搜档网
当前位置:搜档网 › 氧化石墨烯的制备方法总结

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法总结
氧化石墨烯的制备方法总结

氧化石墨烯的制备方法:

方法一:

由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入2.5g NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。

方法二:Hummers 方法

采用Hummers 方法[5]制备氧化石墨。具体的工艺流程 在冰水浴中装配好250 mL 的反应瓶 加入适量的浓硫酸 搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物 再分次加入6 g 高锰酸钾 控制反应温度不超过20℃ 搅拌反应一段时间 然后升温到35℃左右 继续搅拌30 min 再缓慢加入一定量的去离子水 续拌20 min 后 并加入适量双氧水还原残留的氧化剂 使溶液变为亮黄色。趁热过滤 并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥 保存备用。方法三:修正的Hummers方法

采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在

室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

方法四:超声辅助Hummers法制备氧化石墨烯

该方法主要包含了低温、中温、高温3个反应阶段。研究表明[8]:低温反应主要发生硫酸分子在石墨层间插层;中温反应主要发生石墨的深度氧化;高温反应过程则主要发生层间化合物的水解反应。低温反应插层充分,中温反应深度氧化完全,高温反应水解彻底,是获得层间距较大氧化石墨的有效途径之一,这种层间距较大的氧化石墨不仅有利于其他分子、原子等插入层间形成氧化石墨插层复合材料,而且易于被剥离成单层氧化石墨,为进一步制备单层石墨烯打下基础。

1.2.1Hummers法制备氧化石墨烯

低温反应:量取23mL浓硫酸倒入烧杯,烧杯放入冰浴中冷却至4℃以下,称取1g石墨粉和0.5g硝酸钠放入烧杯,1h以后缓慢加入3g高锰酸钾,控制温度不超过10℃,反应时间共约2h;中温反应:把烧杯移至恒温水浴锅,水浴温度控制在38℃反应0.5h,保持搅拌;高温反应:在所得混合液中缓慢加入80mL的去离子水,保持混合液温度~95℃反应30min,期间保持适度搅拌;高温反应后加入约60mL去离子水中止反应,加入15mL(30Vol%)的双氧水,待反应约15min后再加入40mL(10V ol%)的盐酸溶液。低速离心洗涤去除过量的酸及副产物,将洗涤后呈中性的氧化石墨分散于水中,超声震荡剥离40min,超声结束后在2500r·min-1转速下离心30min,上层液即是氧化石墨烯悬浊液。

1.2.2预氧化-Hummers法制备氧化石墨烯

将30mL浓H2SO4,10gK2S2O8,10gP2O5置于三口烧瓶中,加热至80℃后加入20g 石墨粉后保温6h,自然冷却至室温后,稀释,抽滤,洗涤直至中性,室温下自然干燥。取1g预处理过的样品进行Hummers法制备氧化石墨烯(见1.2.1)。

1.2.3低中温超声辅助Hummers法合成氧化石墨烯

低温反应:量取23mL浓硫酸倒入烧杯,烧杯放入冰浴中冷却至4℃以下,称取1g石墨粉和0.5g硝酸钠放入烧杯,开启超声,1h以后缓慢加入3g高锰酸钾,关闭超声并开始搅拌,控制温度不超过10℃,反应时间共2h;中温反应:把烧杯移至水浴锅,开启超声,水

浴温度控制在38℃反应0.5h;高温反应:把所得混合液缓慢加入约100mL的低温去离子水中,接着将以上混合液置于~95℃水浴中反应30min,期间保持适度机械搅拌;高温反应后加入60mL去离子水中止反应,随后加入25mL(30V ol%)的双氧水,待反应约15min后再加入40mL(10Vol%)的盐酸溶液溶解。低速离心洗涤去除过量的酸及副产物,将洗涤后呈中性的氧化石墨分散于水中,超声振荡剥离40min,超声结束后在2500r·min-1转速下离心30min,上层液即是氧化石墨烯分散液。

1.2.4低温超声辅助Hummers法合成氧化石墨烯

除把中温反应的超声振荡改为搅拌以外,其他均与1.2.3合成工艺相同。

1.2.5中温超声辅助Hummers法合成氧化石墨烯

除在低温反应阶段只使用搅拌(不使用超声振荡)以外,其他均与1.2.3合成工艺相同。方法五:温老师的方法

The 500-mesh flake graphite (1 g) and NaNO3(0.75 g) were dissolved in 75 mL 98 wt % H2SO4under magnetic stirring in ice-water bath and KMnO4(4.5 g) were added gently. After completion of the addition, the reaction mixture was stirred continuously for 2 h. Then, the reaction was allowed to react for 5 days at room temperature. Afterward, KMnO4(2.25 g) was added gradually to the reaction mixture within 2 h under an ice water bath and then keep the reaction for another 5 days. After raising the temperature to 90 C, 140mL 5 wt % H2SO4was added gradually to the reaction mix-ture under magnetic stirring for 2 h. The temperature was then decreased to 60 C, and 3 mL 30 wt % H2O2 was added to the reaction product. The as-prepared GO was purified by repeated centrifugation and washing process according to the literature.

1

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

完--氧化石墨烯改性PVC的性能研究总结

氧化石墨烯改性PVC的性能研究 摘要通过共混方法制备了分散均匀的聚氯乙烯(PVC)/氧化石墨烯(GO)复合材料,研究了材料的力学性能、热稳定性能、导电性能。结果表明,微量GO能较大幅度提高PVC的拉伸强度,且保持较高的断裂伸长率;添加GO还能提高PVC的起始分解温度、最大分解温度以及PVC的成碳量。 关键词:聚氯乙烯;氧化石墨烯;改性 石墨烯(Graphene,又称单层石墨或二维石墨,图1所示)是单原子厚度的呈二维蜂窝状排列的碳原子晶体,被认为是富勒烯、碳纳米管和石墨(图2所示)的基本结构单元[1]。在石墨烯中,碳原子以sp2杂化轨道与其它原子通过强σ键相连接,这些高强度的σ键使石墨烯具有优异的结构钢性,平行片层方向具有很高的强度。碳原子有四个价电子,这样每个碳原子都贡献一个未成键π电子,这些π电子在同一平面层碳原子的上下形成大π键,进而形成垂直于石墨烯片层的互相平行的π轨道,这种离域π电子在碳网平面内可以自由流动,类似自由电子,因此在石墨烯面内具有类似于金属的导电性和导热性,它的抗磁性也十分明显。因其特殊结构石墨烯具有高的比表面积[2] ,良好的力学和电学性能。石墨烯中载流子具有弹道输运特性,室温下载流子的平均自由程和相干长度达到微米量级,迁移率(200000 cm2/Vs)大约是硅的100倍,有利于制造更小的快速转换信号的晶体管[3-5],因其一系列优异的性质,引起科技工作者的极大兴趣。 图1 石墨烯基本结构示意图图2 单层石墨烯及其派生物 石墨烯丰富和奇特的物理化学性质,这使人们联想到石墨烯衍生物是否也具备如此的优异性能。因此,多种具有不同性能的石墨烯衍生物也逐步被发现,其中包括氧化石墨烯(grapheme oxide) [6],,反磁性半氢化石墨烯(graphone)[7],和半导体氢化石墨烯(graphane)[8]等等。在这些物质中氧化石墨烯以其低廉的制备成本,高度的可加工性能,在多个领域的应用都有所涉及。而氧化石墨烯由于其特殊的性质和结构,成为制备石墨烯和基于石墨烯复合材料的理想前驱体。氧

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

氧化石墨烯的结构及应用

氧化石墨烯的结构及应用 2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov)成功地从石墨中分离出一层碳原子构成的石墨烯,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。自此,石墨烯由于其突出的导热性、室温高速载流子迁移率、透光性和力学性能等,同时具有完美的量子隧道效应、半整数的量子霍尔效应、从不消失的电导率等一系列性质,受到了世界各界的广泛关注,也成为科研领域的新兴宠儿。 氧化石墨烯是石墨粉末经化学氧化后的产物,它是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。氧化石墨烯复合材料包括聚合物类复合材料以及无机物类复合材料更是具有广泛的应用前景,因为成为研究的又一重点。 一、氧化石墨烯的分子结构 石墨被强氧化剂氧化,氧原子进入到石墨层间,结合л电子,使层面内的二键断裂,并以C=O,C-OH, -COOH等官能团与密实的碳网面中的碳原子结合,形成共价键型石墨层间化合物。氧化石墨烯的理想结构组成为C400H,也有文献报道其组成为C X+(OH)Y-(H20)2,其中C、H、O等各元素的含量随氧化程度不同而发生改变,一般范围为C7O4H2-C24O13H9,目前,普遍认为氧化石墨是一个准二维固体物质。氧化石墨烯由尺寸不定的未被氧化的芳香“岛”组成,而这些“岛”则被含有醇羟基、环氧基团和双键的六元脂环所分开,芳香环、双键和环氧基团使得碳原子点阵格式近乎处于同一平面,仅有连接到羟基基团的碳原子有较轻微的四面体构型畸变,导致了一些层面的卷翘。官能团处于碳原子点阵格子的上下,形成了不同密度的氧原子分布。 干燥的氧化石墨在空气中稳定性较差,很容易吸潮而变成水合氧化石墨,层间距也会随其含水量的高低而有所不同。随含水量的增加,层间距从0.6nm增加到1.1nm,从而导致X射线(100)衍射峰的位置的变化。 鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。 二、氧化石墨烯的制备方法 氧化石墨烯的制备方法主要有Brodie、Staudenmaier和Hummers三种方法,它们都是用无机强质子酸(如浓硫酸、发烟硝酸或它们的混合物)处理原始石墨,将强酸小分子插入石墨层问,再用强氧化剂(如KMnO4、KC104等)对其进行氧化。 1、Brodie法 1898年Brodie采用发烟HNO3体系,以KC103为氧化剂,反应体系的温度需先维持在0℃,然后,不断搅拌反应20-24h。洗涤后获得的氧化石墨的氧化程度较低,需进行多次氧化处理以提高氧化程度,反应时间相对较长。该法的优点是其氧化程度可利用氧化时间进行控制,合成的氧化石墨结构比较规整。但因采用KC103作氧化剂,有一定的危险性。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

氧化石墨烯的制备讲义

实验十、氧化石墨烯的制备实验 一、实验目的 1、掌握Hummers法制备氧化石墨烯。 2、了解氧化石墨烯结构与性能表征。 二、实验原理 1、氧化石墨烯 氧化石墨烯是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。氧化石墨烯长久以来被视为亲水性物质,因为其在水中具有优越的分散性,但是,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。 经过氧化处理后,氧化石墨仍保持石墨的层状结构,但在每一层的石墨烯单片上引入了许多氧基功能团。这些氧基功能团的引入使得单一的石墨烯结构变得非常复杂。鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。大家普遍接受的结构模型是在氧化石墨烯单片上随机分布着羟基和环氧基,而在单片的边缘则引入了羧基和羰基。 图1 氧化石墨烯的结构 2、氧化石墨烯的制备 氧化石墨烯的制备一般有三种方法:brodie法、Staudenmaier法、hummers法。这三种方法的共同点都是利用石墨在酸性质子和氧化剂的作用下氧化而成的,但是不同的方法各有优点。Brodie 等人于1859年首次用高氯酸和发烟硝酸作为氧化剂插层制备出

氧化石墨烯的制备

大学生创新训练项目 研究报告 项目名称:氧化石墨烯和磁性氧化石墨烯的制备及其吸附性的研究 项目类型:一般项目 项目年度:2014年 项目负责人:李柯学号:32012080015 负责人院(系):安全与环境工程学院环境工程系 专业(方向):环境工程 项目组成员:杨梦凡、杨舒、卢光远 指导教师:任冬梅 教务处制 二〇一五年 摘要

石墨烯是由单层碳原子排列组合而成,呈六边形网状结构,因其特殊的二维结构表现出许多优异的性质。而氧化石墨烯由于在表面及边缘上大量含氧基团的引入,易于修饰与功能化,且保持着化学稳定性。本文采用改良hummers法制备氧化石墨烯。本文采用改良hummers 法制备氧化石墨烯。改进后制备较高氧化程度的氧化石墨的原料:天然鳞片石墨1g,浓硫酸23ml,高锰酸钾3g,硝酸钠0.5g,30%双氧水10ml,35%的盐酸,蒸馏水若干(实验中采用了多组不同的原料用量配比,过程记录以此组数据为例)。并得到如下结论:制取氧化石墨烯时,一定范围内,天然鳞片石墨用量减少可以提高氧化程度;硝酸钠用量的变化对石墨烯氧化程度影响不大;适度增加高锰酸钾和双氧水的用量同样可以提高氧化程度。实验过程中,高锰酸钾对石墨烯的氧化起着至关重要的作用,加入高锰酸钾时长时间缓慢增加对石墨烯氧化程度的效果比一次性直接加入要好。改进后的方法有利于提高实验室合成氧化石墨烯的效率,一定程度上降低了实验操作的难度。制取磁性氧化石墨烯的过程中,是在强碱性(PH>12)的环境下,让氧化石墨烯与FeCl3和FeCl2水浴恒温,使生成的纳米Fe3O4直接镶嵌复合到氧化石墨烯上。最后在不同浓度的PH条件下测得氧化石墨烯和磁性氧化石墨烯对甲基橙和重金属离子的吸收。 关键词:氧化石墨烯、磁性氧化石墨烯、吸附性

功能化氧化石墨烯的细胞相容性

[Article] https://www.sodocs.net/doc/cd18507016.html, 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.?Chim.Sin .2012,28(6),1520-1524 June Received:November 25,2011;Revised:March 11,2012;Published on Web:March 13,2012.? Corresponding authors.YANG Rong,Email:yangr@https://www.sodocs.net/doc/cd18507016.html,;Tel:+86-10-82545616.HENG Cheng-Lin,Email:hengcl@https://www.sodocs.net/doc/cd18507016.html,.The project was supported by the National Natural Science Foundation of China (20911130229,21073047)and Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences,China (KJCX2.YW.M15). 国家自然科学基金(20911130229,21073047)和中国科学院知识创新工程重要方向项目(KJCX2.YW.M15)资助 ?Editorial office of Acta Physico ?Chimica Sinica doi:10.3866/PKU.WHXB 201203131 功能化氧化石墨烯的细胞相容性 张晓1,2 杨蓉2,*王琛2衡成林1,* (1北京理工大学物理学院,教育部簇科学重点实验室,北京100081; 2 国家纳米科学中心,中国科学院纳米生物效应与安全性重点实验室,北京100190) 摘要:采用改进的Hummers 方法制备了纳米尺度的氧化石墨烯.对氧化石墨烯的表面进行羧基化,并连接上 聚乙二醇(PEG)使其在细胞培养液中可溶并能稳定保存.采用透射电镜(TEM)、傅里叶变换红外(FTIR)光谱和zeta 电位测量等对修饰后的氧化石墨烯的结构和功能进行了表征.体外细胞实验表明PEG 修饰的氧化石墨烯在水中具有良好的可溶性,对A549细胞没有明显的毒性,在生物医药领域具有潜在的应用价值.关键词: 氧化石墨烯;纳米材料;生物相容性;表面功能化 中图分类号: O645 Cell Biocompatibility of Functionalized Graphene Oxide ZHANG Xiao 1,2 YANG Rong 2,* WANG Chen 2 HENG Cheng-Lin 1,* (1Key Laboratory of Cluster Science of Ministry of Education,School of Physics,Beijing Institute of Technology,Beijing 100081,P .R.China ;2Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,Chinese Academy of Sciences, National Center for Nanoscience and Technology,Beijing 100190,P .R.China ) Abstract:We report on synthesis of nanoscale graphene oxide (NGO)by modified Hummers ’method.Synthesized NGO particles were surface functionalized by attaching carboxylic acid and polyethylene glycol groups to render them soluble in cell culture medium.The structures and properties of functionalized NGO were characterized by transmission electron microscopy (TEM),Fourier transform infrared (FTIR)spectroscopy,and zeta potential analyzer.Cell viability studies show that PEG-modified NGO particles are highly soluble and incur almost no cytotoxicity to A549cells,which suggest a great potential for the use of NGO in various biomedical applications.Key Words:Graphene oxide; Nanomaterials;Biocompatibility;Surface functionalization 1Introduction Graphene,a single layer of carbon atoms with excellent ther-mal,mechanical,and electrical properties,has attracted consid-erable attention in recent years.1-3Graphene oxide (GO)4-10is one of the most important graphene derivatives which contains aromatic regions randomly interspersed with oxidized aliphatic rings.These oxidized rings containing epoxide (C ―O ―C)and hydroxyl (C ―OH)groups,and the GO sheets terminated with both carbonyl (C =O)and carboxylic acid (―COOH) groups 5-7can provide reactive sites for chemical modification to obtain new derivatives for biology application.8-10It is known that many pharmaceutical ingredients are poorly solu-ble in water.As a result,their clinical applications are seriously influenced.Therefore,finding a nanoscale drug carrier is criti-cal in biology application.Recently,researchers started to ex-plore the ability of GO in attachment and delivery of aromatic,water insoluble drugs.Yang et al.11investigated loading doxo-rubicin hydrochloride,an anticancer drug,on GO sheets,and 1520

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

常用溶液的配置+氧化石墨烯的制备

PB和PBS是免疫细胞化学实验中最为常用的缓冲液, 0.01mol/L的PBS主要用于漂洗组织标本、稀释血清等,其pH应在7.25~7.35之间,否则需要调整。 0.1mol/L的PB常用于配制固定液、蔗糖等。 一般情况下,0.2mol/l PB的pH值稍高些,稀释成0.01mol/L的PBS时,常可达到要求的pH值,若需调整pH,通常也是调PB的pH。 配制方法为: 1.0.2mol/L(pH7.4)磷酸盐缓冲液(Phosphate Buffer, PB) 试剂:NaH2PO4?2H2O Na2HPO4?12H2O 配制方法:配制时,常先配制0.2mol/L的NaH2PO4和0.2mol/L的Na2HPO4,两者按一定比例混合即成0.2mol/L的磷酸盐缓冲液(PB),根据需要可配制不同浓度的PB和PBS。 (1)0.2mol/L的Na2HPO4;称取Na2HPO4.12H2o 31.2g(或NaH2PO4?H2O 27.6g)加重蒸水至1000ml溶解。 (2)0.2mol/L的Na2HPO4:称取NaHPO4.?12H2o 71.632g(或Na2HPO4?7H2O 53.6g或Na2HPO4?2H2o 35.6g)加重蒸水至1000ml溶解。 (3)0.2mol/L pH7.4的PB的配制:取19ml 0.2mol/L的NaH2PO4和81ml 0.2mol/L的 Na2HPO4?12H2O,充分混合即为0.2mol/L的PB(pH约为7.4~7.5)。若pH偏高或偏低,可通过改变二者的比例来加以调整,室温保存即可。 2.0.01mol/L磷酸盐缓冲生理盐水(Phosphate Buffered Saline, PBS) 试剂:0.2mol/L PB 50ml NaCl 8.5~9g(约0.15mol/L) 重蒸水至1000ml 配制方法:称取NaCl 8.5~9g及0.2mol/L的PB 50ml,加入1000ml的容量瓶中,最后加重蒸水至1000ml,充分摇匀即可。若拟配制0.02mol/L的PBS,则PB量加倍即可,依此类推

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

hummers法制备石墨烯

主要原材料:石墨粉(粒度小于30μm的粒子。含量大于95%,碳含量%), 浓硫酸(95%—98%),高锰酸钾,硝酸钠,双氧水30%,盐酸,氯化钡,水合肼80% 氧化石墨(GO)的制备 采用Hummers 方法[12]制备氧化石墨。具体的工艺流程:在冰水浴中装配好250 mL 的反应瓶,加入适量的浓硫酸,搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物,再分次加入6 g 高锰酸钾,控制反应温度不超过20℃,搅拌反应一段时间,然后升温到35℃左右,继续搅拌30 min,再缓慢加入一定量的去离子水,续拌20 min 后,并加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。趁热过滤,并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥,保存备用。 石墨烯的制备 将100 mg 氧化石墨分散于100 g 水溶液中,得到棕黄色的悬浮液,再在超声条件下分散1 h,得到稳定的分散液。然后移入四口烧瓶中,升温至80℃,滴加2 mL 的水合肼,在此条件下反应24 h 后过滤,将得到的产物依次用甲醇和水冲洗多次,再在60℃的真空干燥箱中充分干燥,保存备用。 具体实验步骤: 一:氧化石墨烯的制备 1:一只大烧杯250Ml,里面放冰块,提供冰水浴 " 2:用试管量取23mlH2SO4,再用电子天平称取1g石墨,硝酸钠,3g高锰酸钾 3:用镊子企业一直转自放到锥形瓶,之后把浓硫酸轻轻倒入锥形瓶,然后放到电磁搅拌器中。 4:将石墨和硝酸钠混合加入锥形瓶,搅拌反应三分钟,然后将高锰酸钾加入锥形瓶 5:控制温度小于20℃,搅拌反应2个小时 6:升温至35℃,继续搅拌30分钟 7:将水和蒸馏水配置46mL的去离子水(14摄氏度) 8反应到30分钟后,将去离子水加入锥形瓶,然后将温度升高至98℃,持续加热20min,溶液呈棕黄色,冒出红烟 9:取出5g双氧水(30%),加入锥形瓶 10:取下锥形瓶趁热过滤,并用HCL和去离子水洗涤,待剩余固体在滤纸稳定后,用镊子把滤纸取出,再用一块干净的滤纸衬在底部,一块放到60℃的干燥箱中充分干燥。 二:石墨烯的制备 1:干燥后的氧化石墨烯,取出100mg分散于100g水溶液中,得到棕黄色悬浮液 @ 2:把悬浮液放到超声波洗涤箱中,在超声波条件分散1小时 3:取出溶液放到四口烧杯中,升温到80℃,再滴加20ml水合肼,反应24小时过滤 4:得到的产物以此用甲醇和水冲洗 5:得到的固体在60℃干燥箱中充分干燥,保存备用。 三:实验原材料的作用 浓硫酸:强质子酸,进入石墨层间。高锰酸钾:强氧化剂氧化,生成氧化石墨(GO)经过超声剥离得到氧化石墨烯。水合肼:还原剂,出去氧化石墨烯表面的含氧官能团,得到石墨烯。硝酸钠:在强酸环境下,硝酸根具有强氧化性。双氧水:除去氧化中多余的高锰酸钾,氧化成2价锰离子除去。稀盐酸:洗去其中的金属离子,硫酸根离子,氯化钡:检测其中的硫酸

石墨烯的制备方法

石墨烯的制备方法 来源:厦门烯成 目前,石墨烯材料的制备方法主要有四种:微机械剥离法、外延生长法、氧化石墨还原法和气相沉积法。 2004年英国Manchester大学的Geim和Novoselov等人利用微机械剥离法,也就是用胶带撕石墨[1]获得了单层石墨烯,并验证了二维晶体的独立存在。他们利用氧等离子束在1mm厚的高定向热解石墨(HOPG)表面刻蚀出20微米见方、深5微米的微槽,并将其用光刻胶压制在SiO2/Si衬底上,然后用透明胶带反复撕揭,剥离出多余的石墨片。随后将粘有剩余微片的SiO2/Si衬底浸入丙酮溶液中,超声去除样品表面残余的胶和大多数较厚的片层。所得到的厚度小于10nm片层主要依靠范德华力吸附在硅片上。最后通过光学显微镜和原子力显微镜挑选出单层石墨烯薄片。利用该方法可以获得高质量的石墨烯,但缺点是所获得石墨烯尺寸太小,仅几十或者上百微米。且制备过程不易控制,产率低,不适合大规模的生产和应用。 同年美国佐治亚理工学院W.A. de Heer等人通过加热单晶6H-SiC脱除Si,在单晶SiC (0001) 面上外延生长石墨烯[2]。具体过程是:将经氧气或氢气刻蚀处理得到的SiC在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后保持1分钟到20分钟,以形成极薄的石墨层。相比微机械剥离法,外延生长法可以实现较大尺寸,高质量石墨烯制备,是一种对实现石墨烯器件的实际应用非常重要的制备方法,然而石墨烯的厚度由加热温度决定,大面积制备单一厚度的样品比较困难,且SiC过于昂贵,得到的石墨烯难以转移到其它衬底上。

氧化石墨烯的制备过程

石墨烯的制备过程:石墨的预氧化处理(第1-4步)――石墨氧化处理(第2-9步)――洗涤处理(第10-12步)――超声分散得GO片(第13步) 参考文献:JACS 2008-130-5856 CM 1999-11-771 1、取3g 石墨放进80°C浓H2SO4(20mL)、K2S2O8(2.5g)和P2O5(2.5g)的混合溶液,保温4.5 h; 2、将上述溶液降至室温,用0.5L去离子水稀释,隔夜放置; 3、过滤(0.22μm微孔滤膜),然后用去离子水洗过滤后的产物(除酸); 4、将上步的产物隔夜放置烘干; 5、第4步产物放进0°C的浓H2SO4(120mL); 6、接着将15g KMnO4慢慢加入上述溶液中,同时搅拌,并且冰浴,保持温度在20°C以下; 7、然后在35°C下搅拌2h,然后用250mL去离子水稀释(因为用水稀释时会放出大量的热,在冰浴中可以保持温度在50°C以下); 8、将250mL水加完以后,接着搅拌2h,然后加0.5L去离子水; 9、然后加20mL 30% 的H2O2,这时溶液的颜色将变成明亮的黄色,并且冒气泡; 10、得到的溶液静置一夜,之后将上清液倒掉 11、将上述溶液用1:10 的HCl溶液(1L)洗涤(除硫酸根离子),接着用去离子水(1L)洗至中性(除酸);在洗涤过程中加入清水,等上清液澄清时,在将其上清液倾倒,如此反复几次后,再加水清洗时,溶液很难再次变得澄清。12、此时,把较浓的石墨烯溶液加入到较大的培养皿中,每个培养皿(直径约8cm)装15-20 ml石墨烯溶液;然后将所有样品置于40℃下干燥(约6 h),得到紧贴于培养皿底的干的GO片;样品干燥后,再往装有干燥石墨烯的培养皿中加入蒸馏水,静置2min左右,再倒出,这样重复4-5次,将样品洗涤至中性;最后再将样品在40℃下烘干,即得氧化石墨烯样品,把样品收集装入玻璃瓶中保存备用。 13、称取一定量配成浓度为0.05%的溶液,超声30 min得氧化石墨烯片。

相关主题