搜档网
当前位置:搜档网 › 基于ANSYS有限元软件的直齿轮接触应力分析

基于ANSYS有限元软件的直齿轮接触应力分析

基于ANSYS有限元软件的直齿轮接触应力分析
基于ANSYS有限元软件的直齿轮接触应力分析

齿轮接触强度与弯曲强度

1. 齿轮接触强度计算 1.1齿轮接触的计算应力 βανεννπσK K K K u u bd F Z Z Z MPa E E R L F H A t E H red H 1)(11112 2 2121±?=-+-= 式中: A K —工况系数; νK —动载系数; αH K —接触强度的端面载荷分配系数; βK —齿向载荷分布系数; H Z —节点域系数; E Z —弹性系数; εZ 一重合度系数; 1.1.1 工况系数A K 由于齿轮的载荷特性为工作稳定状况下,故取工况系数为A K =1.0. 1.1.2 动载系数νK 由于 =15.96m/s 齿轮重合度 再根据《机械设计手册》图8-32与8.33得;

)=1.48-0.44(1.48-1.22)=1.36 1.1.3 端面载荷分配系数αH K 查表8-120得 21εαZ C K H H ? = 其中H C 查图8-34为0.865. 1.1.4 齿向载荷分布系数βK 查图8.35可得βK =1.13. 1.1.5 节点域系数H Z 式中:错误!未找到引用源。为端面分度圆压力角; 错误!未找到引用源。 为基圆螺旋角; 错误!未找到引用源。 为端面啮合角; 经计算最后得到H Z =2.254 1.1.6 弹性系数E Z 带入各值后,得E Z =189.87错误!未找到引用源。。 1.1.7 重合度系数εZ 与1.13的分母约去,不需考虑。

最后得到理论接触应力为: MPa Z mm mm N Z MPa H 67.124413 .11 865.036.11208.2208.3776.1572.7627.5265287.189254.2=???????? ??=ε εσ 1.2 接触疲劳极限lim H σ' W R V L N H H Z Z Z Z Z lim lim σσ=' 式中: 'H l i m σ表示计算齿轮的接触疲劳极限; Hlim σ表示试验齿轮的接触疲劳极限; N Z 表示接触强度的寿命系数; L Z 表示润滑剂系数; V Z 表示速度系数; R Z 表示光洁度系数; W Z 表示工作硬化系数。 1.2.1 试验齿轮的接触疲劳极限lim 1H σ 由手册中图8-38d 查得lim 2lim 1H H σσ==1690MPa 。 1.2.2 接触强度的寿命系数N Z 查表8-123得6 0102?=N , nt N e γ60= 0N N e >,取121==N N Z Z 。 1.2.3 润滑剂系数L Z 取10050=υ,由图8-40查得21L L Z Z ==1. 1.2.4 速度系数V Z 由图8-41,按V=1米/秒和MPa H 1200lim >σ查得95.021==V V Z Z 。

渐开线直齿圆柱齿轮接触应力有限元分析

渐开线直齿圆柱齿轮接触应力有限元分析 摘要:本文针对ANSYS有限元齿轮接触仿真进行了探讨,计算齿轮的等效应力和接触应力,对齿轮的弯曲强度失效和接触疲劳失效研究具有重要的实际意义。利用有限元分析方法,得出了相互啮合齿轮在静态情况下,等效应力和接触应力的分布规律;同时分析了齿轮与不同直径齿轮接触时,等效应力和接触应力的变化情况。 关键词:齿轮接触有限元等效应力接触应力 ANSYS 引言 齿轮的接触问题是典型的接触非线性问题,在传统的计算设计方法中,我们通常将非线性问题进行一定的简化与假设,使之变为线性问题来求解,但是这种计算方法的结果不是十分精确。本文基于ANSYS软件建立渐开线直齿圆柱齿轮的二维有限元模型,对静载荷作用下齿轮接触问题进行有限元分析,求得齿轮接触问题更为精确的解,为解决齿轮接触问题提供了一定依据。 1 齿轮传动失效分析 齿轮传动的失效主要是轮齿的失效。根据齿轮传动工作和使用条件的不同,齿轮传动也就有不同的失效形式。主要的失效形式有轮齿的折断、齿面疲劳点蚀、磨损、胶合和塑性变形等。设计齿轮传动时,应对具体情况作具体分析,按可能发生的主要损伤或失效形式来进行相应的强度计算,有时以齿根弯曲疲劳强度为主,有时以齿面接触疲劳为主。这些问题采用有限元法来计算是十分方便的,下面我们将通过ansys对传动比不同的3组齿轮进行有限元分析。 2 有限元模型及其求解 2.1模型的建立 齿轮均选用标准渐开线直齿圆柱齿轮,模数m=3,压力角α=20°,齿数分别为Z1=35、Z2=25、Z3=20,传动比分别为35:35、25:35、20:35。在建模时考虑到齿轮具有轴对称结构,每个齿的受力情况基本相同,因此可以将齿轮模型简化为平面问题,这样可以节省大量计算时间。先在三维设计软件Pro/E中生成齿轮的三维模型,再将模型保存为iges格式,然后导入到ansys中,删除多余面,仅剩下齿轮端面,并复制一个齿轮并调整角度,可得如图1所示的齿轮实体模型。

Ansys非线性接触分析和设置

Ansys非线性接触分析和设置 5.4.9 设置实常数和单元关键选项 程序使用20个实常数和数个单元关键选项,来控制面─面接触单元的接触。参见《ANSYS Elements Reference》中对接触单元的描述。 5.4.9.1 实常数 在20个实常数中,两个(R1和R2)用来定义目标面单元的几何形状。剩下的用来控制接触面单元。 R1和R2 定义目标单元几何形状。 FKN 定义法向接触刚度因子。 FTOLN 是基于单元厚度的一个系数,用于计算允许的穿透。 ICONT 定义初始闭合因子。 PINB 定义“Pinball"区域。 PMIN和PMAX 定义初始穿透的容许范围。 TAUMAR 指定最大的接触摩擦。 CNOF 指定施加于接触面的正或负的偏移值。 FKOP 指定在接触分开时施加的刚度系数。 FKT 指定切向接触刚度。 COHE 制定滑动抗力粘聚力。 TCC 指定热接触传导系数。 FHTG 指定摩擦耗散能量的热转换率。 SBCT 指定 Stefan-Boltzman 常数。 RDVF 指定辐射观察系数。 FWGT 指定在接触面和目标面之间热分布的权重系数。

FACT 静摩擦系数和动摩擦系数的比率。 DC 静、动摩擦衰减系数。 命令: R GUI:main menu> preprocessor>real constant 对实常数 FKN, FTOLN, ICONT, PINB, PMAX, PMIN, FKOP 和 FKT,用户既可以定义一个正值,也可以定义一个负值。程序将正值作为比例因子,将负值作为绝对值。程序将下伏单元的厚度作为ICON,FTOLN,PINB,PMAX 和 PMIN 的参考值。例如 ICON = 0.1 表明初始闭合因子是“0.1*下层单元的厚度”。然而,ICON = -0.1 则表示真实调整带是 0.1 单位。如果下伏单元是超单元,则将接触单元的最小长度作为厚度。参见图5-8。 图5-8 下层单元的厚度 在模型中,如果单元尺寸变化很大,而且在实常数如 ICONT, FTOLN, PINB, PMAX, PMIN 中应用比例系数,则可能会出现问题。因为从比例系数得到的实际结果,取决于下层单元的厚度,这就可能引起大、小单元之间的重大变化。如果出现这一问题,请用绝对值代替比例系数。 TCC, FHTG, SBCT, RDVF 和 FWGT 仅用于热接触分析[KEYOPT(1)=1]。 5.4.9.2 单元关键选项 每种接触单元都包括数个关键选项。对大多的接触问题,缺省的关键选项是合适的。而在某些情况下,可能需要改变缺省值。下面是可以控制接触行为的一些关键选项: 自由 度 KEYOPT(1) 接触算法(罚函数+拉格朗日乘子或罚函数) KEYOPT(2) 存在超单元时的应力状态(仅2D) KEYOPT(3)

基于ANSYS的斜齿轮齿条啮合接触分析

文华学院 学生毕业设计(论文)任务书 (2015年11月20日至2016年5月20日) 学部(系):机电学院机械系专业班级:机电124班学生姓名:雷国安指导教师:孟超莹 一、毕业设计(论文)题目 基于ANSYS的斜齿轮齿条啮合接触分析 二、毕业设计(论文)的主要内容 1.设计确定斜齿轮齿条的基本结构尺寸; 2.分析斜齿轮齿条的受力; 3.用pro/E软件或者ANSYS软件完成斜齿轮齿条的三维建模; 4.用ANSYS软件对斜齿轮齿条进行静力学分析。 三、毕业设计(论文)的进度安排及任务要求 阶段工作内容时间备注 第一阶段查阅有关资料、外文翻译、开 题报告 2015.11.20~2016.01.10 第二阶段设计确定齿轮齿条的基本结构 尺寸,并对其进行受力分析计 算 2016.02.29~2016.03.20 第三阶段用pro/E软件或者ANSYS软件 进行齿轮齿条的三维建模 2016.03.21~2016.04.03 第四阶段用ANSYS软件对齿轮齿条进行 静力学分析 2016.04.04~2016.04.17 第五阶段写毕设论文2016.04.18~2016.05.09 第六阶段修改论文、答辩2016.05.10~2016.05.20

四、同组设计者 无 五、主要参考文献(不少于10篇) [1] 王新荣,初旭宏. ANSYS有限元基础教程[M].北京:电子工业出版社.2011; [2] 张乐乐,谭南林,焦凤川.ANSYS辅助分析应用基础教程[M].北京:清华大学出版社,2006; [3] 钟毅芳,吴昌林等.机械设计[M].华中科技大学出版社.2001; [4] 傅祥志.机械原理[M].华中科技大学出版社.2000年10月 [5] 董建国、高鸿庭.机械专业英语[M].西安:西安电子科技大学出版社,2004 [6] 田绪东,管殿柱.Pro/ENGINEER Wildfire 4.0三维机械设计[M].北京:机械工业出版社.2009 [7] 祝凌云等.PRO/ENGINEER野火版入门指南[M].北京:人民邮电出版社,2003,1-356 [8]黄圣杰.Pro/E野火版基础教程(上册) [M].北京:人民邮电出版社,2004,1-265 [9]曹宇光,张卿,张士华.自升式平台齿轮齿条强度有限元分析[J].中国石油大学学报(自然科学版).2010 [10] 张兴权,何广德,郑如,张俊.齿轮齿条的接触应力研究[J].机械传动.2011 [11] 薛军,孙宝玉,辛宏伟,张建国,吴澜涛.基于有限元法的齿轮齿条动态应力分析[J].长春工业大学学报(自然科学版).2008 [12] F. Farukh, L.G. Zhao, R. Jiang et al.. Realistic microstructure-based modelling of cyclic deformation and crack growth using crystal plasticity[J].Computational Materials Science, 2016, 111. [13] Kruzic J J, Scott J A, Nalla R K et al.Propagation of surface fatigue cracks in human cortical bone.[J].Journal of Biomechanics, 2005, 39(5). [14]Lacitignola D,Tebaldi C.Effects of ecological differentiation on Lotka-Volterra systems for species with behavioral adaptation and variable growth rates.[J].Mathematical Biosciences,2005, 194(1). [15] Presser K A, Ross TModelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration,and water activity.[J].Applied and environmental microbiology, 1998, 64(5).

abaqus 有限元分析(齿轮轴)

Abaqus分析报告 (齿轮轴) 名称:Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 1.part 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm 齿轮数据:= 齿轮分度圆半径:R2 =14.7mm、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2 通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

ansys接触定义

1概述 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一般的接触分类 接触问题分为两种基本类型:刚体─柔体的接触,半柔体─柔体的接触。 (1)刚-柔接触 在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触。 (2)柔-柔接触 柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 2ANSYS接触能力 ANSYS支持三种接触方式:点─点,点─面,平面─面,每种接触方式使用的接触单元适用于某类问题。为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个结点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS使用的接触单元和使用它们的过程,下面分类详述。 2.1点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,你需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下) 如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─面的接触问题的典型例子。

ANSYS—接触单元说明

参考ANSYS的中文帮助文件 接触问题(参考ANSYS的中文帮助文件) 当两个分离的表面互相碰触并共切时,就称它们牌接触状态。在一般的物理意义中,牌接触状态的表面有下列特点: 1、不互相渗透; 2、能够互相传递法向压力和切向摩擦力; 3、通常不传递法向拉力。 接触分类:刚性体-柔性体、柔性体-柔性体 实际接触体相互不穿透,因此,程序必须在这两个面间建立一种关系,防止它们在有限元分析中相互穿过。 ――罚函数法。接触刚度 ――lagrange乘子法,增加一个附加自由度(接触压力),来满足不穿透条件――将罚函数法和lagrange乘子法结合起来,称之为增广lagrange法。 三种接触单元:节点对节点、节点对面、面对面。 接触单元的实常数和单元选项设臵: FKN:法向接触刚度。这个值应该足够大,使接触穿透量小;同时也应该足够小,使问题没有病态矩阵。FKN值通常在0.1~10之间,对于体积变形问题,用值1.0(默认),对弯曲问题,用值0.1。 FTOLN:最大穿透容差。穿透超过此值将尝试新的迭代。这是一个与接触单元下面的实体单元深度(h)相乘的比例系数,缺省为0.1。此值太小,会引起收敛困难。 ICONT:初始接触调整带。它能用于围绕目标面给出一个“调整带”,调整带内任何接触点都被移到目标面上;如果不给出ICONT值,ANSYS根据模型的大小提供一个较小的默认值(<0.03= PINB:指定近区域接触范围(球形区)。当目标单元进入pinball区时,认为它处于近区域接触,pinball区是围绕接触单元接触检测点的圆(二维)或球(三维)。可以用实常数PINB调整球形区(此方法用于初始穿透大的问题是必要的)PMIN和PMAX:初始容许穿透容差。这两个参数指定初始穿透范围,ANSYS把整个目标面(连同变形体)移到到由PMIN和PMAX指定的穿透范围内,而使其成为闭合接触的初始状态。初始调整是一个迭代过程,ANSYS最多使用20个迭代步把目标面调整到PMIN和PMAX范围内,如果无法完成,给出警告,可能需要修改几何模型。 TAUMAX:接触面的最大等效剪应力。给出这个参数在于,不管接触压力值多大,只要等效剪应力达到最大值TAUMAX,就会发生滑动。该剪应力极限值通常用于接触压力会变得非常大的情况。 CNOF:指定接触面偏移。+CNOF增加过盈、-CNOF减少过盈或产生间隙、CNOF能与几何穿透组合应用。 FKOP:接触张开弹簧刚度。针对不分离或绑定接触模型,需要设臵实常数FKOP,该常数为张开接触提供了一个刚度值。FKOP阻止接触面的分离;FKOP默认为1.0,用于建立粘结模型,用一个较小值(1e-5)去建立软弹簧模型。 FKT:切向接触刚度。作为初值,可以采用-FKT=0.01*FKN,这是大多数ANSYS 接触单元的缺省值。 COHE:粘滞力。即没有法向压力时开始滑动的摩擦应力值。 FACT,DC:定义摩擦系数变化规律

SolidWorks导入ansys齿轮接触分析

原料:SolidWorks,ansys, 1、SolidWorks建立三维实体模型如图1所示,要保证实体没有干涉。保存为***.X_T格式,注意用文件名不能出现中文字符。 2、打开ansys软件,设定储存目录,然后preference,勾选structural,点击OK。如图2. 3、添加两种单元类型,mass21和solid185.选中solid185,点options,将 K2改为Reduced integration。如图3。

4、点real constant 选中solid185,将下面的框键入4. 设置材料属性.弹性模量2.1E11,泊松比0.3. 摩擦系数设置为0.1. 5、file-import-PARA,找到***.X-T文件,打开。只有线框。点击plotCtrl-style-solid model face –normal faceing ,点plot-replot,即可出现三维

实体。如图6. 6、在两个齿轮的中心分别建立两个关键点,如图7.1所示,在两个齿轮的旋转中心分别点击鼠标,点OK,即可建立两个keypoint. 7、划分网格,用meshtool,如图8.1.然后给两个关键点划分网格。如图8.2.

8、设定接触, 8.1点击图标,然后点击图标,点pick target,选取小齿轮上的可能与大齿轮接触的齿面,——OK,

8.2 点击next,点击pick contact,选取大齿轮上可能与小齿轮接触的齿面,——OK,——next——create。_finish.

9、建立刚性区域 9.1 打开select entities ——OK,选择小齿轮侧的关键点,——OK, 9.2 建立一个主节点,name 设为为M1.

齿轮有限元分析(过程详细)

基于ANSYS的齿轮传动有限元分析和优化 摘要 ANSYS是随着电子计算机的发展而迅速发展起来的一种在计算数学,计算力学和计算工程科学领域最有效的通用有限元分析软件。它是融结构,热,流体,电磁,声学于一体的大型通用有限元商用分析软件。利用ANSYS有限元分析,可以对各种机械零件,构件进行应力,应变,变形,疲劳分析,并对某些复杂系统进行仿真,实现虚拟的设计,从而大大节省人力,财力和物力。由于其方便性、实用性和有效性,ANSYS软件在各个领域,特别是机械工程当中得到了广泛的应用。 齿轮是机械中常用的一种零件,其在工作的过程中会产生应力,应变和变形,为保证其正常工作需要对齿轮的轮齿和整体受力进行分析,保证其刚度和强度的要求。本论文采用ANSYS软件对齿轮进行静力学分析和优化实现对齿轮的虚拟设计。 齿轮是最重要的零件之一。它具有功率范围大,传动效率高,传动比正确,使用寿命长等特点,但从零件失效的情况来看,齿轮也是最容易出故障的零件之一。据统计,在各种机械故障中,齿轮失效就占故障总数的60%以上。其中轮齿的折断又是齿轮失效的主要原因之一。 齿轮啮合过程作为一种接触行为, 因涉及接触状态的改变而成为一个复杂的非线性问题。传统的齿轮理论分析是建立在弹性力学基础上的, 对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础,在计算过程中存在许多假设,不能准确反映齿轮啮合过程中的应力以及应变分布与变化。相对于理论分析,有限元法则具有直观、准确、快速方便等优点。 齿廓曲面是渐开线曲面,所以建模的难点和关键在于如何确定精确的渐开线。通过PDL命令流直接在ANSYS中创建标准直齿圆柱齿轮,学习应用ANSYS软件进行零件的几何建模和网格划分,并进行静力加载和求解,对求解的结果进行查看,分析和优化。 关键词:ANSYS;有限元;齿轮;CAE

基于ANSYS的齿轮强度有限元分析

62 2013年第31期(总第274期) NO.31.2013 ( CumulativetyNO.274 ) 通常在设计齿轮强度选择过程中,采取的多是人工方式进行设计和齿轮强度校验,具体方法是材料力学,用齿轮作为悬臂梁,对齿面接触强度和翅根弯曲强度进行设计和校核。接着利用所得的设计结果对结构进行设计,同时将二维图纸画出来。 1 设计想法 实践中可以看到,ANSYS技术对复杂实体建模表现出一定的局限性,一方面难以保证渐开线齿廓自身的形状精确度,另一方面也不能完成参数化设计。对于Pro/E软件而言,其可以有效解决这一问题,实现这一操作目标;此外,与ANSYS之间的数据接口性能也比较好。笔者建议在Pro/E软件应用基础上,建立一个精确度非常高的三维参数化圆柱齿轮模型,然后向ANSYS中导入Pro/E软件得到的模型,对齿轮模态、静态特性等进行有限元分析,此时推土机的终传齿轮自身的强度特性就可以得出,最后可以通过振型图、应用云图以及变形云图等方式和方法,对分析结果进行最为直接的显示。 2 建模 图1?齿轮模型 以笔者之见,齿轮模型建立只需将模数、齿数以及压力角和螺旋角等齿轮参数整合,并对轮缘、辅板的厚度以及轴孔的半径等参数进行综合考虑,便可以自动生成 齿轮。 低,所以得到了极大的推广。而现代社会中随着PC机的普及发展,虚拟仪器的测试技术得到了实现,与前两段历程相比,这个阶段操作性更强,且费用最低,其灵活性与效率也最高,势必在将来得到大发展,但是其漏洞在于潜在的第三方技术的升级成为了始终威胁安防系统的隐患。 5 结语 信息技术与通信技术的发达使安防技术的质量与效率愈加提高完善。目前,安防技术已经涵盖了几乎所有行业,包括建筑、生活区、银行、交通、车辆等。伴随人民生活水平的提高其需求水平相应增加,安防意识也越来越强,信息技术的飞速发展也反过来刺激了不法人员的升级换代,所以安防系统的重要性可想而知,由于智能安防市场的扩大,越来越多的企业开始介入对其的研发,但是客观的安防并不能根除危机隐患,要从根本上杜绝还依赖于社会精神文明的建设,人民总体素质的提高。 参考文献 [1] 汪光华.智能安防视频监控全面解析与实例分析[M]. 北京:机械工业出版社,2008.[2] 西刹子.安防天下[M].北京:清华大学出版社, 2010.[3] 陈龙.智能建筑安防系统[M].北京:机械工业出版 社,2012. [4] 薛亮.适用于智能化建筑和小区管理的安防系统研究 与开发[J].天津科技,2009.[5] 许恩江,吴波,王保山.智能机器人的安防和服务功 能系统设计及应用[J].实验科技与管理,2010,11.[6] 宋杰,张宇松,刘平心.基于互联网的智能变电站新 型安防设计方案[J].电力信息化,2012,6. [7] 唐铮,程三友.从世博会看智能建筑安防技术发展方 向[J].建筑电气,2011,3. 基于ANSYS的齿轮强度有限元分析 章俊华 (福建龙净脱硫脱硝工程有限公司,福建 龙岩 364000) 摘要:通常在设计齿轮强度时,用齿轮作为悬臂梁,对齿面接触强度和翅根弯曲强度进行设计和校核。因为齿轮有着极为复杂的受力和结构形状,特别是在进行工作的时候常常会受到动载的作用,同设想中梁承受静载的状况差距过大,造成很大的误差,使结构整体的应力情况和变形无法反映出来。关键词:ANSYS;齿轮强度;有限元分析 中图分类号:TH132 文献标识码:A 文章编号:1009-2374(2013)31-0062-02

齿轮强度计算公式

第7节 标准斜齿圆柱齿轮的强度计算 一. 令狐采学 二. 齿面接触疲劳强度计算 1. 斜齿轮接触方式 2. 计算公式 校核式: 设计式: 3. 参数取值说明 1) Z E---弹性系数 2) Z H---节点区域系数 3) ---斜齿轮端面重合度 4) ---螺旋角。斜齿轮:=80~250;人字齿轮=200~350 5) 许用应力:[H]=([H1]+[H2])/2 1.23[H2] 6) 分度圆直径的初步计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: a) 初取K=Kt b) 计算dt c) 修正dt 三. 齿根弯曲疲劳强度计算 1. 轮齿断裂 2. 计算公式校核式: 设计式: 3. 参数取值说明 1) Y Fa 、YSa---齿形系数和应力修正系数。Zv=Z/cos3YFa 、YFa 2) Y ---螺旋角系数。 3) 初步设计计算 在设计式中,K 等与齿轮尺寸参数有关,故需初步估算: d) 初取K=Kt e) 计算mnt [] H t H E H u u bd KF Z Z σεσα≤±=1 1[]32 1112 ??? ? ??±≥H H E d t t Z Z u u T K d σψ[]3 2121cos 2F sa Fa d n Y Y z Y KT m σεψβα β≥[] 32 121cos 2F sa Fa d t nt Y Y z Y T K m σεψβα β≥

f) 修正mn 第8节 标准圆锥齿轮传动的强度计算 一. 作用:用于传递相交轴之间的运动和动力。 二. 几何计算 1. 锥齿轮设计计算简化 2. 锥距 3. 齿数比: u=Z2/Z1=d2/d1=tan 2=cot 1 4. 齿宽中点分度圆直径 dm/d=(R-0.5b)/R=1-0.5b/R 记R=b/R---齿宽系数R=0.25~0.3 dm=(1-0.5R)d 5. 齿宽中点模数 mn=m(1-0.5R) 三. 受力分析 大小: Ft1=2T1/dm1(=Ft2) Fr1=Ft1tan cos Fa2) Fa1=Ft1tan sin 1(=Fr2) 方向: 四. 强度计算 1. 齿面接触疲劳强度计算 1)计算公式: 按齿宽中点当量直齿圆柱齿轮计算,并取齿宽为0.85b ,则: 以齿轮大端参数代替齿宽中点当量直齿圆柱齿轮参数,代入 n 1 n 2 相交轴 n 2 两轴夹角900 n 1 2 2 2122212 21Z Z m d d R +=+= d 1 d m b R d m2 d 2 δ1 δ2 O C 2 C 1 A 2 A 1 q Fr α δ Fa Fn Ft Fa1 Fr 2 2 1 n 1 Fa2 Fr 1 Ft 1 Ft 2 []H v v v v H E H u u bd KT Z Z σσ≤+=1 85.023 1 1

基于ANSYS的齿轮接触应力有限元分析【文献综述】

毕业论文文献综述 机械设计制造及其自动化 基于ANSYS的齿轮接触应力有限元分析 一、研究现状及研究主要成果 1. 《基于ANSYS的渐开线啮合齿轮有限元分析》中指出:采用有限元软件ANSYS建立了啮合齿轮的有限元模型,利用ANSYS软件的非线性接触分析功能,对啮合齿轮的接触问题进行仿真,计算出接触应力,为齿轮的强度计算和设计在方法上提供了参考和依据。建立了渐开线圆柱啮合齿轮的三维有限元模型;研究了齿轮系统整体分析中接触对的建立、齿轮加载方式的选择;研究了齿轮副结构有限元分析方法。采用在圆柱面的节点上加切向力来代替力矩的加载方式,对齿轮面接触参数进行设置,并且得到了接触分析的最终结果,说明该有限元建模的方法是可行的,为将来齿轮系统动力学的研究奠定基础。 2.《基于ANSYS的多齿差摆线齿轮有限元分析》中指出:应用ANSYS分析软件对多齿差摆线齿轮进行建模,推导出不同啮合相位角摆线齿轮根部应力计算公式,计算了不同啮合相位角摆线齿轮根部应力,找出齿轮齿根过渡圆弧半径与齿根处最大应力的关系和摆线齿轮根部过渡圆弧半径对齿轮根部应力的影响。摆线齿轮在齿顶啮合时齿轮根部具有最大应力值,采用了过渡圆弧的摆线齿轮齿根危险截面处的最大应力值明显比未采用过渡圆弧的摆线齿轮低,危险截面处的最大应力值随着过渡圆弧半径的增大而减小,当圆弧半径较小时最大应力减小趋势较快,当圆弧半径逐渐增大时应力减小趋势逐渐变缓。 3.《齿轮接触有限元分析》指出:计算接触非线性问题有许多方法,例如罚函数法、拉格朗日乘子法等,其中罚函数法由于其经济和方便而得到广泛使用。过去使用点-点接触单元,求解接触问题,对于象齿轮类接触,模型构造很麻烦,计算结果精度和准确性很难保证。随着计算机和有限元法的发展,新的接触单元法产生精确的几何模型,自动划分网格,适应求解。通过接触仿真分析研究了通用接触单元在轮齿变形和接触应力计算中的应用。建立了一对齿轮接触仿真分析的模型,并使用新的接触单元法计算了轮齿变形和接触应力,与赫兹理论比较,同时也计算了摩擦力对接触应力的影响。计算分析了单元离散、几何、边界范围与加载或约束处理方式的误差,建立了一个计算轮齿变形和接触应力的标准,说明了新的接触单元法的精确性、有效性和可靠性。 4.《渐开线直齿圆柱齿轮有限元仿真分析》中指出:ANSYS软件对齿轮变形和齿根应

基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析

课程论文 (2015-2016学年第二学期) 基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析

基于ANSYS WORKBENCH 的空间曲线啮合齿轮接触分析 摘要:空间曲线啮合齿轮是近几年来华南理工大学教授陈扬枝提出的新型齿轮,对该齿轮的弯曲应力和强度设计准则都有了一定的研究。因此,本文主要是利用ANSYS WORKBENCH软件来对该齿轮来进行接触分析的进行探讨,介绍了接触分析的方法,为空间曲线啮合齿轮提供了一种新的分析方法。用两个初始参数几乎完全一样的两个齿轮对来进行比较分析,得到交错轴齿轮比交叉轴齿轮的等效应力更大;安装位置对分析的结果的影响也很大;等效应变和变形都能够满足我们实际的需求等这些结论。 关键词:ANSYS WORKBENCH 空间曲线啮合齿轮接触分析 1.引言 传统的齿轮的形式多种多样,用有限元对传统齿轮的机构进行分析是目前研究采用得最多的一种方法。而齿轮啮合过程作为一种接触行为,因涉及接触状态的改变而成为一个复杂的非线性问题。因此近年来,国内外学者开始采用接触有限元法对齿轮进行分析。接触有限元法来分析齿轮结构,为齿轮的快速设计和进一步的优化设计提供条件。 空间曲线啮合齿轮(Space Curve Meshing Wheel, SCMW) [1~3]是近几年来由华南理工大学教授陈扬枝提出的新型齿轮,而空间曲线啮合交错轴齿轮则是可以运用于空间交错轴上的啮合齿轮。不同于基于齿面啮合理论的传统齿轮机构[4、5],它们是基于一对空间共轭曲线的点啮合理论。它的特点是:传动比大、小尺寸、质量轻等。课题组前期已经研究了适用于该空间曲线啮合轮机构的空间曲线啮合方程[6],重合度计算公式[7],强度设计准则[8]以及制造技术[9]等,并设计出微小减速器[10]。同时,对于该齿轮的等强度设计等方面正在进行研究。 ANSYS WORKBENCH是用ANSYS 求解实际问题的产品,它是专门从事于模型分析的有限元软件,能很好地和现有的CAD三维软件无缝接口,来对模型进行静力学、动力学和非线性分析等功能。由于空间曲线啮合齿轮主要运用于微小型或者是微型机械装置中,传递的力非常的小,主要用来传递运动,因此,点蚀和磨损都不是它的主要失效形式。本文主要是用ANSYS WORKBENCH对该齿轮进行接触分析,来探讨整个机构在此情况下的应力状态。

有限元分析法在齿轮设计中的应用 蔡涌

有限元分析法在齿轮设计中的应用蔡涌 发表时间:2018-06-27T17:53:00.957Z 来源:《建筑学研究前沿》2018年第3期作者:蔡涌1 于站雨2 王爱钦3 [导读] 现代机械零件不仅承受各种复杂机械载荷,还可能工作在热、电、磁、流体的环境中。 河南电力博大科技有限公司河南郑州 450001 摘要:本文利用有限元分析,显示出齿轮的应力分布情况,找出应力集中点,形成对齿轮分析的一整套方法,对新齿轮的设计提供理论依据。由于齿轮在传递动力时,轮齿处于悬臂状态,在齿根产生弯曲应力和其他应力,并有较大的应力集中,因而易造成轮齿折断,本文所选的齿轮为输入轴端的大齿轮。 关键词:有限元分析法;齿轮设计;应用 1、前言 现代机械零件不仅承受各种复杂机械载荷,还可能工作在热、电、磁、流体的环境中,因此零件设计不仅要考虑机械载荷,还应对其他因素的作用进行计算,有限元软件的后处理器,用户容易获得和处理数值计算结果,并可利用图形功能进行深层次再加工。 2、创建有限元模型 齿轮轮齿断裂现象在机械传动设备中是一种最为常见的齿轮损伤形式,也是造成齿轮失效的主要原因。按照轮齿断裂的原因和断口性质可以分为过载断裂、轮齿剪断、塑变后断齿和疲劳断齿。最常见的是疲劳断齿和过载断裂两种形式。轮齿在长期受到过高的交变应力重复作用下,在轮齿的根部弯曲应力较大且应力相对集中的部位会产生疲劳裂纹(疲劳源),随着重复载荷作用的次数增多,原始的疲劳裂纹不断扩展,当齿根剩余截面上的应力超过其极限应力时,轮齿就会因过载最终导致疲劳断齿。过载断齿是当实际载荷大大超过设计载荷,或因轮齿接触不良,载荷严重集中,使轮齿的应力超过其极限应力,在使用不太长的时间内产生轮齿整个或局部断裂。 某带式输送机传动装置为二级齿轮减速器,下面以高速级齿轮设计为例来说明齿轮传动的设计。其输入功率P=10kW,输入转速n1=960r/min,选择高速级齿数比u=3.2、斜齿圆柱齿轮传动、7级精度。其中小齿轮材料为40Cr,调质处理,齿面度280HBS;大齿轮材料为45钢,调质处理,齿面硬度240HBS。按常规设计方法设计,最终设计出的高速级齿轮的参数为:Z1=31,Z2=99,Mn=2mm,螺旋角β=14°02′5″,齿宽B1=70mm、B2=65mm,中心距134mm。在对减速器齿轮进行有限元分析时,首先要建立准确的实体模型。这里应用SolidWoks2013软件完成减速器高速级大齿轮的三维实体模型。 将已建立的齿轮模型另存为.x_t类型的文件,然后导入ANSYS中。设置材料属性参数为:泊松比μ=0.269,弹性模量E=2.09×1011N/mm2,密度ρ=7.89×103kg/m3。为了提高计算精度并减少计算时间,在这里将大齿轮模型进行简化处理,并在ANSYS中选择8节点四面体Solid45单元类型。然后选择自由网格划分方式进行网格划分,得到单元总数为188237,节点总数36879,有限元模型如图1所示。 图1 斜齿圆柱齿轮有限元模型 3、ANSYS的模态分析 模态分析用于确定设计结构或机器部件的振动特性,即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其他动力学分析问题的起点。利用有限元软件对齿轮进行模态分析研究其动态特性,提高齿轮的工作可靠性。这里在齿轮的中心孔处进行全约束处理,对齿轮有限元模型进行模态分析时选择BlockLanczos作为模态提取方法,输入提取12阶模态,完成其他设置后,进行求解。从后处理获取的结果可以看出,前三阶固有频率为零,第四到六阶固有频率很小几乎为零,属于刚体模态,故不予考虑。第七阶模态对应第一阶模态。得到齿轮前六阶振型的固有频率和模态振型,了避免传动系统发生共振,应当使外界激励响应频率避开齿轮的固有频率。 4、ANSYS的齿根弯曲应力分析 齿轮轮齿受载时,齿根所受的弯矩最大,因此齿根的弯曲疲劳强度最弱。当轮齿在齿顶处啮合时,处于双对齿啮合,此时弯矩的力臂最大,单力不是最大,因此弯矩也不是最大。根据分析,齿根所受的最大弯矩发生在轮齿啮合点位于单对齿啮合区的最高点时。所以,齿根弯曲强度也应该按载荷作用于单对齿啮合区最高点来计算。由于斜齿轮的接触线为一斜线,在两齿轮啮合时,首先过接触点做两基圆的公切线,切点分别为N1和N2,是两齿轮的理论啮合点,再过理论啮合点和接触点做一平行于Z轴的平面,该平面与齿廓面的交线就是接触线,也是最佳加载线的位置。 将前面创建的斜齿圆柱齿轮的有限元模型进一步做简化处理,然后添加约束条件并施加载荷。根据上述条件,求得齿轮的输入转矩T=99.48N·m,然后求出切向力Ft=3113.62N,径向力Fr=1168.41N,轴向力Fa=1133.36N。采取集中力加载的方式将所求得的各分力平均加载到接触线附近的各节点上。计算求解后,在ANSYS后处理中提取齿根弯曲应力云图如图2所示。

ansys面与面接触分析实例

面与面接触实例:插销拨拉问题分析 定义单元类型 Element/add/edit/delete 定义材料属性 Material Props/Material Models Structural/Linear/Elastic/Isotropic 定义材料的摩擦系数 建立几何模型 Modeling/Create/Volumes/Block/By Dimensions X1=Y1=0,X2=Y2=2,Z1=2.5,Z2=3.5

Modeling/Create/Volumes/Cylinder/By Dimensions 先拾取长方体,再拾取圆柱体。 Modeling/Create/Volumes/Cylinder/By Dimensions 划分掠扫网格 Meshing/Size Cntrls/ManualSize/Lines/Picked Lines 拾取插销前端的水平和垂直直线,输入NDIV=3 再拾取插座前端的曲线,输入NDIV=4

PlotCtrls/Style/Size and Shape,在Facets/element edge列表中选择2 facets/edge 建立接触单元 Modeling/Create/Contact pair,弹出Contact Manager对话框,如图所示。 单击最左边的按钮,启动Contact Wizard(接触向导),如图所示。

单击Pick Target,选择目标面。 选择接触面 定义位移约束 施加对称约束,Define Loads/Apply/Structural/Displacement/Symmetric B.C/On Areas,选择对称面。 再固定插座的左侧面。 设置求解选项 Analysis Type/Sol’s Control

基于ANSYS的齿轮应力有限元分析

本科毕业设计 论文题目:基于ansys的齿轮应力有限元分析 学生姓名: 所在院系:机电学院 所学专业:机电技术教育 导师姓名: 完成时间:

摘要 本文主要分析了在ansys中齿轮参数化建模的过程。通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。 关键词:ANSYS,APDL,有限元分析,渐开线,接触应力。

Modeling and Finite Element Analysis of Involute Spur Gear Based on ANSYS Abstract We have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishes gear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gear by using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy. Keywords: ANSYS; APDL;finite element analysis;involute line;contact stress

相关主题