply Biosystems(ABI) 基于磁珠的大规模并行克隆连接 DNA测序法 美国Agencourt私人基因组学公司(APG) Illumina 合成测序法英国Solexa公司首席科学家David Bentley Roche 大规模并行焦磷酸合成测序法 美国454 Life Sciences公司的创始人Jonathan Rothberg Helicos 大规模并行单分子合成测序法美国斯坦福大学生物工程学家Stephen Quake Complete Genomics DNA纳米阵列与组合探针锚定连接 测序法 美国Complete Genomics公司首席科学家radoje drmanac 表一:主流测序平台一览 Roche 454焦磷酸测序 (pyrophosphate sequencing) Illumina Solexa 合成测序 (sequence by synthesize) Illumina Genome AnalyzerIIx测序原理 Illumina公司的新一代测序仪Hiseq 2000和Hiseq 2500具有高准确性,高通量,高灵敏度,和低运行成本等突出优势,可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究。Hiseq是一种基于单分子簇的边合成边测序技术,基于专有的可逆终止化学反应原理。测序时将基因组DNA的随机片段附着到光学透明

高通平台编译方法.doc

Qualcomm平台编译之我见 jinjing.zhao@https://www.sodocs.net/doc/d015921755.html, 一、平台简介 高通平台的应用层的开发是在brew上进行的,brew提供了很多接口供应用层调用相关的api。高通平台的思想是用c语言实现面向对象的功能,具体通过结构体以及虚表来实现。在oem层中实现具体的api函数,用来填虚表。通过oem层以及service代码的修改,来实现上层应用具体需要的功能。 为了开发界面的方便,高通又在brew的基础上推出了buit,包括widget(控件),form (窗体),decorator(修饰),container(容器)以及model(模型)。 bar文件:资源文件,用高通自带的工具生成,程序运行的时候从此文件中读取字符串以及图片。可以将此文件放到文件系统中,也可以将此文件编译成.c文件,然后再编译成.o 文件,放到代码段里面去。 Mif文件:module imformation file,存放模块的相关信息。可以将此文件放到文件系统中,也可以将此文件编译成.c文件,然后再编译成.o文件,放到代码段里面去。 二、编译解析 平台的编译命令放在了\build\ms目录下。 可以有两种编译方法:一种是使用cmd命令,还有是在cygwin下使用bash脚本。但道理都是一样的,就是执行一个makefile文件dmss6250.mak。 顺序如下: 1)运行cmd,cd到\build\ms目录下,键入ads12; ads12是个批处理命令,功能是为ads1.2,perl,以及gnu设置编译环境变量。 2)执行****.cmd命令。 1、dmss6250.mak 整个编译过程就是在执行这个makefile。 在这个makefile的开头处,我们可以看到 include dmss_flags.min

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

三代测序原理技术比较

导从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测导序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从读长到短,再从短到长。 摘要:从1977年第一代DNA测序技术(Sanger法)1,发展至今三十多年时间,测序技术已取得了相当大的发展,从第一代到第三代乃至第四代,测序读长从长到短,再从短到 长。虽然就当前形势看来第二代短读长测序技术在全球测序市场上仍然占有着绝对的优势 位置,但第三和第四代测序技术也已在这一两年的时间中快速发展着。测序技术的每一次变 革,也都对基因组研究,疾病医疗研究,药物研发,育种等领域产生巨大的推动作用。在 这里我主要对当前的测序技术以及它们的测序原理做一个简单的小结。 图1 :测序技术的发展历程 生命体遗传信息的快速获得对于生命科学的研究有着十分重要的意义。以上(图1)所描述的是自沃森和克里克在1953年建立DNA双螺旋结构以来,整个测序技术的发展历程。 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson )开创的链终止法或者是1976-1977年由马克西姆(Maxam和吉尔伯特(Gilbert )发明的化学法(链降解)?并在1977年,桑格测定了第一个基因组序列,是噬菌体X174的,全长5375个碱 基1。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。 研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基 因组图谱就是以改进了的Sanger法为其测序基础,Sanger法核心原理是:由于ddNTP的2' 和3'都不含羟基,其在DNA的合成过程中不能形成磷酸二酯键,因此可以用来中断DNA 合成反应,在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP分为:ddATP,ddCTP,ddGTP和ddTTP),通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列(图2)。这个网址为san ger测序法制作了一个小短片,形象而生动。 值得注意的是,就在测序技术起步发展的这一时期中,除了San ger法之外还出现了一 些其他的测序技术,如焦磷酸测序法、链接酶法等。其中,焦磷酸测序法是后来Roche公司454技术所使用的测序方法2 - 4,而连接酶测序法是后来ABI公司SOLID技术使用的测序方 法2,4,但他们的共同核心手段都是利用了Sanger1中的可中断DNA合成反应的dNTP 图2: Sanger法测序原理

高通量测序领域常用名词解释大全

高通量测序领域常用名词解释大全 什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变, 一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行 细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大

三代基因组测序技术简介及其原理整理.

三代基因组测序技术简介及其原理整理 第一代测序技术 第一代DNA测序技术用的是1975年由桑格(Sanger)和考尔森(Coulson)开创的链终止法以及1976-1977年由马克西姆(Maxam)和吉尔伯特(Gilbert)发明的化学法(链降解)。 1977年,桑格测定了第一个基因组序列——噬菌体X174,全长5375个碱基。自此,人类获得了窥探生命遗传差异本质的能力,并以此为开端步入基因组学时代。研究人员在Sanger法的多年实践之中不断对其进行改进。在2001年,完成的首个人类基因组图谱就是以改进了的Sanger法为其测序基础。 Sanger法原理: 1)在模板指导下,DNA聚合酶不断将dNTP(N=A/G/T/ C)加到引物的3’- OH末端,合成出新的互补链。在4个DNA合成反应体系中分别加入一定比例带有放射性同位素标记的ddNTP,在互补链在DNA聚合酶作用下延伸时,一旦连接上ddNTP,由于双脱氧核糖的2’和3’都不含羟基,故不能同后续的dNTP形成磷酸二酯键而终止反应,随即形成一系列不同长度的、以同样引物为起始、以同一碱基终止的短片段混合物。 2)双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸的单链DNA,从而读取DNA核苷酸序列。 化学裂解法原理: 与Sanger法类似,将DNA模板分成4个反应。在每个反应中,先在模板5’端进行放射性标记,再加入能特异性在其中一种碱基处切开DNA的化学试剂。反应进行时,平均一个DNA分子只在随机位点产生一次裂解。接着,通过凝胶电泳和放射自显影后可以根据电泳带的位置确定待测分子的DNA序列。 第二代测序技术 第一代测序技术的主要特点是测序读长可达1000bp,准确性高达99.999%,但其测序成本高,通量低等方面的缺点,严重影响了其真正大规模的应用。因而第一代测序技术并不是最理想的测序方法。经过不

310型DNA测序仪的测序原理和操作规程

310型DNA测序仪的测序原理和操作规程ABI 310型DNA测序仪的测序原理和操作规程 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】 ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电

高通量测序技术及原理介绍

高通量测序技术及原理介绍 高通量测序技术(High-throughput sequencing)又称“下一代”测序技术(“Next-generation”sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。 高通量测序技术应用测序技术推进科学研究的发展。随着第二代测序技术的迅猛发展,科学界也开始越来越多地应用第二代测序技术来解决生物学问题。比如在基因组水平上对还没有参考序列的物种进行从头测序(de novo sequencing),获得该物种的参考序列,为后续研究和分子育种奠定基础;对有参考序列的物种,进行全基因组重测序(resequencing),在全基因组水平上扫描并检测突变位点,发现个体差异的分子基础。在转录组水平上进行全转录组测序(whole transcriptome resequencing),从而开展可变剪接、编码序列单核苷酸多态性(cSNP)等研究;或者进行小分子RNA测序(small RNA sequencing),通过分离特定大小的RNA分子进行测序,从而发现新的microRNA分子。在转录组水平上,与染色质免疫共沉淀(ChIP)和甲基化DNA免疫共沉淀(MeDIP)技术相结合,从而检测出与特定转录因子结合的DNA区域和基因组上的甲基化位点。 这边需要特别指出的是第二代测序结合微阵列技术而衍生出来的应用--目标序列捕获测序技术(Targeted Resequencing)。这项技术首先利用微阵列技术合成大量寡核苷酸探针,这些寡核苷酸探针能够与基因组上的特定区域互补结合,从而富集到特定区段,然后用第二代测序技术对这些区段进行测序。目前提供序列捕获的厂家有Agilent和Nimblegen ,应用最多的是人全外显子组捕获测序。科学家们目前认为外显子组测序比全基因组重测序更有优势,不仅仅是费用较低,更是因为外显子组测序的数据分析计算量较小,与生物学表型结合更为直接。 目前,高通量测序开始广泛应用于寻找疾病的候选基因上。内梅亨大学的研究人员使用这种方法鉴定出Schinzel-Giedion 综合征中的致病突变,Schinzel-Giedion综合征是一种导致严重的智力缺陷、肿瘤高发以及多种先天性畸形的罕见病。他们使用Agilent SureSelect序列捕获和SOLiD对四位患者的外显子组进行测序,平均覆盖度为43倍,读长为50 nt,每

相关主题