搜档网
当前位置:搜档网 › 高中简单立体几何体(附例题详解)

高中简单立体几何体(附例题详解)

高中简单立体几何体(附例题详解)
高中简单立体几何体(附例题详解)

2. 简单几何体

知识网络

简单几何体结构简图

画龙点晴 概念

棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高.

棱柱的分类: 按侧棱与底面的关系,棱柱可分为: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱. 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱. 正棱柱:底面是正多边形的直棱柱叫做正棱柱.

按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱……

棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱

可表示为:棱柱A BC DE-A /B /C/D/E /,或棱柱AC /

. 棱柱的性质:

(1)侧棱都相等,侧面都是平行四边形;

(2)两个底面与平行于底面的截面都是全等的多边形; (3)过不相邻的两条侧棱的截面(对角面)是平行四边形;

直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。 平行六面体: 底面是平行四边形的四棱柱叫做平行六面体.

长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和.

正方体: 棱长都相等的长方体叫做正方体.

公式

棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C与高h 的乘积, 即Ch S =直棱柱, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C 1与侧棱长l 的乘积, 即l C S ?=1斜棱柱侧, 棱柱的全面积等于侧面积与两底面积的和.

[活用实例]

[例1] 如图,在平行六面体AB CD-A 1B 1C1D 1中,已知AB=5,AD=4,A A1=3,AB⊥AD,∠A 1AB=∠A 1A D=

3

π, (1)求证:顶点A1在底面A BC D的射影O 在∠BAD 的平分线上;

(2)求这个平行六面体的表面积.

[题解](1) 如图,连结A 1O,则A1O ⊥底面A BCD . 作OM ⊥AB 交AB 于M ,作ON ⊥A D交AD 于N,连结A 1M,A 1N. 由三垂线定理得A 1M ⊥AB,A1N ⊥AD.

∵?∠A 1A M=∠A1AN,∴?Rt △A 1NA ≌Rt △A 1M A.∴ A 1M=A1N.

∴ OM =ON. ∴ 点O 在∠BAD 的平分线上.

(2),2

32133

cos

1=?

==π

AA AM 2

3=

∴AN , ∴侧面AB 1和侧面DC 1的面积都等于423?

=6,侧面AD 1和侧面BC 1的面积都等于52

3

?=7.5, 又AB ⊥AD,∴两底面面积都等于45?=20,∴平行六面体的表面积为2(6+7.5)+20=47. [例2] 如图,A 1B 1C 1-ABC 是直三棱柱,过点A 1、B、C 1的平面和平面AB C的交线记作l . (1)判定直线A 1C 1和l 的位置关系,并加以证明;

(2)若A1A=1,AB=4,BC=3,∠ABC=90°,求顶点A1到直线l 的距离.

[题解](1)根据棱柱的定义知平面A 1B 1C 1和平面AB C平行.

由题设知直线A 1C 1=平面A1B 1C1∩平面A 1BC 1,直线l =平面A 1B C1∩平面A BC. 根据两平面平行的性质定理有l ∥A 1C 1.

(2)解法一:过点A1作A 1E⊥l 于E,则A 1E的长为点A 1到l的距离. 连结AE.由直棱柱的定义知A 1A ⊥平面ABC. ∴ 直线A E是直线A 1E 在平面ABC 上的射影.

又 l 在平面ABC 上,根据三垂线定理的逆定理有A E⊥l . 由棱柱的定义知A 1C1∥AC,又l ∥A 1C1,∴ l ∥AC. 作BD ⊥AC 于D,则BD 是Rt △AB C斜边AC上的高,且BD=AE, 从而AE=BD=

.5

12

534=?=?AC BC AB

在R t△A 1AE 中,∵ A1A=1,∠A1AE =90°,

.5131)512(

22121=+=+=

∴A A AE E A 故点A 1到直线l 的距离为5

13

. 解法二:同解法一得l ∥A C.

由平行直线的性质定理知∠C AB=∠ABE,从而有Rt △ABC ∽Rt △BEA,AE:BC=AB :AC,

AC

AB

BC AE ?=

∴ , 以下同解法一. [例3] 如图,已知A 1B 1C1-ABC 是正三棱柱,D是AC 中点. (1)证明AB 1∥平面D BC1;

(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数.

[题解](1)∵A1B 1C 1-A BC 是正三棱柱, ∴四边形B 1BC C1是矩形. 连结B1C 交BC 1于E ,则B 1E =EC.连结DE. 在△AB1C 中,∵A D=D C,∴DE ∥AB 1.

又?1AB 平面DBC 1, DE ?平面DBC 1, ∴AB 1∥平面DBC 1.

(2)作DF ⊥BC ,垂足为F,则D F⊥面B 1BCC 1,连结EF,则EF 是ED 在平面B 1BCC 1上的射影.

∵AB 1⊥BC 1,由(1)知AB1∥DE,∴D E⊥BC 1,则BC 1⊥E F,∴∠DEF 是二面角α的平面角. 设AC=1, 则DC =.2

1

∵△ABC 是正三角形,∴在Rt △DCF 中, ,43sin =

?=C DC DF CF=.4

1cos =?C DC 取B C中点G .∵EB=EC ,∴EG ⊥BC. 在Rt △BEF 中,AC=1, ,2

GF BF EF ?= 又BF =BC -FC =

43, GF=4

1

, 16341432

=?=∴EF , 即EF=43..14

3

43

tan ===

∠∴EF DF DEF ∴∠DEF=45°. 故二面角α为45°.

概念

棱锥:有一个面是多边形、其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高.

棱锥的分类: 按底面多边形的边数,棱锥可分为三棱锥、四棱锥、五棱锥……

棱锥的表示法: 棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示. 例如,棱锥S-ABC DE,或棱锥S-AC .

正棱锥:底面是正多边形,并且顶点在底面上的射影是底面中心,这样的棱锥叫做正棱锥. 正棱锥的性质:

(1)各侧棱相等,各侧面是全等的等腰三角形;

(2)棱锥的高、斜高及斜高在底面上的射影(底面的边心距)组成一个直角三角形,这个直角角三角形的一个锐角是侧面与底面的夹角;

(3)棱锥的高、侧棱和侧棱在底面上的射影(底面正多边形外接圆半径)也组成一个直角三角形,这个直角三角形的一个锐角是侧棱与底面的夹角。

一般棱锥的性质: 如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们的面积比等于等于截得的棱锥的高和已知棱锥的高的平方比;截得棱锥与已知棱锥的侧面积之比也等于它们相应的高的平方比。

棱锥的中截面: 过棱锥的高的中点并且平行于底面的截面叫做棱锥的中截面.

公式

正棱锥的侧面积和全面积: 正棱锥的侧面积等于底面周长C 与斜高/

h 乘积的一半. 即/2

1

h C S ?=

正棱锥侧. [活用实例]

[例4] 如图,在三棱锥S-ABC 中,S 在底面上的射影N位于底面的高CD 上;M 是侧棱SC 上的一点,使截面M AB

与底面所成的角等于∠NSC. 求证:SC 垂直于截面M AB.

[题解1]因为SN 是底面的垂线,NC是斜线SC 在底面上的射影,AB ⊥NC,所以AB ⊥SC (据三垂线定理). 连结DM.

因为AB ⊥D C,AB ⊥SC,所以AB 垂直于D C和SC 所决定的平面. 又因DM 在这平面内,所以A B⊥DM .

∴∠MDC 是截面与底面所成二面角的平面角,∠MD C=∠NSC.

在△MDC 和△NSC 中,因为∠M DC=∠NS C,∠DCS 是公共角,所以∠DMC=∠SNC=90°从而DM⊥S C.

从AB ⊥SC,D M⊥SC,可知SC ⊥截面MAB.

[题解2]连结DS ,DM,因为SN 是底面的垂线,AB ⊥DN,所以AB ⊥DS (据三垂线定理).从而AB ⊥平面S DC. 因SC,DM 都在平面SDC 内,故A B⊥SC ,AB ⊥DM.

由AB⊥DM,AB ⊥DC ,可知∠MDC 是截面与底面所成二面角的平面角,∠MDC=∠NS C. 以下同证法一,故SC ⊥截面MAB.

[题解3]连结DM ,D S. 因为M,N分别在△SDC 的两边上,所以SN 和DM 都在平面内,且相交于一点P . 又因PN 是底面的垂线,AB ⊥DN ,所以A B⊥DM(据三垂线定理). ∴∠M DC 是截面与底面所成二面角的平面角,∠MDC =∠NSC.

又∠MDC=∠N SC,∠DCS 是△DCM 和△S CN 的公共角,故∠DMC =∠S NC=90°.从而DM ⊥SC. 从AB ⊥DM,AB ⊥DC ,可知AB ⊥平面MDC.因为S C是平面MDC 内的直线,所以AB ⊥SC. 从AB ⊥SC,DM ⊥SC,可知SC ⊥截面MAB.

[例5] 如图,正四棱锥的棱长和底面边长均为a,求:(1)侧面与底面所成角α的余弦; (2)相邻两个侧面所成二面角β的余弦。

[题解](1)作SO ⊥面ABCD 于O ,作SE ⊥BC 于E,连接OE ,则BC ⊥OE,∠∴SEO=α, .3

3

cos ,21,23==∴==

SE OE a OE a SE α (2)设SA 的中点为F,连接BF 、D F,? SA B和?SAD 都是正三角形, .,,β=

∠∴⊥⊥∴BFD SA DF SA BF

.3

12cos ,2,23222-=??-+=∴===BF DF BD BF DF a BD a DF BF β 概念

多面体:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.两个

面的公共边叫做多面体的棱.若干个面的公共顶点叫做多面体的顶点.

凸多面体: 把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.

正多面体:每个面都是有相同边数的正多边形,且以每个顶点这其一端都有相同数目的棱的凸多面体叫做正多面体.

正多面体的种类: 正多面体只有五种:正四面体、正六面体、正八面体、正十二面体和正二十面体,其中正四面体、正八面体、正二十面体的面是正三角形,正六面体的面是正方形,正十二面体的面是正五边形。

公式

欧拉公式: 简单多面体的顶点数V 、面数F 的和与棱数E之间存在规律V+F -E=2,它叫做欧拉公式。

[活用实例]

[例6] 如果一个凸多面体,各顶点引出奇数条棱,求证:顶点数为偶数。

C

O

S

D

A

E

F

[题解1]假设多面体的顶点数V=2n+1(n ≥1,n ∈N *

),第i 个顶点处有2m i +1条棱(m i ≥1, m i ∈N *

), 棱数为E,则2E=(2m 1+1)+ (2m 2+1)+……..+ (2m i +1)+…….+ (2m2n+1+1) =2(m 1+m 2+……+m i +……m 2n+1)+(2n+1). ∴E=(m 1+m 2+……+mi +……m2n+1)+n+

2

1. 这与棱数是正整数矛盾,此多面体的顶点数为偶数。

[题解2]设顶点数为V,各顶点引出的棱数分别为2n1+1、2n 2+1、……、2n V +1(n i ≥1,n i ∈N *

),

则棱数E=

2

1

[(2n 1+1)+(2n 2+1)+……+(2n V +1)], 2E=2(n 1+n 2+……+n V)+V , ∴V=2E-2(n 1+n 2+……+nV ).故V 一定是偶数.

[例7] 一个多面本,每个面的边数相同,每个顶点出发的棱数也相同,若各个面的内角总和为36000

, 求这个多面体的面数F 、顶点数V 及棱数E.

[题解]设多面体的每个面的边数为x,每一个顶点处出发的棱数为y,则 36000

=F ?-?)2(x 1800

, F(x -2)=20, F=

2

20

-x . E=

2

102-=

x x

Fx . 又.)2(202,2y x x y E V Vy E -==∴= 代入欧拉公式得

.5

3102.2210220)2(20-+=∴=---+-y x x x x y x x

又∈≥x x (,3 N *

), y∈≥y (,3N*

), 可得35≤≤y . ∴y=3,4,5. 3=y 或4,x ? N*

, y=5时,x=3,

∴这个多面体的各面是三角形,各顶点处有5条棱,

所以,这个多面体有12个顶点,20个面,30条棱.

[例8] 一个简单多面体的顶点数为12,以每个顶点为一端都有3条棱,面的形状只有四边形和六边形, 求多面体中四边形和六边形数目。

[题解] 设这个多面体中四边形和六边形分别有x 个、y 个,则面数F=x+y,

?V =12且每个顶点为一端都有3条棱,∴E=

)123(2

1

23?=V =18, 由欧拉公式V+F-E=2,得12+(x+y )-18=2, 即x +y=8 ①, 又E =

=+)64(21y x )123(2

1

?,即时2x +3y=18 ②, 由①、②解得x=6,y =2,

∴该简单多面体有6个四边形,2个六边形。

概念

体积: 几何体占有空间部分的大小叫做它的体积.

定理

祖暅原理:夹在两个平行平面间的几何体,被平行于这两个平面的任何平面所截,如果截得的两

个截面的面积都相等,那么这两个几何体的体积相等。

公式

长方体的体积: abc V =长方体,其中c b a ,,分别为长方体的长、宽、高. 正方体的体积: 3a V =正方体,其中a 为正方体的棱长.

柱体的体积公式:V柱体=Sh , 其中S是柱体的底面积,h 是柱体的高. 锥体的体积公式:V 锥体=

Sh 3

1

,其中S 是锥体的底面积,h 是锥体的高. [活用实例]

[例9] 三棱锥A —BC D中A B⊥CD,且AB=m,CD=n,EF 是AB 、CD 的公垂线段,FE =h ,

求三棱锥的体积,V A-BCD 。.

[题解]连CE、DE ,,,,F EF CD EF AB CD AB =⊥⊥ 则AB ⊥平面CED,则VA-BCD =V A-CED +V B-CED =AB EF CD AB S BE S AE S CED CED CED ????=?=?+????2

131313131

=

.6

1

mnh 点评:这里用的就是分割,把一个三棱锥分割成两个,分别求体积。

[例10] 三棱锥P —ABC 中,PA=a ,AB =A C=2a ,∠PAB=∠PAC=∠BAC=60o

求三棱锥P —ABC 的体积.

[题解]在?PA B中,P A=a,AB=2a,∠PAB=60o

,由余弦定理可得PB =a 3,

∴AB 2

=P A2

+PB 2

,,PB PA ⊥∴ 同理可证AP ⊥PC,∴AP ⊥平面

PBC ,也就是可以把?PBC 作为底面,高AP=a,只需求?PB C的面积即可。

∵AB=AC=2a ,∠BA C=60o

∴BC=2a,BC 边上高线 PD =a 3,

33221

21=?=?=

∴?a a PD BC S PBC a2, .3

3331313

2a a a PA S V PBC PBC A =?=?=

∴?= 点评:(1)三棱锥的四个面都可以做底面,解题时可根据具体问题选择;

(2)本题也可以用?A BC 作底,由已知从A 点出发的三条射线两两所成角都是60o

,点P点在平面AB

C上的射影O 落在∠BA C的平分线A D上,PO 是高线,由已知条件求出正三角形ABC 的面积,再求出P O长即可。

[例11] 已知ABCD-A 1B 1C 1D 1是棱长为a的正方体, E 、F分别为棱AA 1与CC 1的中点,

求四棱锥A 1-EBF D1的体积。 [题解],2

5)2(2211a a a E D FD BF EB =+=

===

∴四棱锥A 1-EBFD 1的底面是菱形,连接EF ,则1EFD EFB ???,

||,1111CC V V EFD A EFB A --=∴平面ABB 1A1,

∴三棱锥F-EBA 1的高是CC 1到平面AB 1的距离,即棱长a,

S.4

1221212

11a a a AB E A EBA =??=?=?

∴.12141313

211

a a a V V EBA F EFB A =??==--

.6

123

111a V V EFB A EBFD A ==∴--

点评:本例运用“等积变换”和“割补”的思想,将求一个四棱锥的体积转化为求两个体积相等的三棱锥的体积,而求三棱锥的体积又利用了三棱锥的特点(体积的自等性),从而简化计算。

概念

球:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面. 球面所围成的几何体叫做球体,简称球.半圆的圆心叫做球心. 连结球心和球面上任一点的线段叫做球的半径. 连结球心和球面上两点并且经过球心的线段叫做球的直径. 球面也可以看作与定点的距离等于定长的点的集合(轨迹). 球的表示: 一个球通常用它的球心的字母来表示, 例如球O. 球的截面的性质:

(1)球的截面是圆面;

(2)球心和截面圆心的连线垂直于截面; (3)球心到截面的距离d 与球半径R 及截面圆半径r的关系是r=22d R -.

球的大圆和小圆: 球面被经过球心的平面截得的圆叫做球的大圆, 被不经过球心的截面截得的圆叫做球的小圆.

两点间的球面距离: 在球面上,两点之间的最短路线, 就是经过这两点的大圆在这两点间的一段劣弧的长度, 这个弧长叫做两点间的球面的距离.(求两点间的球面的距离的关键,在于求出过这两点的球半径的夹角).

经度: 某地的经度是一个二面角的度数,即经过该地的经线所在半圆面与00

经线所在半圆面所成的二面角的度数。

纬度: 某地的纬度是一个线面角的度数,即该地与球心的连线与赤道平面所成角的度数。

公式

球的表面积公式: 设球的半径为R,则球的表面积为S 球面=4πR 2

,即球的面积等于大圆面积的4倍。

球的体积公式: V 球=

3

4

πR 3.其中R 为球的半径. [活用实例]

[例12] 在球O 内有相距1c m的两个平行截面,截面面积分别为5πc m2和8πcm 2

,球心不在截面之间, 求球O 的表面积。

[题解]作球O的轴截面如图所示,圆O是球的大圆, A 1

A

D

D 1

F

E C

C 1B

B 1

A 1

B 1、A2B2分别是两个平行截面圆的直径,

过O 作OC 1⊥ A 1B 1于C 1,交A2B 2于C 2, A1B 1||A 2B 2,∴ OC 1⊥ A 2B2, ∴C 1、C 2分别为A 1B1、A 2B 2的中点,

设两平行截面的半径分别为r 1、r2,且r2>r 1, 则有πr 12=5π,πr 22=8π, ∴ r 12=5, r 22=8,

OA 1、OA 2都等于球的半径R , ∴O C1=52212-=-R r R ,O C2=82222-=-R r R ,

18522=---R R ,解得R2=9,

∴S 球=4?π9=36π(cm 2).

[例13] A 、B 、C 是球面上三点,已知弦AB=18cm,B C=24cm,A C=30cm ,平面AB C与球心O 的距

离恰好为球半径的一半,求球的面积。

[题解] AB 2+BC 2=A C2

, ?∴ABC 为直角三角形,

?∴A BC的外接圆O 1的半径r=15c m,

因圆O 1即为平面A BC 截球O 所得的圆面,因此有R2=(2

R )2

+152,

∴R2=300,∴S 球=4πR2=1200π(c m2).

点评:求球的表面积实际上即求球的半径,要注意利用球的截面的性质. [例14] 设地球的半径为R,在北纬600圈上甲、乙两地,它们在纬度圈 上的弧长是

2

R

π, 求这两地的球面距离。

[题解]如图北纬600圈小圆的半径,O 1A=O 1B=O Acos 600=

2

1R, 北纬600圈上弧长是

2

R

π的弧对的圆心角∠AO 1B=ππ=R R

2

12,

即AB 为北纬600

圈小圆的直径,由AO=BO=R,3

π

=

∠=∠AOC OAB ,

?∴OA B为正三角形,∠AOB 为球心角,弧AEB=

3

R

π即为所求.

[例15] 如图,球面上有三个点,其中任意两点的球面距离都等于大圆周长的6

1

,经过这三个点的小圆 周长为4π ,求这个球的半径。

[题解] 由已知∠AOB =∠BOC =∠COA=600 ,

则?OAB 、?O AC 、?OBC 是等边三角形,?ABC 是正三角形, 设球半径为R ,,则AB=BC =CA=R ,∴?AB C外接圆半径r=

3

3

R , 由已知小圆即?AB C外接圆周长为4π,即r=2,∴

3

3

R=2,∴R =23.

O

C A B

O 1 O

A

B

O 1

[例16] 正三棱锥P -AB C的侧棱长为 ,两侧棱的夹角为2α,求其外接球的体积. [题解]如图,作PD ⊥底面A BC于D,则D 为正三角形ABC 的中心, ⊥OD 底面A BC,∴P 、O 、D 三点共线,

,2,α=∠===APB PC PB PA

,sin 22cos 222

2

αα =-=∴AB αsin 3

3233 ==∴AB AD , 设β=∠APD ,作OE ⊥P A于E,在R tPAD ?中,

==

PA AD βsin αsin 332,又OP=O A=R, 2

1

21==∴PA PE , αβ2sin 3412cos -===∴ PE PO R ,∴V球=π34[α2sin 3

4

12-

]3=.)sin 43(2sin 433222

3ααπ--

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算” ,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:( 1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的 结论是什么。 对命题条件的探索常采用以下三种方法:(1 )先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;( 3)把几何问题转化为 代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高 级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化:

公理4 (a//b,b// c a I Ic ) 面面平行性质I I a, a II b a ,b 线线//| 疋 a II线面平行判定 ----------------- > 线面// | 疋 / / 线面平行性质 a II a II a II 2.线线、线面、面面垂直关系的转化: 三垂线定理、逆定理 PA , A0为PO 在内射影 a 则a OA a PO a PO a AO 线线丄 a, b a // b a b A a II ,b II // 面面平行判定1 面面平行性质1 I I / / / / O I a, I I 线面垂直判定1 a b 线面丄屯 面面垂直判定 推论2 l,且二面角I 线面垂直定义面面垂直性质, 成直二面角 3.平行与垂直关系的转化:

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

必修二立体几何证明题

C B A D C 1 A 1 必修二立体几何经典证明试题 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ?=,∴BC ⊥面11ACC A , 又∵1DC ?面11ACC A , ∴1DC BC ⊥, 由题设知0 1145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ?=, ∴1DC ⊥面BDC , ∵1DC ?面1BDC , ∴面BDC ⊥面1BDC ; (Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132 +???=1 2, 由三棱柱111ABC A B C -的体积V =1, ∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是 CD 上的点且1 2 DF AB = ,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD = 1FC =,求三棱锥E BCF -的体积; (3)证明:EF ⊥平面PAB . 【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。 因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =I ,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。 因为PH ⊥平面ABCD 所以EG ⊥平面ABCD 。 则1122EG PH = =, 111 332 E BC F BCF V S E G FC AD EG -?=?=????=2。 (3)证明:取PA 中点M ,连结MD ,ME 。因为E 是PB 的中点,所以1 // 2ME AB =。 因为1 // 2DF AB =,所以//ME DF = ,所以四边形MEDF 是平行四边形,所以//EF MD 。 因为PD AD =,所以MD PA ⊥。因为AB ⊥平面PAD ,所以MD AB ⊥。 因为PA AB A =I ,所以MD ⊥平面PAB ,所以EF ⊥平面PAB 。 3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E , 分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

立体几何证明简单例题

考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . A E D 1 C B 1 D C B A S D C B A D 1O D C 1 B 1 A 1 C

N M P C B A 考点:线面垂直的判定 6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = 求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。 A 1 A B 1 B C 1 C D 1 D G E F

高中立体几何证明方法及例题

(一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系; 高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1.线线、线面、面面平行关系的转化: 面面平行性质 II a, a ,b a II b a b A a // b II (a//b,b//c a I Ic ) V 线线// 线面平行判定 线面// 面面平行判定1 面面// < --------------------------- < --------------------------- a II 面面平行性质 公理4 II a II , b // a , b a II a II a II II II II 成直二面角

a b a b a a a // b a a b e o X! A O 8 O / / 3.平行与垂直关系的转化: a / / b 线面垂直判定2 面面平行判定2 2.三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角; (3)指出所求作的角; (2)证明其符合定义; (4)计算大小。 线面垂直性质2 面面平行性质3 4.应用以上“转化”的基本思路一一“由求证想判定,由已知想性质。 5?唯一性结论: ① 过直线外一点.有且只有一条直线与己知直线平行 ② 过空间一点.有且只有一条直线与已知平面垂直 ③ 过空间一点,有且只有一个平画与已知直线垂直 应用中常用于反 证袪”或"同一法” (2)直线与平面所成的角: 0°<0< 90° (3)二面角:二面角的平面角0°<0< 180 ° (走义法) (三垂蛭定理法) (垂面法?江棱门 1.三类角的定义: (1)异面直线所成的角B: 0°<0< 90 ° a / /b 面面 线面丄 线线

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方 形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

立体几何题例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与 平面AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

立体几何证明题.doc

立体几何练习 1. 如图:梯形 ABCD 和正 △ PAB 所在平面互相垂直,其中 AB // DC, AD CD 1 AB ,且O 为 AB 中点. P 2 ( I ) 求证: BC // 平面 POD ; (II) 求证: AC PD . O A B D C 2. 如图,菱形 ABCD 的边长为 6 , BAD 60o , AC I BD O . 将菱形 ABCD 沿对角线 AC 折起,得到三棱锥 B ACD , 点 M 是棱 BC 的中点, DM 3 2 . (Ⅰ)求证: OM // 平面 ABD ; (Ⅱ)求证:平面 ABC 平面 MDO ; (Ⅲ)求三棱锥 M ABD 的体积 . B A A O C D 3. 如图,在四棱锥中,底面为直角梯形, AD 1 已知四棱锥的底面 2 是菱形. PB PD ,为的中点. B M O C D P M D

C Q A B

(Ⅰ)求证:PC ∥平面; (Ⅱ)求证:平面PAC平面BDE. 5. 已知直三棱柱ABC A1 B1C1的所有棱长都相等,且D,E,F 分别为 BC,BB1, AA1的 EAD; 中点 . (I) 求证:平面B1 FC // 平面 (II )求证:BC1平面EAD. 6.如图所示,正方形 ABCD 与直角梯形ADEF所在平面互相垂直, ADE 90o,AF // DE, DE DA 2AF 2 . E ( Ⅰ) 求证:AC平面BDE; ( Ⅱ) 求证:AC //平面BEF; D F C (Ⅲ)求四面体 BDEF 的体积. A B

高中立体几何证明方法与例题

(一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,//I I ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ?I b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ?I a a 面面垂直定义 αβαβαβI =--?⊥? ?? l l ,且二面角成直二面角

3. 平行与垂直关系的转化: 线线∥线面⊥面面∥ 线面垂直判定2面面平行判定2 线面垂直性质2面面平行性质3 a b a b // ⊥ ?⊥ ? ? ? α α a b a b ⊥ ⊥ ? ? ? ? α α // a a ⊥ ⊥ ? ? ? ? α β αβ // αβ α β // a a ⊥ ⊥ ? ? ? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角;(4)计算大小。

立体几何证明题精选

立体几何大题证明 解答题 (共10道题) 1.(2014四川,18,12分) (本小题满分12分) 在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形. (Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (Ⅱ)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论. 2.(2014江苏,16,14分)如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5. 求证:(1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC.

3.(2014山东,18,12分) 如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F 分别为线段AD,PC的中点. (Ⅰ)求证:AP∥平面BEF; (Ⅱ)求证:BE⊥平面PAC. 4.(2014天津,17,13分) 如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点. (Ⅰ)证明EF∥平面PAB; (Ⅱ) 证明平面PBC⊥平面ABCD;

5.(2014北京,17,14分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点. (Ⅰ)求证:平面ABE⊥平面B1BCC1; (Ⅱ)求证:C1F∥平面ABE; (Ⅲ)求三棱锥E-ABC的体积. 6.(2014课标Ⅱ,18,12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P-ABD的体积V=,求A到平面PBC的距离.

立体几何证明题专题(教师版)分析

立体几何证明题 考点1:点线面的位置关系及平面的性质 例1.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________. 【解析】由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示. 在正方体ABCD—A′B′C′D′中,直线BB′⊥AB,BB′⊥CB,但AB与CB不平行,∴⑥错.AB∥CD,BB′∩AB=B,但BB′与CD不相交,∴⑦错.如图(2)所示,AB=CD,BC=AD,四边形ABCD不是平行四边形,故⑧也错. 【答案】④ 2.若P是两条异面直线l、m外的任意一点,则( ) A.过点P有且仅有一条直线与l、m都平行 B.过点P有且仅有一条直线与l、m都垂直 C.过点P有且仅有一条直线与l、m都相交 D.过点P有且仅有一条直线与l、m都异面 答案 B 解析对于选项A,若过点P有直线n与l,m都平行,则l∥m,这与l,m异面矛盾. 对于选项B,过点P与l、m都垂直的直线,即过P且与l、m的公垂线段平行的那一条直线. 对于选项C,过点P与l、m都相交的直线有一条或零条. 对于选项D,过点P与l、m都异面的直线可能有无数条. 1 / 21

2016--高二立体几何垂直证明题常见模型及方法

2016--高二立体几何垂直证明题常见模型及方法

立体几何垂直证明题常见模型及方法 垂直转化:线线垂直线 面垂直面面垂直; 基础篇 类型一:线线垂直证明(共面垂直、异面垂直) (1)共面垂直:实际上是平面内的两条直线的垂直(只需要同学们掌握以下几种模型) ○1等腰(等边)三角形中的中线 ○2菱形(正方形)的对角线互相垂直○3勾

股定理中的三角形 ○ 4 1:1:2 的直角梯形中 ○ 5 利用相似或全等证明直角。 例:在正方体11 1 1 ABCD A B C D -中,O 为底面ABCD 的中心,E 为1 CC ,求证:1 A O OE ⊥ (2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥ 变式 1 如图,在四棱锥ABCD P -中,底面 ABCD 是矩形,已知 ο 60,22,2,2,3=∠====PAB PD PA AD AB . 证明:AD PB ⊥; 变式2 如图,在边长为2的正方形ABCD 中,点E 是 AB 的中点,点F 是BC 的中点,将 △AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . B E 'A D F G

求证:' A D EF ⊥; 类型二:线面垂直证明 方法○1 利用线面垂直的判断定理 例2:在正方体11 1 1 ABCD A B C D -中,O 为底面ABCD 的中心,E 为1 CC ,求证:1 A O BDE ⊥平面 变式1:在正方体11 1 1 ABCD A B C D -中,,求证:1 1 AC BDC ⊥平面 变式2:如图:直三棱柱ABC - A 1 B 1 C 1中, AC =BC =AA 1=2,∠ACB =90?.E 为BB 1的中点, D 点在AB 上且D E = 3 . 求证:CD ⊥平面A 1ABB 1;

高中数学-必修二-立体几何常考证明题汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题 1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 2、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点, 求证: 1// A C 平面BDE 。 3、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC . 4、已知正方体 1111 ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C1O ∥面11 AB D ;(2) 1 AC ⊥面 11 AB D . 5、正方体''''ABCD A B C D -中,求证: ''AC B D DB ⊥平面; 6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ; (2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD . A E D B C A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C A A B 1 C 1 C D 1 D G E F

7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2EF AC = ,90BDC ∠=o , 求证:BD ⊥平面ACD 8、如图,在正方体 1111 ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、 11 C D 的中点.求证:平面 1D EF ∥平面BDG . 9、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点. (1)求证: 1// A C 平面BDE ; (2)求证:平面1A AC ⊥ 平面BDE . 10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==, E 为BC 的中点. 求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 11、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .

高中数学立体几何常考证明题汇总

立体几何选择题: 一、三视图考点透视: ①能想象空间几何体的三视图,并判断(选择题). ②通过三视图计算空间几何体的体积或表面积. ③解答题中也可能以三视图为载体考查证明题和计算题. 1. 一空间几何体的三视图如图2所示, 该几何体的体积为 85 12 3 π+, 则正视图中x的值为() A. 5 B. 4 C.3 D. 2 2.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( D ) 3.如图4,已知一个锥体的正视图(也称主视图),左视图(也称侧视图)和俯视图均为直角三角形,且面积分别为3,4,6,则该锥体的体积是 4 . 4.某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( B ) A.32 B.16+162C.48 D.16+32 2 二、直观图 掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变; ②平行于y轴的长度为原来的一半,x轴不变; ③新坐标轴夹角为45°或135°。 1、利用斜二侧画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是() A.正三角形的直观图仍然是正三角形.B.平行四边形的直观图一定是平行四边形. C.正方形的直观图是正方形. D.圆的直观图是圆 2、如图,梯形A1B1C1D1是一平面图形ABCD的直观图(斜二测),若A1D1∥O1y1,A1B1∥C1D1,A1B1=2,C1D1=3,A1D1=1,则梯形ABCD的面积是( ) A.10 B.5 C.5 2 D.10 2 三、表面积和体积 不要求记忆,但要会使用公式。审题时分清“表面积”和“侧面积”。 (1)圆柱、圆锥、圆台的侧面积,球的表面积公式。 (2)柱、锥、台体,球体的体积公式。 (3)正方体的内切球和外接球:内切球半径?外接球直径? 正视图左视图 俯视图图4 图2 侧视图 俯视图 正视图 4 x 3 3 x 4

高中数学立体几何证明题汇总

立体几何常考证明题 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 3、如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 5、已知正方体1111ABCD A BC D -, O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D . 6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. S D C B A D 1O D B A C 1 B 1 A 1 C

N M P C B A 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点, 且2 EF AC = , 90BDC ∠=,求证:BD ⊥平面ACD 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。 A 1

立体几何证明题

1 立体几何证明题 1、已知直线a ,b 和平面α,且a b ⊥,a α⊥,则b 与α的位置关系是 2、已知直线l α⊥平面,有以下几个判断:①若m l ⊥,则m α//;②若 m α⊥,则m l //;③若m α//,则m l ⊥;④若m l //,则m α⊥.上述判 断中正确的是( )A 、①②③ B 、②③④ C 、①③④ D 、①②④ 3如图,正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于 ( ) A .90° B .45 C .60° D .30° 4、 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC 11D 中,E ,F 分别是棱BC ,11C D 的中点,AC =3,BC =4,AA 1=4,AB=5,点D 是AB )求证:AC 1//平面CDB 1 、如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB ,SC ,SD 于E ,,G .

2 求证:AE SB AG SD ⊥⊥, 8、如图,直角ABC △所在平面外一 点S ,且SA SB SC ==,点D 为斜边AC 的中点. (1) 求证:SD ⊥平面ABC ; (2) 若AB BC =,求证:BD ⊥面SAC 9、在四棱锥P-ABCD 中,∠DAB=∠ABC=90°,PA ⊥底面ABCD ;AB=BC=1,AD=2求证:平面PCD ⊥平面PAC 。 10、如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点, 面CDE 是等边三角形,棱EF ∥12 BC (I )证明FO ∥平面CDE ; (II )设BC =,证明 EO ⊥平面CDF 11、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1//面11AB D ;(2 )1 AC ⊥面11AB D . D 1O D B A C 1 B 1 A 1 C A B C D E F O

相关主题