搜档网
当前位置:搜档网 › 3.2.1(2)常数与幂函数的导数,导数公式表

3.2.1(2)常数与幂函数的导数,导数公式表

3.2.1(2)常数与幂函数的导数,导数公式表
3.2.1(2)常数与幂函数的导数,导数公式表

3.2.1 3.2.2 常数与幂函数的导数

● 学习目标:

1、 能够由定义根据求导的步骤,推导常数函数与幂函数的导数。

2、 培养学生归纳推理、探究规律的能力。

● 学习重点、难点:

重点:利用已学的求导方法对常数函数与幂函数进行探究; 难点:从特殊到一般的规律探究公式。

● 前情回顾:

1、导数公式:=)(0'x f ;

2、导数的几何意义:)(0'x f 表示: ;

● 学习过程:

(一)自主学习:

(二)强化训练:

1、试用上节学习的导数公式推导以下函数的导数:并加以记忆: (1)C C x f ,)(=为常数 (2)x x f =)(

(3)2)(x x f = (4)x

x f 1

)(=

2、试说明0'

=c 及1'

=x 的几何意义;

3、求下列函数的导数:

5

)(x x f = 12

)(x x f = .3

0)(x

x f = 108

)(x

x f =

3

)(-=x x f π=)(x f x x f sin )(= x x f cos )(=

x x f 2)(= x e x f =)( x x f ln )(= x x f 3log )(= 4求下列函数在给定点处的切线方程:

(1)2)(x x f = (2,4) (2)2

)(x x f = 1=x 2=x

(3) x x f cos )(= 2

π

=x (4) x x f =)( 3=x

● 小结:你记住这些公式了吗?

● 思考:多项式765432)(2345+-+-+=x x x x x x f 的导数如何求解?

高中高等数学常用导数积分公式查询表

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

精选-高考数学大二轮复习专题二函数与导数2-3二导数的综合应用练习

2.3(二)导数的综合应用 【课时作业】 A 级 1.(2018·昆明市高三摸底调研测试)若函数f (x )=2x -x 2 -1,对于任意的x ∈Z 且x ∈ (-∞,a ),都有f (x )≤0恒成立,则实数a 的取值范围为() A .(-∞,-1] B .(-∞,0] C .(-∞,4] D .(-∞,5] 解析: 对任意的x ∈Z 且x ∈(-∞,a ), 都有f (x )≤0恒成立,可转化为对任意的x ∈Z 且x ∈(-∞,a ),2x ≤x 2 +1恒成立. 令g (x )=2x ,h (x )=x 2 +1, 当x <0时,g (x )h (x ). 综上,实数a 的取值范围为(-∞,5],故选D. 答案: D 2.已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+ x >0,则函数F (x ) =xf (x )+1 x 的零点个数是() A .0 B .1 C .2 D .3 解析: 由F (x )=xf (x )+1 x =0, 得xf (x )=-1 x , 设g (x )=xf (x ), 则g ′(x )=f (x )+xf ′(x ), 因为x ≠0时,有f ′(x )+x >0, 所以x ≠0时, +x >0, 即当x >0时,g ′(x )=f (x )+xf ′(x )>0,此时函数g (x )单调递增,

此时g (x )>g (0)=0, 当x <0时,g ′(x )=f (x )+xf ′(x )<0,此时函数g (x )单调递减,此时g (x )>g (0)=0, 作出函数g (x )和函数y =-1 x 的图象,(直线只代表单调性和取值范围),由图象可知函数 F (x )=xf (x )+1x 的零点个数为1个. 答案: B 3.定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x ),即f ″(x )=[f ′(x )]′. 定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x ) 在区间D 上为凹函数. 已知函数f (x )=x 3 -32 x 2+1在区间D 上为凹函数,则x 的取值范围是________. 解析: ∵f (x )=x 3-32 x 2+1,∴f ′(x )=3x 2 -3x ,∴f ″(x )=6x -3.令f ″(x )>0,即 6x -3>0,解得x >12.∴x 的取值范围是? ?? ??12,+∞. 答案: ? ?? ? ?12,+∞ 4.已知函数f (x )= ex x ,g (x )=-(x -1)2+a 2 ,若当x >0时,存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是________. 解析: 由题意得存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,等价于f (x )min ≤g (x )max . 因为g (x )=-(x -1)2 +a 2 ,x >0, 所以当x =1时,g (x )max =a 2 . 因为f (x )=ex x ,x >0, 所以f ′(x )=ex·x-ex x2 = -x2 . 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )min =f (1)=e.

2021新高考数学二轮总复习专题二函数与导数2.1函数概念性质图象专项练学案含解析.docx

专题二 函数与导数 2.1 函数概念、性质、图象专项练 必备知识精要梳理 1.函数的概念 (1)求函数的定义域的方法是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解. (2)求函数值域要优先考虑定义域,常用方法:配方法、分离常数法(分式函数)、换元法、单调性法、基本不等式法、数形结合法、有界函数法(含有指、对数函数或正、余弦函数的式子). 2.函数的性质 (1)函数奇偶性:①定义:若函数的定义域关于原点对称,则有: f (x )是偶函数?f (-x )=f (x )=f (|x|); f (x )是奇函数?f (-x )=-f (x ). ②判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). (2)函数单调性判断方法:定义法、图象法、导数法. (3)函数周期性的常用结论:若f (x+a )=-f (x )或f (x+a )=± 1f (x ) (a ≠0),则T=2a ;若f (x+a )=f (x-b ),则 T=a+b ;若f (x )的图象有两条对称轴x=a 和x=b (a ≠b ),则T=2|b-a|;若f (x )的图象有两个对称中心(a ,0)和(b ,0),则T=2|b-a|(类比正、余弦函数). 3.函数的图象 (1)函数图象的判断方法:①找特殊点;②看性质:根据函数性质判断图象的位置,对称性,变化趋势等;③看变换:看函数是由基本初等函数经过怎样的变换得到. (2)若y=f (x )的图象关于直线x=a 对称,则有f (a+x )=f (a-x )或f (2a-x )=f (x )或f (x+2a )=f (-x );若y=f (x )对?x ∈R ,都有f (a-x )=f (b+x ),则f (x )的图象关于直线 x=a+b 2 对称;若y=f (x )对?x ∈R 都有 f (a-x )=b-f (x ),即f (a-x )+f (x )=b ,则f (x )的图象关于点 a 2, b 2 对称. (3)函数y=f (x )与y=f (-x )的图象关于y 轴对称,函数y=f (a-x )和y=f (b+x )的图象关于直线x=a -b 2 对 称;y=f (x )与y=-f (x )的图象关于x 轴对称;y=f (x )与y=-f (-x )的图象关于原点对称. (4)利用图象可解决函数的最值、方程与不等式的解以及求参数范围问题. 考向训练限时通关

高中数学公式大全 文科

第1页(共11页) 高中数学公式及知识点速记 (文科55个) 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x 、那么 ],[)(0)()(21b a x f x f x f 在 上是增函数; ],[)(0)()(21b a x f x f x f 在 上是减函数. (2)设函数)(x f y 在某个区间内可导,若0)( x f ,则)(x f 为增函数;若0)( x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y 在点0x 处的导数的几何意义 函数)(x f y 在点0x 处的导数是曲线)(x f y 在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y .

第2页(共11页) 4、几种常见函数的导数 ①'C 0 ;②1')( n n nx x ; ③x x cos )(sin ' ;④x x sin )(cos ' ; ⑤a a a x x ln )(' ;⑥x x e e ')(; ⑦a x x a ln 1)(log ' ;⑧x x 1)(ln ' 5、导数的运算法则 (1)' ' ' ()u v u v . (2)' ' ' ()uv u v uv . (3)'' '2()(0)u u v uv v v v . 6、会用导数求单调区间、极值、最值 7、求函数 y f x 的极值的方法是:解方程 0f x .当 00f x 时: (1) 如果在0x 附近的左侧 0f x ,右侧 0f x ,那么 0f x 是极大值; (2) 如果在0x 附近的左侧 0f x ,右侧 0f x ,那么 0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 22sin cos 1 ,tan = cos sin . 9、正弦、余弦的诱导公式 k 的正弦、余弦,等于 的同名函数,前面加上把 看成锐角时该函数的符号; 2 k 的正弦、余弦,等于 的余名函数,前面加上把 看成锐角时该函数的符号。

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

2014高考二轮复习函数与导数专题(理科普通班)

肥东锦弘中学2014届高三二轮复习专题二——函数与导数 一 函数的概念 1 函数) 12(log 1)(2 1+=x x f 的定义域是 2 函数)(x f 的定义域是][2,0,则函数x x f x g ln )2()(=的定义域是 3 函数?????<+≥=4 ),1(4,)21()(x x f x x f x ,则)5log 1(2+f 的值为 4 求下列函数的值域 (1)1(0)y x x x =+>; (2)4 32++=x x x y (3)2552+++=x x x y ; (4)22232(0)(1) k k y k k ++=>+ 5 设函数2()2()g x x x R =-∈,()4()()()()g x x x g x f x g x x x g x +++-=+-a a a x g x f x x 且1≠a ,若a g =)2(,则=)2(f 3 已知定义在R 的函数)(x f ,且函数)3(-=x f y 的图像关于点)(0,3对称,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围 4 设函数1 sin )1()(22+++=x x x x f 的最大值是M ,最小值是m ,则=+m M 5 已知定义在R 上的偶函数)(x f 满足)2()()4(f x f x f +=+,且在区间[0,2]上是减函数,有下列命题: (1)0)2(=f ; (2) 函数)(x f 的图象关于直线4-=x 对称; (3)函数)(x f 在(8,10)上单调递增; (4)若关于x 的方程m x f =)(在区间[-6,2]的两根为21,x x ,则这两根之和为-8.

高中文科数学公式大全(完美版)

高三文科数学公式及知识点 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是 ))((000x x x f y y -'=-. 4、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )(' =;⑥x x e e =' )(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 5、导数的运算法则 (1)' ' ' ()u v u v ±=±. (2)' ' ' ()uv u v uv =+. (3)'' '2 ()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值 7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ= θ θ cos sin . 10、和角与差角公式 sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβ αβαβ ±±=.

2019高考数学二轮复习第二编专题二函数与导数第2讲导数及其应用配套作业文

第2讲导数及其应用 配套作业 一、选择题 1.(2018·成都模拟)已知函数f (x )=x 3 -3ax +14 ,若x 轴为曲线y =f (x )的切线,则a 的值为() A.12B .-12 C .-34D. 14 答案 D 解析 f ′(x )=3x 2 -3a ,设切点坐标为(x 0,0),则 ??? ?? x30-3ax0+14=0,3x2 0-3a =0,解得????? x0=1 2,a =1 4, 故选D. 2.(2018·赣州一模)函数f (x )=12 x 2 -ln x 的递减区间为() A .(-∞,1) B .(0,1) C .(1,+∞) D.(0,+∞) 答案 B 解析 f (x )的定义域是(0,+∞), f ′(x )=x -1 x = x2-1 x , 令f ′(x )<0,解得0<x <1, 故函数f (x )在(0,1)上递减.故选B. 3.(2018·安徽示范高中二模)已知f (x )=ln x x ,则() A .f (2)>f (e)>f (3) B .f (3)>f (e)>f (2) C .f (3)>f (2)>f (e) D .f (e )>f (3)>f (2) 答案 D 解析 f (x )的定义域是(0,+∞), 因为f ′(x )=1-ln x x2 ,所以x ∈(0,e),f ′(x )>0; x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e), 而f (2)=ln 22=ln 86,f (3)=ln 33=ln 9 6 , f (e)>f (3)>f (2).故选D. 4.(2018·安徽芜湖模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1

高中导数公式大全

C'=0(C为常数函数); (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) .y=c(c为常数) y'=0 .y=x^n y'=nx^(n-1) .y=a^x y'=a^xlna y=e^x y'=e^x y=lnx y'=1/x .y=sinx y'=cosx .y=cosx y'=-sinx .y=tanx y'=1/cos^2x .y=cotx y'=-1/sin^2x

关于幂指函数的极限与导数的求法

目 录 目 录............................................................................................................................................... 0 摘 要............................................................................................................................................... 1 Abstract ........................................................................................................................................... 2 1.幂指函数的概念 ........................................................................................................................... 3 2.幂指函数的求极限 .. (3) 2.1 )(x f ,)(x g 的极限均为有限常数,即B A 型的极限求法 ...................................... 3 2.2 利用重要极限 .. (4) 2.3 应用洛必达法则求极限 ................................................................................................ 6 2.4 用等价无穷小 .. (7) 2.4.1 0 0中的等价无穷小代换 .................................................................................... 7 2.4.2 0 ∞中的等价无穷小代换 ................................................................................... 8 2.4.3 ∞1中的等价无穷小代换. . (9) 2.5 利用微分中值定理 ....................................................................................................... 10 3.幂指函数的求导 . (11) 3.1 复合函数求导法 ........................................................................................................... 11 3.2 对数求导法 ................................................................................................................... 12 3.3 多元函数求导法 ........................................................................................................... 13 总 结............................................................................................................................................. 16 参考文献 .. (17)

高考数学二轮复习专题二函数与导数课时作业四函数与方程及函数的应用理67

课时作业(四) 基本初等函数、函数与方程及函数的应用 [授课提示:对应学生用书第77页] 1.已知函数f (x )=(m 2 -m -5)x m 是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( ) A .-2 B .4 C .3 D .-2或3 解析:f (x )=(m 2 -m -5)x m 是幂函数?m 2 -m -5=1?m =-2或m =3.又在x ∈(0,+∞)上是增函数,所以m =3. 答案:C 2.函数y =a x +2 -1(a >0且a ≠1)的图象恒过的点是( ) A .(0,0) B .(0,-1) C .(-2,0) D .(-2,-1) 解析:法一:因为函数y =a x (a >0,a ≠1)的图象恒过点(0,1),将该图象向左平移2个单位,再向下平移1个单位得到y =a x +2 -1(a >0,a ≠1)的图象,所以y =a x +2 -1(a >0,a ≠1) 的图象恒过点(-2,0),选项C 正确. 法二:令x +2=0,x =-2,得f (-2)=a 0 -1=0,所以y =a x +2 -1(a >0,a ≠1)的图 象恒过点(-2,0),选项C 正确. 答案:C 3.(2017·大同二模)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为 y =a log 2(x +1),若这种动物第一年有100只,则到第7年它们发展到( ) A .300只 B .400只 C .500只 D .600只 解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只. 答案:A 4.(2017·安徽省两校阶段性测试)函数y =x 2ln|x ||x | 的图象大致是( )

(通用版)高考数学复习专题二函数与导数2.1函数的概念、图象和性质练习理

(通用版)高考数学复习专题二函数与导数2.1函数的概念、图象和 性质练习理 命题角度1函数的概念及其表示 高考真题体验·对方向 1.(2017山东·1)设函数y=的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=() A.(1,2) B.(1,2] C.(-2,1) D.[-2,1) 答案 D 解析由4-x2≥0,得A=[-2,2],由1-x>0,得B=(-∞,1),故A∩B=[-2,1).故选D. 2.(2014江西·3)已知函数f(x)=5|x|,g(x)=ax2-x(a∈R),若f[g(1)]=1,则a=() A.1 B.2 C.3 D.-1 答案 A 解析由题意可知f[g(1)]=1=50,得g(1)=0, 则a-1=0,即a=1.故选A. 3.(2019江苏·4)函数y=的定义域是. 答案[-1,7] 解析要使式子有意义,

则7+6x-x2≥0, 解得-1≤x≤7. 典题演练提能·刷高分 1.(2019江西新余一中一模)已知f(x)=,则函数f(x)的定义域为() A.(-∞,3) B.(-∞,2)∪(2,3] C.(-∞,2)∪(2,3) D.(3,+∞) 答案 C 解析要使函数f(x)有意义,则 即x<3,且x≠2, 即函数的定义域为(-∞,2)∪(2,3),故选C. 2.设函数f(x)=log2(x-1)+,则函数f的定义域为() A.(1,2] B.(2,4] C.[1,2) D.[2,4) 答案 B 解析f(x)的定义域为?1

1.2.1常数函数与幂函数的导数

1.2.1常数函数与幂函数的导数 预习案 一、自学教材,思考下列问题 1.导数的概念 2.导数的几何意义 二、一试身手 利用导数的定义求下列函数的导数: (1)f(x)=2 (2)f(x)=x (3)f(x)=x+1 (4)f(x)=x2 导学案 一、学习目标 (1)知识与技能 能由定义求导数的三个步骤推导常数函数与幂函数的导数 (2)过程与方法 在教学过程中,注意培养学生桂南、探求规律的能力 (3)情感态度价值观 提高学生的学习兴趣,激发学生的求知欲,培养探索精神 二、学习过程 (1)课内探究 问题1:常数函数的导数是什么? 问题2:运用导数的定义求下列几个幂函数的导数

(1)y=x (2)y=x 2(3)y=x 3(4)1y x =(5)y 问题3:通过以上五个幂函数的求导过程,你有没有发现求幂函数的导数的规律? 问题4:幂函数a y x =的导数是什么? (2) 典型例题 例1 求 (1)(x 3)′ (2)( 2 1x )′ (3)(x )′ 例2质点运动方程是5 1t s = , 求质点在2=t 时的速度. (3) 当堂检测 1.已知语句:p 函数()y f x =的导函数是常数函数;语句:q 函数()y f x =是一次函数,则语句p 是语句q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2.若函数()f x 的导函数为()sin f x x '=-,则函数图象在点(4(4))f ,处的切线的倾斜角

为() A.90°B.0°C.锐角D.钝角3、求下列函数的导数 3 2 1 (1) y2 1 (2)y (3)y x x =+== 2 1 36 3 2 ' )1(x x y= ? =- 解: 3 3 1 2 2 2 2 2 ) (2 )' ( )' 1 ( ' : )2( x x x x x y- = - = - = = =- - - - 解 x x x x x y 2 ) ( 2 1 )' ( )' ( ' )3(2 1 2 1 = = = =- 解: 52 5 2 5 3 53 5 3 ) ( 5 3 )' ( )' ( ' )4( x x x x y= = = =- 解: (4)课堂小结 本节课学习了常数函数与幂函数的导数. 拓展案 一、选择题 1.() f x与() g x是定义在R上的两个可导函数,若()() f x g x ,满足()() f x g x '' =,则() f x与() g x满足() A.()() f x g x =B.()() f x g x -为常数 C.()()0 f x g x ==D.()() f x g x +为常数 二、填空题 2.设32 ()391 f x x x x =--+,则不等式()0 f x '<的解集是. 3.曲线 1 y x =和2 y x =在它们交点处的两条切线与x轴所围成的三角形的面积是.三、解答题 4.求过曲线cos y x =上点 π1 32 P ?? ? ?? ,且与过这点的切线垂直的直线方程.

基本初等函数的导数公式表

基本初等函数的导数 公式表 Revised on November 25, 2020

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、=n n x nx -1'() (n 为正整数) 3、ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1 '() 5、ln =x x 1 '() 6、sin cos =x x '() 7、cos sin =-x x '() 8、=-x x 211 '() 知识点二:导数的四则运算法则 1、v =u v u ''' ±±() 2、=u v uv v u '''+() 3、(=Cu Cu '') 4、u -v =u v u v v 2'' '() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b 内,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b 内,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调 减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15=

(2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23=0 ( (6)y x 5= (7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 14= ,x =16 (2)sin y x = , x π=2 (3)cos y x = ,x π=2 (4)sin y x x = , x π=4 (5)3y x = ,1128(,)

幂指函数的性质及应用

摘要 幂指函数是一类重要的函数,但在教材中涉及幂指函数的内容非常有限,系统的研究幂指函数的性质及应用是非常有必要的。本文先利用微积分的相关知识论述幂指函数的分析性质;再用这些性质研究两个特殊的幂指函数;最后探讨幂指函数的性质在求极限、导数、微分和积分等问题中的应用。 关键词:幂指函数;极限;导数;微分;积分

Abstract Exponential function is a kind of important function, but the content of the exponential function involved in the teaching material is very limited, the exponential function of the nature of the research and application of system is very necessary. This paper, using relevant knowledge of calculus, first analysis the power properties; With these two special properties research of exponential function; Finally discusses the nature of the exponential function limit, derivative, differential and integral application problems. Key words: Power exponent function; Limit; Derivative; Differential; Integral

专题2 函数与导数(五)-2020届高三数学三轮复习回归课本复习讲义

函数与导数(五) 热点一 导数的几何意义 1.函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的不同. 例1 (1)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A .y =-2x B .y =-x C .y =2x D .y =x (2)若直线y =kx +b 是曲线y =ln x +1的切线,也是曲线y =ln(x +2)的切线,则实数b =_____. 及时归纳 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. (2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 跟踪演练1 (1)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. (2)若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( ) A.????ln 1 2e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞) 热点二 利用导数研究函数的单调性 1.f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0. 2.f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常函数,函数不具有单调性. 例2 已知函数f (x )=2e x -kx -2. (1)讨论函数f (x )在(0,+∞)内的单调性;

求幂函数的导数

求幂函数y =x μ(μ为任意实数)的导数 要求幂函数y =x μ(μ为任意实数)的导数,宜先证明三个极限: 第一、证明lim α→0log a (1+α) α =log a e (00 ) 证明: log a (1+α) α =log a (1+α)1α, 当α→0时,该式右端对数符号后面的式子(1+α)1 α→e ,根据对数函 数的连续性,lim α→0log a (1+α) α =lim α→0log a (1+α)1α = log a e ,证毕. 若a=e 则有lim α→0ln (1+α) α=lim α→0ln (1+α)1 =lim α→0ln e =ln e =1 .○1 第二、证明lim α→0 a α?1α =ln a (0 0) 证明: 令a α?1=β;根据指数函数的连续性,有lim α→0a α=a 0=1,所以当α→0时,也有β→0. 又a α=β+1所以α=log a (β+1).于是有: lim α→0 a α?1α =lim β→0βlog a (1+β) =lim β→0 1 log a (1+β) β =1 log a e (分母的变化是根据第一证明的结论), 再用换底公式把1 log a e 转换为1 ln e =ln a ,证毕。 当a=e 时,有lim β→0β ln(1+β)=ln e =1○2 第三、证明lim α→0(1+α)μ ?1 α =μ (0 ) 证明: 令(1+α)μ?1=β;根据幂函数的连续性,有lim α→0(1+α)μ=(1+0)μ =1μ=1.所以当α→0时,有【(1+α)μ?1】→0,即β→0。又(1+α)μ =β+1,对此等式两边取对数,则得:μ?ln (1+α)μ =ln (β+1)。做以下变形: (1+α)μ ?1α =β α= β ln(1+β) *μ? ln (1+α) α 再根据前边○1、○2的结论,就有: lim α→0 (1+α)μ ?1 α =lim β→0 β ln (1+β) *lim α→0μ? ln (1+α) α =μ(证毕) 下边求幂函数y =x μ(μ为任意实数)的导数。 幂函数y =x μ(μ为任意实数),x 的变动区域依赖于μ。当x ≠0时,有 ?y ?x = (x +?x )μ?x μx? = [x (1+?x x )]μ?x μx? = x μ(1+?x x )μ?x μx? = x μ[(1+?x x )μ ?1] x? = x μx [(1+?x x )μ?1]x?=x μ?1* (1+?x x )μ?1 x? 根据第三个极限证明的结论,有: y ,=lim ?x→0?y ?x = μx μ?1

相关主题