搜档网
当前位置:搜档网 › 概率复习题答案资料

概率复习题答案资料

概率复习题答案资料
概率复习题答案资料

一、全概率公式与贝叶斯公式

1、设有一批产品由甲,乙,丙三个工厂生产,甲厂生产其中的2

1,其它二厂各生产4

1,又知甲乙两厂产品各有3%是次品,丙厂有2%是次品,

(1)从这批产品中任取一件产品,求取到次品的概率? (2)已知取到的是次品,求该次品是由乙厂生产的概率? 1、解:

取到的产品是甲,乙,丙工厂生产的分别记为321,,A A A ,

取到的产品是次品记为B ,则由全概率公式得:

)()|()()|()()|()(332211A P A B P A P A B P A P A B P B P ++=

=02.04103.04103.021?+?+?=400

11

由贝叶斯公式得:

)()()|()|(222B P A P A B P B A P = = 113400

1103

.041

=?

2、国美电器商店里的冰箱有三个品牌,“海尔”品牌的次品率为0.01,份额为80%,“天尔”品牌的次品率为0.02,份额为15%,“地尔”品牌的次品率为0.03,份额为5%,随机地调查一名顾客,询问他购得的冰箱的质量.

(1) 求顾客购得次品冰箱的概率。

(2) 已知顾客购得次品冰箱,求此冰箱恰好是“海尔”品牌的概率。

2、解:购到的冰箱是“海尔”,“天尔”,“地尔”品牌的分别记为

321,,A A A ,

购到的冰箱是次品的记为B ,则由全概率公式得:

)()|()()|()()|()(332211A P A B P A P A B P A P A B P B P ++=

=05.003.015.002.08.001.0?+?+?=0.0125 由贝叶斯公式得:

)()()|()|(111B P A P A B P B A P =

=64.00125

.08

.001.0=?

3、某厂有三条流水线A ,B ,C 生产同一产品,其产品分别占总量的40%,35%, 25%,又这三条流水线的次品率分别为0.02, 0.04,0.05。现从出厂的产品中任取一件。 问(1)恰好取到次品的概率是多少?

(2)若取得次品,则该次品是流水线A 生产的概率是多少?

3、解: 设 {}D =取得的是次品……2分

则由全概率公式得:(1)()(|)()(|)()(|)()P D P D A P A P D B P B P D C P C =++

0.020.40.040.350.050.25

0.0345

=?+?+?= …………4分

由贝叶斯公式得:

()(|)()0.008

(2)(|)0.232()()0.0345

P A D P D A P A P A D P D P D ?=

=== ……4分

二、已知联合概率密度求边缘概率密度

1、设二维随机变量),Y X (在区域G:1,0,0≤+≥≥y x y x 上服从均匀分布,试求:(1)联合概率密度),(y x f ;(2)边缘概率密度(),()X Y f x f y ,并判断X 和Y 是否独立;(3)}5.00,5.00{≤≤≤≤Y X P . 1、解:

(1)2(,)(,)0(,)x y G f x y x y G ∈?=???

(2)?????<<-==?-其它010222)(10x x dy x f x X ???

??<<-==?-其它0

10222)(10

y y dx y f y Y 因)()(),(y f x f y x f Y X ≠,所以不独立 (3) 0.5

0.5

00

{00.5,00.5}20.5P X Y dxdy ≤≤≤≤==??

2、已知二维连续型随机变量(X ,Y )的联合概率密度函数为

1

() , 0 2 , 0 2

(,)8

0 ,

x y x y f x y ?+≤≤≤≤?=???其它求:(1)关于X 和Y 的边缘概率密度函数,X 、Y 是否独立?为什么?(2)cov(,)X Y (3) 令2,Z X Y =+求E(Z)。 2、解:

(1)计算可得?????≤≤+=+=?其它0

2041)(81

)(20x x dy y x x f X ,

由X 与Y 的对称性知:?????≤≤+=+=?其它0

2041)(81

)(20y y dx y x y f Y 因)()(),(y f x f y x f Y X ≠,故x 与y 不是独立的。

(2)6

7

41E(X)E(Y)2

0=+?

?==?dx x x , (2分) 而??=+?=2020348)(dxdy y x xy XY E ,故36

1

)67(34),(2-=-=Y X Cov

(3)E(Z)=E(X)+2E(Y)=2

7

3、设随机变量Y X ,的联合概率密度函数为

?

?

?≤≤≤≤=其它00,103),(x

y x x y x f (1) 求)()(y f x f Y X 与;(2)Y X 与是否相互独立,为什么?

3、解:(1) ,0

1

03)(2???≤≤=其他x x x f X (3分)

?????≤≤-=,0

102)1(3)(2其他y y y f Y (3分) (2) 因为)()(),(y f x f y x f Y X ≠,所以Y X 与不相互独立。(4分)

4、设(X,Y)的概率密度为

?

??<<<<=其它,010,10,6),(2y x xy y x f

(1) 求边缘密度函数)()(y f x f Y X 与; (2)Y X 与是否相互独立,为什么?

4、解:(1)

??

?<<=,,01

0,2)(其他x x x f X ???<<=,,010,3)(2其他y y y f Y

(6分) (2) 因)()(),(y f x f y x f Y X =,所以X 与Y 相互独立。 (4分)

5、已知二维随机变量),(Y X 的联合密度函数为

??

?<<=--其它

0,0),(32y x ae y x f y

x

(1)试确定常数a ;(2)求边缘密度函数)(),(y f x f Y X ,随机变量Y X ,是否相互独立? 5、解:

230

1x y ae dxdy +∞+∞

--=??

2分

所以 6=a 2分

(2)??

?>=-其它0

02)(2x e x f x

X 2分

??

?>=-其它

03)(3y e y f y

Y 2分

(3)由于对任意2),(R y x ∈,有)()(),(y f x f y x f Y X =,故Y X ,独立.---2分

6、设二维随机变量(,)X Y 在区域{}

(,)01,G x y x y x =≤≤≤上服从均匀分布。求边缘密度函数(),()X Y f x f y 。

6、解:因????∈=G

y x G

y x y x f ),(0),(1),(, 2分

所以有?????≤≤===??-∞

+∞

-其它0

1

021),()(x x dy dy y x f x f x x

X , 4分

1

1

1101

()(,)1110y

Y y

dx y y f y f x y dx dx y y +∞

-∞

-?=-≤≤??

===+-≤≤?

???

??

?

,,0, 其他

4分 三、随机变量数字特征的计算

1、一射手向指定目标射击2次,各次射击的结果相互独立,且每次射中的概率是3

1

,用X 表示2次射击射中的次数.(1)求X 的分布律并计算E(X),D(X)。(2)若以Y 表示2次射击不中的次数,求cov(,)X Y ,E(Y),D(Y),XY ρ。 1、解:

(1)X 的分布律为: X 0 1 2

k p 2)3

2( )31)(32(1

2C 2)3

1

(

E(X)= )31)(32(12C +22)31(=32, =)(2X E )31)(32(12C +42)3

1(=98,

D(X)=9

4

)]([)(22=+X E X E

(2)Cov(X,Y)=Cov(X,2-X)=-D(X)=-94

,

E(Y)=E(2-X)=2-32=3

4

, D(Y)=D(X)=94, 1-=XY ρ

2、已知随机变量X 与Y 分别服从正态分布()21,3N 和()20,4N ,且X 与

Y 的相关系数为12XY ρ=-,设,32

X Y

Z =+求

(1))(Z E 和)(Z D ;(2)Z)Cov(X,;(3)XZ ρ.

2、解:(1)31

)(21)(31)23(

)(=+=+=Y E X E Y X E Z E , (3分) ),(31

)(41)(91)23()(Y X Cov Y D X D Y X D Z D ++=+=

3)()(3

1)(41)(91=++=XY Y D X D Y D X D ρ (4分) (2)0),(2

1

),(31)23,(Z)Cov(X,=+=+=Y X Cov X X Cov Y X X Cov (3分)

(3)0=XZ ρ (2分)

3、随机变量X 的分布函数??

?

??>≤≤<=1,110,0

,0)(3x x x x x F ,求)(),E(X D X

3、解:)(X E 4

33)(1

03===??+∞

∞-dx x x xdF , (4分)

5

33)()(1042

2===??+∞∞-dx x x dF x X E (3分) )(X D =80

3

)]([)(22=-X E X E (3分)

4、随机变量X 的分布函数为??

???<≥-= , 0 , 1)(3

3

a x a

x x a x F ,求E (X ),D (X )。

4、解:依题意,随机变量X 的概率密度函数为

343()0

a x x a f x x a

-?

≥=?

2分

343()()32

a

a

E X xf x dx x a x dx +∞

+∞

--∞

==?=

?

?

, 3分 24322

2

33)()(a dx x a x x dF x X E a

=?==??+∞-+∞∞

-, 3分

所以 D(X)=4

3)]([)(2

2

2

a X E X E =- 2分

5、已知连续型随机变量X 的概率密度为2 , 01

()0 ,

ax bx c x f x ?++≤≤=??其它且

E(X)=0.5,D(X)=0.15。求a ,b ,c 。

5、解:120

120

1

2

220

1()20.5()20.150.5()2ax bx c dx

x ax bx c dx

x ax bx c dx

?=++??

=++???+=++?

???分分分

, 从中解得a=12,b=--12,c=3 4分

四、中心极限定理

1、某商店出售某种贵重商品.根据经验,该商品每周销售量服从参数为1=λ的泊松分布.假定各周的销售量是相互独立的.用中心极限定理计算该商店一年(52周)内售出该商品件数在50件到70件之间的概率.

1、解:设该商店第i 周售出该商品件数为52,,2,1, =i X i ,则该商店

一年内(52周)售出该商品件数∑==52

1

i i X X ,

因i X 服从参数为1=λ的泊松分布,所以E(X)=52,D(X)=52

所以5070250280993806103106041

{}(.)(.)...P X P <<=<<≈Φ-Φ-=+-=

2、某商场计划在元旦期间召开一次规模为120人参加的联谊会,根

据以往的经验,接到邀请的人中平均有80%到会,故发出了150张请柬,试求前来参加联谊会的人数为110到130人的概率(用)(x Φ表示)

2、解:.设前来参加联谊会的人数为X ,则有)8.0,150(~B X , 由隶莫夫-拉普拉斯中心极限定理

}

2

.08.01508.01501302

.08.01508.01502

.08.01508.0150110{

}130110{???-<

???-<

???-=<

210(

2-Φ≈

3、某食品厂有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一块蛋糕的价格是一个随机变量,它取1, 1.2,1.5(元),各个值的概率分别为0.3, 0.2, 0.5. 若某天售出300块蛋糕,求这天的收入至少有400元的概率.(结果保留Φ)

3、解:设一块蛋糕的价格为i X ,其分布律为:

1 1.

2 1.5~0.30.20.5i X ??

?

??,1,2,...,300i =

可求出

05.0)(,29.1)(==i i X D X E (5分)

1

{400}11(3.36)10.99970.0003

n

i i P X =≥≈-Φ=-Φ=-=∑(5分)

4、报刊亭出售4种报纸,它们的价格分别为0.6,1.0,1.5,1.8(元),

且每份报纸售出的概率分别为0.25, 0.3, 0.35,0.1.若某天售出报纸400份,试用中心极限定理计算该天收入至少有450元的概率.(结果保留0),(>Φa a 其中)

4、解:设k X 为该天售出第k 份报纸的收入()400.,2,1 =k . 则()155.11.08.135.05.13.00.125.06.0=?+?+?+?=k X E ,(2分)

()

5015.11.08.135.05.13.00.125.06.022222=?+?+?+?=k X E ,

所以 ()()()[]167475.0155.15015.1222=-=-=k k k X E X E X D (3分) 令X 表示该天的总收入,则∑==400

1k k X X .由独立同分布中心极限定理得

{}????

???

?????????-≥??-=??????≥=≥∑∑==167475.0400155.1400450167475

.0400155.140045045040014001k k k k X P X P X P

()()9292.0466.1466.11466.1167475.0400155.140014001=Φ=-Φ-≈???

?

???

???????-

(5分)

5、在天平上重复称量一重为a 的物品,假设各次称量的结果相互独

立且服从正态分布

2

(,0.2)N a 。若以n X 表示n 次称量结果的算术平均值,则为使平均重量与a 的误差不超过0.1的概率不小于0.95,那么至少要称多少次?

5、解:依题意得:95.0}1.0|{|≥<-a X P n , 2分

)1,0(~/N n

a

X n σ- 4分

0.0250.1Z ≤ 2分

解得 16≥n 2分

五、点估计

1、总体X 具有分布律 X 0 1 2

k

p 2

θ 2

)1(θ- 2)1(θθ-

已知样本值1,2,0321===x x x ,求参数θ(0>θ)的矩估计值和极大似然估计值.

1、解:

因E(X)=2)1(θ-+4)1(θθ-=1+2θ-32θ,

1=x 所以1=1+2θ-32θ, 故得θ的矩估计值为3

2?=θ 似然函数33)1(2)(θθθ-=L ,

)1ln(3ln 32ln )(ln θθθ-++=L

令0133)(ln =--=θθθθd L d ,得极大似然估计值为2

1?=θ

2、设总体X 的概率密度为

??

?>=+-其它,

0,),()1(c x x c x f θθθθ)01(为已知常数,>>c θ θ是未知参数,1(,

,)

n X X 是来自总体X 的一个样本,求参数θ的矩估

计量和极大似然估计量。 2、解

(1)c

X X

X c X A c dx x c x X E c -=?=-?

=-===+-∞

+?θ

θθθθθμθθ?1

,1

)(1)1(1 (2) c x x x c x

c x f L n n

i i n n

i

n

i n

i i >===∏∏∏=+-+-==,,)(),()(11

)

1()1(1

1

θθ

θθ

θθθθ

∏=+-+=n

i i x c n n L 1

)

ln()1(ln ln )(ln θθθθ (3分)

c x n x c n n

d L d n

i i n

i i ln ln 11?0)ln(ln )(ln 1

1

-=?=-+=∑∏==θθθθ 所以参数θ的极大似然估计量c X n n

i i ln ln 1

1?1

-=

∑=θ (2分)

3、设总体X 的概率密度函数为

(1)(5)56()(0)

x x f x θ

θθ?+-<<=>?

?其他

,其中θ是未知参数,

n

X X X ,,,21 是取自总体X 的一个样本,求参数θ的矩估计量和极大似

然估计量.

3、解:(1)令11A =μ,又__

1X A =,)(1X E =μ (1分)

2

1

6)

5(6)

5()5)(1()(1

6

5

6

5

1

6

5

+-

=--=-=-+=++???θθθθθ

dx x x xd dx x x X E (2分)

故θ 的矩估计量为 1

?26X

θ=

-- (1分) (2)似然函数1

1

()(;)(1)

(5)n

n

n

i i

i i L f x x θθθθ====+-∏∏, (2分)

1

1

ln ()ln(1)ln(5)

ln ()ln(5)01n

i i n

i i L n x d L n

x d θθθθθθ===++-=+-=+∑∑ (3分) 解得θ极大似然估计值为1

?1ln(5)

n

i

i n

x θ==---∑

故得θ极大似然估计量为1

?1ln(5)

n

i

i n

X

θ==-

--∑ (1分)

4、设n X X X ,,,21 是来自总体X 的样本,且总体X 的分布密度为:

??

?<<+=其它,010,)1()(x x x f θθ其中1->θ求θ的矩估计量和极大似然估计量。

4、解:(1)()()2

1

111

++=

+==++∞

-??????dx x dx x xf EX 2分 令 21

++=??x x

x --=?∧112? 2分

(2)似然函数为 ()()?

????

?

???+=∏=n i i n

x L 11 1<

()()∑=++=n

i i x n L 1

ln 1ln ln ??? …… 2分

()0ln 1ln 1

=++=∑=n i i x n

d L ???? 1

1ln n

i

i n

x

?∧

=?=--∑ ……2分

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率经典测试题及答案

概率经典测试题及答案 一、选择题 1.下列说法正确的是 () A.要调查现在人们在数学化时代的生活方式,宜采用普查方式 B.一组数据3,4,4,6,8,5的中位数是4 C.必然事件的概率是100%,随机事件的概率大于0而小于1 D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定 【答案】C 【解析】 【分析】 直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案. 【详解】 A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误; B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误; C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确; D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误; 故选:C. 【点睛】 此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键. 2.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是() A.2 3 B. 1 2 C. 1 3 D. 1 4 【答案】C 【解析】 【分析】 【详解】 用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团, 于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种, 所以,所求概率为31 93 ,故选C.

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率练习题(含答案)

概率练习题(含答案) 1 解答题 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四 面体玩具的试验:用( x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出: (1)试验的基本事件; (2)事件“出现点数之和大于3”; (3)事件“出现点数相等”. 答案 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4) (2)事件“出现点数之和大于3”包含以下13个基本事件: (1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4) (3 )事件“出现点数相等”包含 以下 4个基本事 件: ( 1 ,1),(2,2),(3,3),(4,4) 2单选题 “概率”的英文单词是“ Probability ”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“ b”的概率是 1. A. 2. B. 3. C. 4. D. 1

答案 C 解析 分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率. 解答:“Probability ”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出 现,取到字母“b”的可能性有两种, 故其概率是; 故选C. 点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现 m种结果,那么事件A的概率P(A)= . 3解答题 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球, 每次取出不放回,连续取两次.问: (1)取出的两只球都是白球的概率是多少? (2)取出的两只球至少有一个白球的概率是多少? 答案 (1)取出的两只球都是白球的概率为3/10; (2)以取出的两只球中至少有一个白球的概率为9/10。 解析 本题主要考查了等可能事件的概率,以及对立事件和古典概型的概率等有关知识,属于中档题 (1)分别记白球为1,2,3号,黑球为4,5号,然后例举出一切可能的结果组成的 基本事件,然后例举出取出的两只球都是白球的基本事件,然后根据古典概型的概率公 式进行求解即可; (2)“取出的两只球中至少有一个白球的事件”的对立事件是“取出的两只球均为黑球”,例举出取出 的两只球均为黑球的基本事件,求出其概 率,最后用 1去减之,即可求出所求. 解::(1)分别记白 球为 1,2, 3 号,黑球 为 4,5号.从口袋中每次任取一球,每次取出不放回,连 续取两次, 其一切可能的结果组成的基本事件(第一次摸到1号,第二次摸到2号 球用( 1,2)表示)空间为: Ω={(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(2,3),(3,2),(2,4),(4,2),(2,5),(5,2),(3,4),(4,3),(3,5),

概率论试题(答案)

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D) 0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3 (B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B)

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

高中概率测试题及答案

---- 第三章(概率)检测题 班级姓名学号10 小题,每小题3 分,共30 分,在每小题给出的四个选项中,只有一项是符合题(本题共一、选择题: 目要求的) 1.下列说法正确的是(). A.如果一事件发生的概率为十万分之一,说明此事件不可能发生 B.如果一事件不是不可能事件,说明此事件是必然事件 C.概率的大小与不确定事件有关 D .如果一事件发生的概率为99.999%,说明此事件必然发生1/5,已知袋中红球有3 个,则袋中共有除颜色外完全相2.从一个不透明的口袋中摸出红球的概率为 同的球的个数为().

B.8 个C..5 个10 个D.15 个A 3..下列事件为确定事件的有() (1)在一标准大气压下,20℃的纯水结冰 (2) 平时的百分制考试中,小白的考试成绩为105 分 (3)抛一枚硬币,落下后正面朝上 (4)边长为a,b 的长方形面积为ab A.1个B.2 个C.3个D.4个 4.从装有除颜色外完全相同的2 个红球和2 个白球的口袋内任取2 个球,那么互斥而不对立的两个().事件是个红球1 .至少有1 个白球,至少有.至少有A 1 个白球,都是白球B .至少有个白球D 个白球,恰有C.恰有 1 2 个白球,都是红球1 5.从数字1,2,3,4,5 中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400 的().概率是C.2/7D.2/3B、3/42/5.A (54(”的概率是K )中抽取一张牌,抽到牌“.6.从一副扑克牌张) C.A .1/54 1/18 1/27 2/27D.B. ()的概率为.5 .同时掷两枚骰子,所得点数之和为7 -- ----

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

概率统计考试试卷及答案

概率统计考试试卷及答案 一、 填空题(每小题4分,共20分) 1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P . 2. 设随机变量X 的分布函数)(,)(+∞<<-∞+= -x e A x F x 1,则___=A 3. 已知,)|(,)|(,)(21 31 41 ===B A P A B P A P 则_____)(=?B A P 4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数___)(=y f Y 5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分) 1. 设随机变量X 的概率密度为?? ???≤>=-000 x x e x f x ,,)( 已知Y=2X,求E(Y), D(Y). 2. 两封信随机地投入标号为I,II,III,IV 的四个邮筒,求第二个邮筒恰好投入1封信的概率。 3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为 ?? ? ??≤>=-000212y y e y f y Y ,,)( 求含有a 的二次方程022=++Y Xa a 有实根的概率。 4. 假设91X X ,, 是来自总体 ) ,(~220N X 的简单随机样本,求系数a,b,c 使 298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2χ分布,并求其自由 度。 5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态分布。从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15.1, 14.9, 14.8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值μ的置信区间(9610502.,./==ααz )

初三数学概率试题大全(含答案)

试题一 一、选择题(每题3分,共30分) 1. (08新疆建设兵团)下列事件属于必然事件的是( ) A .打开电视,正在播放新闻 B .我们班的同学将会有人成为航天员 C .实数a <0,则2a <0 D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( ) A.字母键 B.空格键 C.功能键 D.退格键 3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如 果口袋中装有4个红球且摸到红球的概率为1 3,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个 4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( ) A. 16 B.13 C.14 D.12 5.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( ) A.P (摸到白球)= 21,P (摸到黑球)=21 B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61 C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=3 1 D.摸到白球、黑球、红球的概率都是3 1 6.概率为0.007的随机事件在一次试验中( ) A.一定不发生 B.可能发生,也可能不发生 C.一定发生 D.以上都不对 7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个 8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.24 9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( ) A. 12 B.13 C.23 D.16 图1 图2

概率测试题及答案

概率 一、选择题(将唯一正确的答案填在题后括号内) 1.下列事件: ①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰好是白球; ③两次抛掷正方体骰子,掷得的数字之和小于13;④抛掷硬币1000次,第1000次正面向上 其中是可能事件的为( ) A .①③ B .①④ C .②③ D .②④ 2.下列事件发生的概率为0的是( ) A.随意掷一枚均匀的硬币两次,至少有一次反面朝上; B.今年冬天黑龙江会下雪; C.随意掷两个均匀的骰子,朝上面的点数之和为1; D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。 3.给出下列结论: ①打开电视机它正在播广告的可能性大于不播广告的可能性; ②小明上次的体育测试是“优秀”,这次测试他百分之百的为“优秀”; ③小明射中目标的概率为0.6,因此,小明连射三枪一定能够击中目标; ④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等. 其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个 4.书包里有数学书3本、英语书2本、语文书5本,从中任意抽取一本,则是数学书的概率是( ) A. B. C. D. 5.如图所示的两个圆盘中,指针落在每一个数上的机会均等, 那么两个指针同时落在偶数上的概率是( ) A .2519 B .2510 C .256 D .25 5 6.下列事件中,必然事件是( ) A .掷一枚硬币,正面朝上. B .a 是实数,l a l ≥0. C .某运动员跳高的最好成绩是20 .1米. D .从车间刚生产的产品中任意抽取一个,是次品. 7.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是 53,这个53的含义是( ) A .只发出5份调查卷,其中三份是喜欢足球的答卷 B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8 C .在答卷中,喜欢足球的答卷占总答卷的5 3 D .发出100份问卷,有60份答卷是不喜欢足球 8.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中 103215131

概率统计试卷及答案

概率统计试卷 A 一、填空题(共5 小题,每题 3 分,共计15分) 1、设P(A) =, P(B) = , P() = ,若事件A与B互不相容,则 = . 2、设在一次试验中,事件A发生的概率为,现进行n次重复试验,则事件A至少发生一次的概率为 . 3、已知P() = , P(B) = , P() = ,则P()= . 4、设随机变量的分布函数为则= . 5、设随机变量~,则P{}= . 二、选择题(共5 小题,每题3 分,共计15分) 1、设P(A|B) = P(B|A)=,, 则( )一定成立. (A) A与B独立,且. (B) A与B独立,且. (C) A与B不独立,且. (D) A与B不独立,且. 2、下列函数中,()可以作为连续型随机变量的概率密度. (A) (B) (C) (D) 3、设X为一随机变量,若D(10) =10,则D() = ( ). (A) . (B) 1. (C) 10. (D) 100. 4、设随机变量服从正态分布,是来自的样本, 为样本均值,已知,则有(). (A) . (B) . (C) . (D) . 5、在假设检验中,显著性水平的意义是(). (A)原假设成立,经检验不能拒绝的概率. (B)原假设不成立,经检验被拒绝的概率. (C) 原假设成立,经检验被拒绝的概率. (D)原假设不成立,经检验不能拒绝的概率. 三、10片药片中有5片是安慰剂, (1)从中任取5片,求其中至少有2片是安慰剂的概率. (2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率. (本题10分) 四、以表示某商店从早晨开始营业起直到第一个顾客到达的等待时间(以分计),的分布函数是 求下述概率: (1){至多3分钟}. (2){3分钟至4分钟之间}. (本题10分) 五、设随机变量(,Y)的概率密度为 (1) 求边缘概率密度.

概率论模拟试题(附答案)

模拟试题(一) 一.单项选择题(每小题2分,共16分) 1.设B A ,为两个随机事件,若0)(=AB P ,则下列命题中正确的是( ) (A) A 与B 互不相容 (B) A 与B 独立 (C) 0)(0)(==B P A P 或 (D) AB 未必是不可能事件 2.设每次试验失败的概率为p ,则在3次独立重复试验中至少成功一次的概率为( ) (A) )1(3p - (B) 3)1(p - (C) 31p - (D) 21 3 )1(p p C - 3.若函数)(x f y =是一随机变量ξ的概率密度,则下面说法中一定成立 的是( ) (A) )(x f 非负 (B) )(x f 的值域为]1,0[ (C) )(x f 单调非降 (D) )(x f 在),(+∞-∞内连续 4.若随机变量ξ的概率密度为)( 21)(4 )3(2 +∞<<-∞=+- x e x f x π , 则=η( ))1,0(~N (A) 2 3 +ξ (B) 2 3 +ξ(C) 2 3-ξ(D) 2 3 -ξ 5.若随机变量ηξ ,不相关,则下列等式中不成立的是( ) (A) 0),(=ηξCov (B) ηξηξD D D +=+)( (C) ηξξηD D D ?= (D) ηξξηE E E ?= 6.设样本n X X X ,,,21???取自标准正态分布总体X ,又S X ,分别为样本均值及样本标准差,则( ) (A) )1,0(~N X (B) )1,0(~N X n (C) ) (~21 2n X n i i χ∑= (D) )1(~-n t S X 7.样本n X X X ,,,21 )3(≥n 取自总体X ,则下列估计量中,( )不是总体期望μ的无偏估计量

概率统计试卷A及答案

2010―2011―2概率统计试题及答案 一、选择题(每题3分,共30分) 1.已知4 1)()()(= ==C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率______. 31) (A 83)(B 157)(C 5 2 )(D 2.设A 、B 、C 为3个事件.运算关系C B A 表示事件______. (A ) A 、B 、C 至少有一个发生 (B ) A 、B 、C 中不多于—个发生 (C ) A ,B ,C 不多于两个发生 (D ) A ,月,C 中至少有两个发生 3.设X 的分布律为),2,1(2}{ ===k k X P k λ,则=λ__________. 0)(>λA 的任意实数 3)(=λB 3 1 )(= λC 1)(=λD 4.设X 为一个连续型随机变量,其概率密度函数为)(x f ,则)(x f 必满足______. (A ) 1)(0≤≤x f (B ) 单调不减 (C ) 1)(=? ∞+∞ -dx x f (D ) 1)(lim =+∞ →x f x 5.对正态总体的数学期望μ进行假设检验,如果在显著性水平α=0.05下接受 00:μμ=H ,那么在显著性水平 α=0.01下,下列结论正确的是______. (A ) 必接受0H (B )可能接受也可能拒绝0H (C ) 必拒绝0H (D )不接受,也不拒绝0H 6.设随机变量X 和Y 服从相同的正态分布)1,0(N ,以下结论成立的是______. (A ) 对任意正整数k ,有)()(k k Y E X E = (B ) Y X +服从正态分布)2,0(N (C ) 随机变量),(Y X 服从二维正态分布

概率真题汇编及答案

概率真题汇编及答案 一、选择题 1.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为() A.3 4 B. 1 3 C. 1 2 D. 1 4 【答案】C 【解析】 【分析】 算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】 解:设小正方形的边长为1,则其面积为1. Q圆的直径正好是大正方形边长, ∴22,∴2, 222 =,则小球停在小正方形内部(阴影)区域的概率为1 2 . 故选:C. 【点睛】 概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法. 2.岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是() A.1 2 B. 1 3 C. 1 6 D. 1 9 【答案】B 【解析】 【分析】 先画树状图(国学诗词组、篮球足球组、陶艺茶艺组分别用A、B、C表示)展示所有9种等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可.【详解】 画树状图为:(国学诗词组、篮球足球组、陶艺茶艺组分别用A. B. C表示)

共有9种等可能的结果数,其中小斌和小宇两名同学选到同一课程的结果数为3, 所以小斌和小宇两名同学选到同一课程的概率=31 93 , 故选B. 【点睛】 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 3.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是() A.1 3 B. 4 9 C. 1 9 D. 2 3 【答案】A 【解析】 【分析】 将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案. 【详解】 将三个小区分别记为A、B、C,根据题意列表如下: A B C A(A,A)(B,A)(C,A) B(A,B)(B,B)(C,B) C(A,C)(B,C)(C,C) 由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况, 所以他们恰好抽到同一个小区的概率为31 = 93 . 故选:A. 【点睛】 此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.

概率统计复习试卷及答案

(勤奋、求是、创新、奉献) 2011~ 2012 学年第 一 学期考查试卷 主考教师: 彭利平 课程序号 班级 学号 姓名 《概率论与数理统计A 》课程试卷 (A 卷)标准答案 (本卷考试时间 90 分钟) 题号 一 二 三 四 五 六 七 总得分 题分 24 24 12 10 10 10 10 得分 一、单项选择题(本题共8小题,每小题3分,共24分,将答案填在下面的横线上) 1. B ; 2. C ; 3. D ; 4. B ; 5. C ; 6. A ; 7. A ; 8. D . 1.从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( B ). (A )4852 (B )5 48 552 C C (C )54852C ( D )554852 2. 设随机变量X 和Y 不相关,则下列结论中正确的是( C ) (A )X 与Y 独立. (B )()()()D X Y D X D Y -=- (C )()()()D X Y D X D Y -=+. (D )()()()D XY D X D Y =. 3.如果随机变量X 的概率密度为,01 ()2,120,x x x x x ?≤≤?? =-<≤??? 其他 ,则P (X ≤1.5)= ( D ) (A ) 1.5 xdx -∞ ? (B ) 1.5 (2)x dx -? (C ) 1.5 xdx ? (D )1 1.5 01 (2)xdx x dx +-??

4.设随机变量X 的2 (),(),E X D X μσ==用契比雪夫不等式估计{||3}P X μσ-≤( B ). (A )89≤ ; (B )89≥; (C )19≤; (D )1 9 ≥ 5.设总体2 ~(,)X N μσ,且μ已知、2 σ未知,设123,,X X X 是来自该总体的一个样本, 则下列样本的函数中是统计量的为( C ). (A )2 1231()3 X X X σ+++ (B )1232X μX σX ++ (C )222123X X X μ++- (D )22 123X σX X ++ 6.设X 的分布律为 ()F x 为其分布函数,则(2)F =( A ). (A )0.8 (B )0.6 (C )0.4 (D )0.2 7.设12,, ,n X X X 是来自总体2 (,N μσ)的样本,记22 11()n n i i S X X n ==-∑,1 1n i i X X n ==∑, 则) n X Y S μ-= 服从的分布是( A ). )(A (1)t n - )(B (0,1)N )(C 2(1)n χ- )(D ()t n 8. 对总体2 ~(,X N μσ)的均值μ作区间估计,得到置信度为0.95的置信区间,其意是指这个区间( D ). (A)平均含总体95%的值 (B) 平均含样本95%的值 (C) 有95%的机会含样本的值 (D) 有95%的机会含μ的值 二、填空题(本题共8小题,每小题3分,共24分,将答案填在下面的横线上) 1. c b - ; 2. (8,97)N ; 4. 3 14e -- ;

相关主题