搜档网
当前位置:搜档网 › 水的动力粘滞系数表

水的动力粘滞系数表

水的动力粘滞系数表

水的动力粘滯系数、粘滯系数比、温度校正值

粘滞系数表

实验二液体黏度测量 一、实验目的 掌握用奥氏黏度计测量液体黏度的原理和方法。 二、实验器材 奥氏黏度计、支架、玻璃水槽、温度计,秒表、量筒、吸球、酒精、蒸馏水。 图2–1 黏度测量的实验装置 三、仪器描述 用奥氏黏度计测量液体黏度的装置如图2–1所示,U 形玻璃管为奥氏黏度计,a 管为粗管,下端有一玻璃泡b ,c 为毛细管。上端有玻璃炮 d ,d的上下各有一刻痕m 和 n ,式(2–3)中的体积V0就是指两刻痕间的体积,G为铅锤,T 为温度计, A 槽内盛满。 四、实验原理 根据流体力学知识,可以证明泊肃叶公式在非分水平均匀圆管中的形式为 (2–1) 式中Q为流量,、分别为流体的密度和黏度系数,g为重力加速度,R为管半径,△P,△h分别是长度为L的管两端的压强差和高度差,用奥氏黏度计测量液体黏度系数时,它的毛细管两端的压强近似等于大气压,所以其压强差

△P0,式(2–1)可写成 (2–2) 本实验用比较法测量液体的黏度系数,在时间t0内,已知黏度系数为,密度为0的液体(称为标准液体)流过黏度计毛细管的体积为 (2–3) 同样实验条件下,让与V0同体积的己知密度为,黏度系数为的待测液体流过黏度计毛细管,所需时间为 t , 则 (2–4) 由式(2–3)和(2–4)可得 (2–5) 式(2–5)为用奥氏黏度计测量液体黏度系数的理论依据,在实验中测出时间 t0、t和对应温度T0、 T ,由表2–3 、表2–4、表2–5分别查出0、0、,根据式(2–5)求出待测液体的黏度系数。 五、实验步骤 1.实验前先将奥氏黏度计用蒸馏水洗干净,再用酒精冲洗。 2.用量筒取一定量(6ml)的酒精,从 a 管口装入黏度计中,装好酒精的黏度计放入插有温度计的恒温水槽中,黏度计的上部玻璃泡 d 应完全浸入水中.并固定在支架上,调整黏度计使之处于垂直状态

水的粘度计算表-水的动力粘度计算公式

水的黏度表(0?40 C)

水的物理性质

F3 Viscosity decreases with p ressure (at temp eratures below 33 Water's p ressure-viscosity behavior [534] can be explained by the in creased p ressure (up to about 150 MPa) caus ing deformatio n, so reduci ng the stre ngth of the hydroge n-bon ded n etwork, which is also p artially res pon sible for the viscosity. This reduct ion in cohesivity more tha n compen sates for the reduced void volume. It is thus a direct con seque nee of the bala nee betwee n hydroge n bonding effects and the van der Waals dis persion forces [558] in water; hydroge n bonding p revaili ng at lower temp eratures and p ressures. At higher p ressures (and den sities), the bala nee betwee n hydroge n bonding effects and the van der Waals dis persi on forces is tipped in favor of the dis persion forces and the rema ining hydroge n bonds are stron ger due Viscous flow occurs by molecules movi ng through the voids that exist betwee n them. As the p ressure in creases, the volume decreases and the volume of these voids reduces, so no rmally in creas ing p ressure in creases the viscosity. |:| k -二 _ r 1 3ire S C 去 * . i i screr - 丁" \ . / . 一 '气:r J J: V .; r "舄 ■ 3 口二 K n PV ■ ■ L T 三 n 曲 ? ■ 5 M r 丐 町寸 -; J 百* " T N ; 【 I bl ■呻口 " 口寸津 a “ d c i 0 290 八 rao 800 i woo Pressure, MPa g 亠 C) Co? 4 — □ ] J %一 M J s 」气1 □ u 古 气 a 15 ?” ”〕 阳 "1 ■ \ ■ ID % ;: s' ¥ 口『 屮 n ◎ 9 r 奇 * =' f f- ::[ 丄 备 IT 记 |B - 3 D ■i 电- 'u O 丰759勺; 】I -一 11 L . P

动力粘度单位换算,黏度转换表

动力粘度单位换算,黏度转换表 单位制 国际单位制 (SI)物理单位制 (CGS)单位符号 Pa ? s mPa ? s P cP 换算系数 单位名称 国际单位制 (SI) 帕斯卡?秒 毫帕斯卡?秒 1 1000 1 10 1000 1 物理单位制(CGS) 泊 厘泊 100 1 1 100 1 工程单位制千克力?秒,每平方米× 10 3× 10 3 英制 工程单位制 磅达秒每平方英尺 磅力秒每平方英尺 磅力小时每平方英尺 雷恩 磅力秒 , 每平方英寸 × 10 5 × 10 3 × 10 3 × 10 3 × 10 4 × 10 8 × 10 7 × 10 7 × 10 6 × 10 5 × 10 5 × 10 3 × 10 4 × 10 8 × 10 7 × 10 7 英制 绝对单位制 磅每英尺小时 斯勒格每英尺秒 × 10 -4 × 10 4 × 10 3 × 10 4 备注推行不采用 单位制 工程单位制英制工程单位制 单位符号 kgf ? s/m 2pdl ? s/ft 2lbf ? s/ft 2lbf ? h/ft 2换算系数 单位名称 国际单位 制(SI) 帕斯卡?秒 毫帕斯卡?秒× 10 -4× 10 -4× 10 -5 × 10 -6 × 10 -9 物理单位 制(CGS) 泊 厘泊× 10 -4× 10 -4 × 10 -3 × 10 -5 × 10 -7 × 10 -9 工程单位 制千克力?秒,每平方 米 1× 10 -5 英制磅达秒每平方英尺 1 × 10 -6

工程单位 制 磅力秒每平方英尺 磅力小时每平方英 尺 雷恩 磅力秒 , 每平方英 寸× 10 4 × 10 5 × 10 3 × 10 3 1 × 10 -4 1 英制 绝对单位 制 磅每英尺小时 斯勒格每英尺秒 × 10 -5 × 10 4 × 10 -6 1 × 10 -9 × 10 -4 备注不采用不采用 单位制 英制工程单位制英制绝对单位制 单位符号 reyn lbf ? s/in 2lb/(ft ? h)slug/(ft ? s)换算系数 单位名称 国际单位 制(SI) 帕斯卡?秒 毫帕斯卡?秒 × 10 -4 × 10 -7 × 10 -4 × 10 -7 × 10 3 × 10 -5 物理单位 制(CGS) 泊 厘泊 × 10 -5 × 10 -7 × 10 -5 × 10 -7 × 10 -3 × 10 -5 工程单位 制 千克力?秒,每平方米× 10 -3× 10 -3× 10 4 英制 工程单位 制 磅达秒每平方英尺 磅力秒每平方英尺 磅力小时每平方英尺 雷恩 磅力秒 , 每平方英 寸 × 10 -4 × 10 -3 1 1 × 10 -4 × 10 -3 1 1 × 10 3 × 10 6 × 10 8 × 10 7 × 10 7 1 英制 绝对单位 制 磅每英尺小时 斯勒格每英尺秒 × 10 -8 × 10 -3 × 10 -8 × 10 -4 1 × 10 6 × 10 6 1

粘滞系数

水力学教学辅导 第1章绪论 【教学基本要求】 1、明确水力学课程的性质和任务。 2、了解液体的基本特征,理解连续介质和理想液体的概念和在水力学研究中的作用。 3、理解液体5个主要物理性质的特征和度量方法,重点掌握液体的重力特性、惯性、粘滞性,包括牛顿内摩擦定律及其适用条件。了解什么情况下需要考虑液体的可压缩性和表面张力特性。 4、了解质量力、表面力的定义,理解单位面积表面力(压强、切应力)和单位质量力的物理意义。 5、了解量纲的概念,能正确确定各种物理量的量纲。 【学习重点】 1、连续介质和理想液体的概念。 2、液体的基本特征和主要物理性质,特别是液体的粘滞性和牛顿内摩擦定律及其应用条件。 3、作用在液体上的两种力。 【内容提要和学习指导】 1.1水力学课程的性质和任务 水力学是水利水电工程专业重要的技术基础课,它的任务是研究以水为代表的液体的平衡和机械运动的规律,并依据这些规律来解决工程中的实际问题,为今后学习专业课程和从事专业技术工作打下良好的基础。 1.2 连续介质的概念 连续介质是水力学研究中常用的基本概念。我们在学习普通物理时都知道,世界上一切物质都是由分子构成的。从微观上而言,组成物体的分子都是离散的,其运动状态是随机的呈不均匀状态。这给运用高等数学微积分方法来分析讨论液体的运动带来了很大的困难,因为微积分运算的必要条件是连续性。从宏观上而言,我们所研究的是由液体质点组成的液体的宏观运动。液体质点是由大量分子组成的在微观上充分大而宏观上是非常小的几何点的液体微团,它呈现的运动是由组成质点的大量分子运动的平均,因而宏观运动是均匀而连续的。这样我们就可以提出下列假设:即液体所占据的空间是由液体质点连续地无空隙地充满的,组成液体的质点运动的物理量是连续变化的连续函数。这就是连续介质的概念。这样水力学研究的液体运动就是连续介质的连续运动,可以运用微积分来分析液体运动和建立运动方程,给水力学研究带来极大的方便。

水和水蒸气的动力粘度表

0.1 1.0 2.5 5.010.015.020.025.030.035.040.045.050.055.060.065.070.075.080.001750.01750.01750.01750.01750.01740.01740.01740.01740.01730.01730.01730.01720.01720.01720.01720.01710.01710.01710.0101300.01300.01300.01300.01300.01300.01300.01290.01290.01290.01290.01290.01280.01280.01280.01280.01280.01280.01280.0201000.01000.01000.01000.01000.01000.0999.0999.0998.0997.0997.0996.0996.0995.0994.0994.0993.0992.0991.030797.0797.0797.0797.0797.0797.0797.0797.0797.0797.0797.0797.0796.0796.0796.0796.0796.0796.0796.040651.0651.0652.0652.0652.0652.0653.0653.0653.0653.0654.0654.0654.0654.0655.0655.0655.0656.0656.050544.0544.0544.0545.0545.0546.0546.0547.0547.0548.0548.0549.0549.0550.0550.0551.0551.0554.0554.060463.0463.0563.0464.0464.0465.0466.0467.0467.0468.0469.0469.0470.0471.0471.0472.0473.0473.0474.070400.0401.0401.0401.0402.0403.0404.0404.0405.0406.0407.0408.0408.0409.0410.0411.0412.0412.0413.080351.0351.0351.0352.0353.0354.0355.0355.0356.0357.0358.0359.0360.0361.0362.0362.0363.0364.0365.090311.0311.0312.0312.0313.0314.0315.0316.0317.0318.0319.0320.0321.0322.0323.0324.0325.0326.0326.010012.1279.0279.0280.0281.0282.0283.0284.0285.0286.0287.0288.0289.0290.0291.0292.0293.0294.0295.011012.5252.0253.0254.0255.0256.0257.0258.0259.0260.0261.0262.0263.0264.0265.0266.0267.0268.0269.012012.9230.0230.0231.0232.0233.0234.0235.0236.0237.0238.0239.0241.0242.0243.0244.0245.0246.0247.013013.3211.0212.0212.0213.0214.0215.0216.0218.0219.0220.0221.0222.0223.0224.0225.0226.0227.0228.014013.7195.0195.0196.0197.0198.0199.0200.0201.0203.0204.0205.0206.0207.0208.0209.0210.0211.0213.015014.2181.0182.0182.0183.0184.0185.0187.0188.0189.0190.0191.0192.0193.0194.0196.0197.0198.0199.016014.6169.0169.0170.0171.0172.0173.0175.0176.0177.0178.0179.0180.0181.0183.0184.0185.0186.0187.017015.0159.0159.0160.0161.0162.0163.0164.0165.0166.0168.0169.0170.0171.0172.0173.0174.0176.0177.018015.415.0150.0150.0151.0153.0154.0155.0156.0157.0158.0159.0161.0162.0163.0164.0165.0166.0168.019015.815.4141.0142.0143.0144.0145.0147.0148.0149.0156.0151.0153.0154.0155.0156.0157.0158.0160.020016.215.9134.0135.0136.0137.0138.0139.0141.0142.0143.0144.0145.0146.0148.0149.0150.0151.0152.021016.616.3127.0128.0129.0130.0132.0133.0134.0135.0136.0138.0139.0140.0141.0142.0143.0145.0146.022017.016.7122.0122.0123.0124.0126.0127.0128.0129.0130.0132.0133.0134.0135.0136.0138.0139.0140.023017.417.216.8117.0118.0119.0120.0122.0123.0124.0125.0126.0128.0129.0130.0131.0132.0133.0134.024017.817.617.3112.0113.0114.0115.0117.0118.0119.0120.0121.0123.0124.0125.0126.0127.0128.0129.025018.218.117.8107.0109.0110.0111.0112.0113.0115.0116.0117.0118.0119.0121.0122.0123.0124.0126.026018.618.518.3103.0104.0106.0107.0108.0109.0111.0112.0113.0114.0115.0117.0118.0119.0120.0122.027019.018.918.718.4101.0102.0103.0104.0105.0107.0108.0109.0110.0112.0113.0114.0115.0117.0118.028019.419.419.219.097.098.299.4101.0102.0103.0104.0106.0107.0108.0109.0111.0112.0113.0114.029019.819.819.719.593.694.996.197.498.699.9101.0102.0104.0105.0106.0107.0109.0110.0111.030020.320.220.220.190.591.793.094.395.596.898.199.3101.0102.0103.0104.0106.0107.0108.031020.720.720.620.686.688.389.491.192.493.894.996.197.598.499.7101.0102.0103.0103.032021.121.121.121.121.684.585.987.789.290.692.092.994.395.596.697.899.0100.0102.033021.421.521.621.722.480.482.184.185.887.588.890.091.192.493.594.896.097.298.334021.921.922.022.223.076.078.280.282.184.085.586.988.089.290.591.893.194.395.535022.322.322.422.723.625.473.075.978.580.282.183.684.886.287.588.990.291.492.636022.722.822.923.224.125.766.870.673.776.378.380.381.583.284.786.287.488.790.037023.123.223.423.724.626.029.664.368.572.074.276.778.380.281.983.584.986.287.538023.523.623.824.225.026.328.853.763.267.570.673.075.177.379.180.982.383.784.939024.924.024.224.625.426.628.634.956.163.067.069.972.374.376.378.279.781.282.640024.324.424.625.025.826.928.632.145.757.362.866.569.371.773.775.577.379.080.3410 24.7 24.8 25.0 25.4 26.1 27.2 28.7 31.3 38.1 50.4 58.1 62.8 66.2 68.9 71.1 73.1 74.9 76.4 77.9 温度t/℃水和水蒸气的动力粘度μ×10E6/(Pa ·s ) 压力 p/MPa

非常用用的流体力学计算常用查表(水、空气中度、不同温度动力粘度、粘度)

”=上 P _ 从单位中看出,吕帧nr 含运动要索(号间和长度)'不含动 力要素。所以它更能反映流体的运动特性■运 其流动性越好。 * J 冠度莉示另对动力粘度均有影响,但压力的影响很小?通常只 需等虑温度的影响。温度对液休和气体粘性的影响截然不同遇J 升高时,液体的粘性降低,气体的粘性增加。这是因为液体的粘性 连要晁液斥於手之I'可的内茶万引竈丽?度升高时,内聚力减弱, 故粘性降低『而造成气体粘性的主要原因在于气体分子的热运动, 温度越高?热运动越强烈,所以粘性就越大。 不同温度下?水和空气的粘度可从表1七和1-4中査得。 温度 /V Wf 度 p /kg ? m~3 禎度 7 /N ? n>7 力 xpa 动 "/ 运动曾 y X 10^ /m 2 ? 8 丨 弹性模数 E X 10$ /Pa 0 999.8 9805 1.781 1.785 2.02 5 1000. 0 9807 1.518 1.519 2. 06 10 999.7 9804 1.307 1. 306 2.10 ? 15 999. 1 9798 1. 139 1.139 2.15 20 998.2 9789 1.002 1 1? 003 2. 18 25 997.0 9777 0. 890 0. 893 ? ? 2. 22 30 995.7 9764 0. 798 0. 800 2. 25 40 992. 2 9730 0. 653 0. 658 2. 28 50 988.0 - 9689 0. 547 0. 553 2. 29 60 983. 2 9642 0. 466 0. 474 2. 28 70 977.8 9589 0. 404 0. 413 2. 25 80 971.8 9530 0. 354 0. 364 2. 20 90 955.3 9468 0.315 0. 326 2.14 ioo ] 95g ?4 9399 | 0? 282 | 0.294 [ 2? 07 _ 表1-3 (1-13) 标准大气下水的物理性质 st 04 1A 77

水的粘度计算表

水的黏度表(0~40℃) 温度T Pa ·s 或 粘度μ 温度T 粘度μPa·s 或℃K N·s·m-2 ℃K N·s·m-2 0 273.16 1.7921 1.7921 × 10 -3 20.2 293.36 1.0000 1.0000 × 10 -3 1 274.16 1.7313 1.7313 × 10 -3 21 294.16 0.9810 0.9810 × 10 -3 2 275.16 1.6728 1.6728 × 10 -3 22 295.16 0.9579 0.9579 × 10 -3 3 276.16 1.6191 1.6191 × 10 -3 23 296.16 0.9358 0.9358 × 10 -3 4 277.16 1.5674 1.5674 × 10 -3 24 297.16 0.9142 0.9142 × 10 -3 5 278.1 6 1.5188 1.5188 × 10 -3 25 298.16 0.8937 0.8937 × 10 -3 6 279.16 1.4728 1.4728 × 10 -3 26 299.16 0.8737 0.8737 × 10 -3

7 280.16 1.4284 1.4284 × 10 -3 27 300.16 0.8545 0.8545 × 10 -3 8 281.16 1.3860 1.3860 × 10 -3 28 301.16 0.8360 0.8360 × 10 -3 9 282.16 1.3462 1.3462 × 10 -3 29 302.16 0.8180 0.8180 × 10 -3 10 283.16 1.3077 1.3077 × 10 -3 30 303.16 0.8007 0.8007 × 10 -3 11 284.16 1.2713 1.2713 × 10 -3 31 304.16 0.7840 0.7840 × 10 -3 12 285.16 1.2363 1.2363 × 10 -3 32 305.16 0.7679 0.7679 × 10 -3 13 286.16 1.2028 1.2028 × 10 -3 33 306.16 0.7523 0.7523 × 10 -3 14 287.16 1.1709 1.1709 × 10 -3 34 307.16 0.7371 0.7371 × 10 -3 15 288.16 1.1404 1.1404 × 35 308.16 0.7225 0.7225 ×10 -3 10 -3 16 289.16 1.1111 1.1111 ×36 309.16 0.7085 0.7085 ×

水的粘度计算表水的动力粘度计算公式

水的黏度表(0~40℃)

水的物理性质

F3 Viscosity decreases with pressure (at temperatures below 33°C) Viscous flow occurs by molecules moving through thevoids that exist betweenthem。 Asthe pressure increa ses,the volumedecreases and the volume of these voids re duces, sonormally increasingpressure increases the v

iscosity. Water's pressure—viscosity behavior [534] can beexplained by the increased pressure (up to about 150 MPa) causing deformation, so reducing the strength ofthe hydrog en-bonded network, which is also partially responsible for the viscosity. This reductionin cohesivity mo re than compensates for the reduced voidvolume. It is thus a directconsequence ofthe balance between hydro gen bonding effects and the van der Waals dispersion forces[558] in water; hydrogen bonding prevailing at lower temperatures and pressures。At higher pressures (and densi ties), the balance between hydrogen bonding effects and the va nder Waals dispersion forces is tipped in favor ofthe dispersion forces and the remaininghydrogen bonds are stronger due to thecloser proximity of thecontributingoxygen atoms [655]. Viscosity, then, increases with pressu re。 The dashed line(opposite)indicates theviscosity minima.

相关主题