搜档网
当前位置:搜档网 › 现代医学电子仪器原理与设计课件第二版_第一章[26P][8.20MB]

现代医学电子仪器原理与设计课件第二版_第一章[26P][8.20MB]

医学电子仪器复习与练习指导-1

现代医学电子仪器原理与设计复习指导 目录 0阅读材料复习与练习 (1) 第一章医学仪器概述 (1) 第二章生物信息测量中的噪声和干扰 (1) 第三章信号处理 (2) 第四章生物电测量仪器 (4) 第五章血压测量 (6) 第六章医用监护仪器 (8) 第七章心脏治疗仪器与高频电刀 (10) 第八章医用电子仪器的电气安全 (11)

0阅读材料复习与练习 1.()主要指那些单纯或组合应用于人体,用于生命科学研究和临床诊断治疗的仪器,包括所需的软件。 2.随着当今人类社会的发展和对医学模式认识上的转变,特别是以Internet 为代表的信息技术的普及,以医院为中心的模式必然会再次回归到以()的医学模式上来。医学仪器的设计应充分认识这一医学发展的必然趋势。 3.以()为中心的医学模式正在崛起,我们从事医学仪器设计应充分认识到这一发展趋势。 4.()技术是对生物体中包含的生命现象、状态、性质及变量和成分等信息的信号进行检测和量化的技术。 5. ()技术即是研究从被检测的湮没在干扰和噪声中的生物医学信号中提取有用的生物医学信息的方法。 6.()实质上是某一专门知识,例如某种疾病的诊断、处方,某些矿物的资源勘探数据分析等的计算机咨询系统(软件)。专家系统的基础是(),一类是已经总结在书本上的定律、定理和公式等,另一类是专家们在实际工作中长期积累的经验、教训。 7.请给出虚拟医学仪器的系统构成,并叙述各模块的功能。 8.请简述应用CMOS电路的注意事项。 9.施乐PARC研究中心首席科学家马克.威瑟提出宁静技术(Calm Technology):“技术应无缝地融入我们的生活,而不是让我们时时感到技术的战栗与恐惧;我们不会消失在电脑空间中,而是电脑将消失在我们的生活中。”结合课程学习体会谈谈宁静技术对医学仪器设计的启示。 第一章医学仪器概述 1.依据检测和处理信号的方法不同,医学仪器的工作方式分为:( )和间接、()和延时、间断和连续、模拟和()。2.依据医学仪器的用途不同,医学仪器通常分为:()用仪器,如生物电诊断与监护、生理功能诊断与监护、人体组织成分的电子分析、人体组织结构形态影像诊断;()用仪器,如电疗、光疗、磁疗与超声波治疗。 3.()方法,即是为了研究、分析生理系统而建立的一个与真实系统具有某种相似性的模型,然后利用这一模型对生理系统进行一系列实验,这种在模型上进行实验的过程就称为系统仿真。

现代医学电子仪器原理与设计考试重点

第一章医学仪器概述1、人体系统的特征人体是一个复杂的自然系统,分为器官自控制系统、神经控 制系统、内分泌系统和免疫系统。器官自控制系统具有不受神经系统和内分泌系统控制的机制,如心脏的收缩与舒张。神经控制系统是一种由神经进行快速反应的控制调节机制,如人的喜怒哀乐。内分泌系统通过循环系统的路径将信息传到全身细胞进行控制。免疫系统识别异物,排斥异物。 2、人体控制功能的特点负反馈机制、双重支配性、多重层次性、适应性、非线 性。 3、生物信号的基本特性不稳定性、非线性、概率性、信号弱、噪声强、频率范 围低。 4、生物信号类型 电信号生物电电极 利用材料的物理变化物理传感器 非电信号利用化学反应把化学成分、化学传感器 生物传感器 5、医学电子仪器从功能上来说主要有生理信号检测和治疗两大类。 6、医学电子仪器的基本构成 1)生物信号采集系统包括被测对象、传感器或电极

2)生物信号处理系统包括信号与处理和信号处理 预处理一般包括过压保护、放大、识别(滤波)、调制\解调、阻抗匹配 3)生物信号的记录与处理方式有直接描记式记录器(模拟量)、存储记录器(模拟量或数字量)、数字式显示器(数字量) 4)辅助系统包括控制和反馈、数据存储和传输、标准信号产生和外加能量源 控制和反馈分为开环和闭环两种调节控制系统。手动控制、时间程序控制均属开环控制;通过反馈回路对控制对象进行调节的自动控制系统称为闭环系统。 外加能量源是指仪器向人体施加的能量(X射线、超声波等),用其对生物做信息检测,而不是靠活组织自身的能量。 7、医学仪器的主要技术特性 1)准确度---越小越好,不存在准确度为零的仪器,准确度也称为精度准确度=(理论值-测量值)/理论值*100% 是衡量仪器测量系统误差的一个尺度 2)精密度可以表示在相同条件下用同一种方法测量所得数值的接近程度。 3)输入阻抗---越大越好,外加输入变量与相应应变量之比 生物放大电极应大于输入电阻的100倍 电极-皮肤接触电阻 2~150K 引线和保护电阻 10~30K 体表电极10~150K 4)灵敏度输出变化量与引起它变化的输入变化量之比。当输入为单位输入

现代电子系统设计与实践 复习资料

一、选择题 1、蓝色发光二极管正常工作时,其二端电压大约等于() A、1V B、2V C、3V D、4V 2、二极管由于省电,长寿,鲜艳而常被用来作指示,以下哪个工作电流是合适的?() A、0.5mA B、5mA C、50mA D、500mA 3、三极管在放大状态工作在什么区?() A、截止区 B、放大区 C、非线性区 D、饱和区 4、整流电源中的滤波电容的取值与负载有关,R*C取值?() A、>(2~5)T/2 B、>(2~5)T/2 C、C=1000uF D、随意 5、单晶体管由于其震荡的特有特性常可用于() A、放大特性 B、负阻特性 C、同步控制 D、震荡特性 6、我们经常可以看到,在电子产品中,有黑色的铝材,都是为了(C) A、美观 B、增加重量 C、便于散热 D、便于器件固定 7、运放工作正常的时候,其同相端和反相端的电压是() A、6V B、1/2Vcc C、1/3Vcc D、1/4Vcc 8、差分电路中的射极电阻可以提高放大器的() A、工模抑制比 B、差模电压增益 C、共模电压增益 D、输入信号的线性范围 9、反相器作放大器时,其上的反相电阻可以取() A、100欧 B、1千欧 C、100千欧 D、1兆欧 10、共发射极放大电路中,Uce取多少才合适() A、6V B、1/2 Vcc C、1/3Vcc D、1/4Vcc 11、为了改善组合逻辑电路由于竞争而出现冒险而影响后续电路的正常工作,下面哪项措施是不妥的() A、增加选通门 B、换滤波器 C、选高速器件 D、消除卡诺图中的相切相

12、用CMOS非门制作的晶体振荡器中,没有信号输出,最易疏忽的是() A、忘了换电容 B、震荡电容用了电解电容 C、忘了接反馈电阻 D、忘了接电容 13、设计多输出组合逻辑,既方便又经济的是采用() A、门电路 B、译码器 C、数据选择器 D、CPLD 14、普通的单电压比较器,左转换点,可能出现来回振荡现象,解决的办法是() A、提高比较电压 B、加负反馈 C、加正反馈 D、降低比较电压 15稳压二极管是利用它的()特性 A、稳压特性 B、非线性 C、发光原理 D、单向导电特性 16、高频放大器通常工作在() A、甲类 B、乙类 C、丙类 D、丁类 17、检波二极管是利用它的()特性 A、稳压特性 B、非线性 C、发光原理 D、单向导电特性 18、做实验时常常不小心把电源短路了,但也没发现电源坏了,那是因为() A、电源质量不好 B、有过压保护 C、有输出过载保护 D、运气好 19、OTL放大器通常工作在() A、甲类 B、乙类 C、丙类 D、丁类 20、检波电路的后缀如果输入阻抗不够大,可能会出现() A、惰性失真 B、滤波效果变差 C、限幅失真 D、负锋切割 21、在正交鉴频电路中,为了便于制作正交线圈,和降低成本,实际的正交线圈是一个() A、纯电感 B、晶体 C、并有合适的电容 D、并了个电阻 22、差分电路中的恒流源可以提高放大器的() A、工模抑制比 B、差模电压增益 C、共模电压增益 D、输入信号的线性范围 23、对于MCS-51系列单片机,内部RAM中堆栈指针SP的指针指向()

现代电子系统设计习题解答1

第1章习题解答 1.常用电子元器件有哪些? 答、常用电子元器件有电阻器、电容器、电感器、晶体管、电子管、集成电路等。 2.电阻器是如何分类的?图1.13所示为哪种电阻器?请画出该电阻器的电路符号。 答:电阻器通常分为三类:固定电阻、特殊电阻及可调电阻。 图1.13所示为电位器(可变电阻器)。电路符号如下: 3.电阻器有哪些主要技术指标? 答:电阻器的主要技术指标有额定功率、标称阻值、精度、温度系数、非线性、噪声、极限电压等。 4.电阻器的质量如何判别? 答:电阻器的质量判别可采用以下方法: 1)看电阻器引线有无折断及外壳烧焦现象。 2)用万用表电阻测量阻值,合格的电阻器应稳定在允许的误差范围内,如超出误差范围或阻值不稳定,则不能选用。 3)根据“电阻器质量越好,其噪声电压越小”的原理,使用“电阻噪声测量仪”测量电阻器噪声、判断电阻器质量的好坏。 5.电位器的主要技术指标有哪些? 答:电位器的主要技术指标有标称阻值、额定功率、滑动噪声、分辨力、阻值变化规律等。 6.电位器的质量如何判别? 答:可通过以下两个步骤判别电位器的质量: 1)用万用表电阻档测量电位器两个同定端的电阻,并与标称值核对阻值。如果万用表指针不动或比标称值大的多,表明电位器已坏;如表针跳动,表明电位器内部接触不良。 2)测量电位器的滑动端与固定端的阻值变化情况。移动电位器的滑动端,若阻值从最小到最大之间连续变化,并且最小值越小越好,最大值接近标称值,说明电位器质量较好;如阻值间断或不连续,说明电位器滑动端接触不好,则不能选用。 7.色环电阻器的阻值如何识别?有一个四环碳膜电阻器,色环顺序是红、紫、黄、银。这个电阻器的阻值和误差是多少? 答:阻值为270KΩ,误差为±10%。 8.图1.14为光敏电阻器的结构图,请说出其工作原理。 图1.13 习题2图图1.14 光敏电阻器的结构图答:光敏电阻器是一种对光敏感的元件,其电阻值能随着外界光照强弱(明暗)变化而

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

医学仪器原理及设计试题库(2016)

一、简答题 第一章 1、简述医疗器械的定义。 指那些单独或组合应用于人体的仪器、设备、器具、材料或其它物品,包括所需要的软件; 2、简述生物医学信号的基本特征。 不稳定性非线性概率性 3、简述医疗仪器的特殊性。 噪声特性、个体差异与系统性、生理机能的自然性、接触界面的多样性 操作与安全性 4、画出医学电子仪器的结构框图,简述各组成部分的作用 (1)被测量(被测对象):需要医学仪器测量的人体的物理量、化学量、特性和状态等。 (2)传感器:传感器是将一种能量转换成另一种能量的器件。 (3)生物信息的处理:为了从检测到的信号中获得更多的有用信息,同时使信息的特征更明确、更 准确、更直观 (4)生物信息的记录与显示系统:记录显示,供人可直接观察 5、简述医学仪器的主要技术指标。 准确度:衡量仪器测量系统误差的一个尺度 精密度:指仪器对测量结果区分程度的一种度量 输入阻抗:外加稳态作用力输入变量X1 (如电压、力、压强等)与相应稳态流速输入变量X2 (如电流、速度、流量等)之比为仪器的输入阻抗。 灵敏度:指输出变化量与引起它变化的输入变化量之比。 频率响应:仪器保持线性输出时,允许其输入频率变化的范围,它是衡量系统增益随频率变化的一个尺度 信噪比:定义为信号功率PS与噪声功率PN之比 零点漂移:仪器的输入量在恒定不变(或无输入信号)和恒定条件下,输出量偏离原来起始值而上、下漂动、缓慢变化的现象 共摸抑制比:放大差模信号和抑制共模信号的能力为共模抑制比 6、简述医学仪器的设计步骤。 (1)建立生理模型(2)系统设计(3)试验样机设计(4)动物实验研究 (5)临床试验(6)医疗仪器新产品的审批和注册

现代医学电子仪器原理与设计总结

医学仪器(medical instrument):以医学临床诊治和医学研究为目的的仪器,包括所需软件。生物信息:生物体的细胞、组织、器官的生理、病理、药理过程所反映出来的各种信息。医学电子仪器主要是用来检测和处理生物信息,从而分析研究人体(生物体)的结构与机能,给诊断提供依据,或用于辅助治疗。 该类医学仪器主要有两方面用途: (1)探寻生物成份或生物组织机体的特性和内部结构(用来诊断); (2)导致生物特性的改变或形成生物效应和破坏(用来治疗和康复手术)例如:辐射治疗肿瘤、激光治疗近视眼等。 医学仪器基本构成 (一)生物信号采集系统:包括被测对象、传感器或电极,它是医学仪器的信号源。传感器和电极的性能好坏直接影响到医学仪器的整体性能。 (二)生物信号息处理系统:对信息检测系统传送过来的信号进行处理,包括放大、识别(滤波)、变换运算等各种处理和分析。 (三)生物信息的记录与显示系统:将处理后的生物信息变为可供人们直接观察的形式。 (四)辅助系统:辅助系统一般包括控制和反馈、数据存储和传输、标准信号产生和外加功能源等部分。 医学仪器工作方式: 医学仪器的工作方式是指因其检测和处理生物信息方法的不同,而采用的直接的或间接的、实时的或延时的、间断的或连续的、模拟的或数字的各种工作方式。 一、医学仪器的主要技术特性 a) 1. 准确度(accuracy) b) 2. 精密度(precision)用同一种方法多次测量所得的数值的接近程度。 c) 3. 输入阻抗(input impedance)医学仪器的输入阻抗与被测对象的阻抗特性、 所用电极或传感器的类型及生物体接触界面有关。其表达式通常为: d) 4. 灵敏度(sensitivity)当输入为单位输入量时,输出量的大小即为灵敏度的值。 e) 5. 频率响应(frequency response) f) 6. 信噪比(signal to noise ratio)噪声定义:除被测信号之外的任何干扰。 g)7. 零点漂移(zero drift)仪器的输入量在恒定不变(或无输入信号)时,输出 量偏离原来起始值而上、下飘动、缓慢变化的现象称为零点漂移。 8.共模抑制比(CMRR——common rejection ratio)衡量放大差模信号和抑制共模信 号的能力为共模抑制比,用下式表示:CMRR=Ad/Ac; 9.共模抑制比(CMRR)是衡量诸如心电、脑电、肌电等生物电放大器,对共模干扰抑 制能力的一个重要指标 三.建立生理系统模型的基本方法 将实际条件理想化,将具体事物抽象化,将复杂系统简单化 四.构建生理模型的常用方法 理论分析法:应用自然科学中已被证明的正确的理论、原理和定律,对被研究系统的有关要素进行分析、演绎、归纳,从而建立系统的数学模型。建模案例:无创血氧饱和度检测类比分析法:建模案例:无创连续血压测量 数据分析法:心率变异性分析 四、医学仪器的分类

医疗仪器原理与设计期末总结缩印

医学仪器(medical instrument ):以医学临床诊治和医学研究为目的的仪器,包括所需软件。 生物信息:生物体的细胞、组织、器官的生理、病理、药理过程所反映出来的各种信息 。 医学电子仪器主要是用来检测和处理生物信息,从而分析研究人体(生物体)的结构与机能,给诊断提供依据,或用于辅助治疗。 该类医学仪器主要有两方面用途: (1)探寻生物成份或生物组织机体的特性和内部结构(用来诊断); (2)导致生物特性的改变或形成生物效应和破坏(用来治疗和康复手术)例如:辐射治疗肿瘤、激光治疗近视眼等。 医学仪器基本构成 (一)生物信号采集系统:包括被测对象、传感器或电极,它是医学仪器的信号源。传感器和电极的性 能好坏直接影响到医学仪器的整体性能。 (二)生物信号息处理系统:对信息检测系统传送过来的信号进行处理,包括放大、识别(滤波)、变 换运算等各种处理和分析。 (三)生物信息的记录与显示系统:将处理后的生物信息变为可供人们直接观察的形式 。 (四)辅助系统:辅助系统一般包括控制和反馈、数据存储和传输、标准信号产生和外加功能源等部分。 医学仪器工作方式: 医学仪器的工作方式是指因其检测和处理生物信息方法的不同,而采用的直接的或间接的、实时的或延 时的、间断的或连续的、模拟的或数字的各种工作方式。 一、医学仪器的主要技术特性 a) 1. 准确度(accuracy ) b) 2. 精密度(precision ) 用同一种方法多次测量所得的数值的接近程度。 c) 3. 输入阻抗(input impedance ) 医学仪器的输入阻抗与被测对象的阻抗特性、所用电 极或传感器的类型及生物体接触界面有关。其表达式通常为: d) 4. 灵敏度(sensitivity ) 当输入为单位输入量时,输出量的大小即为灵敏度的值。 e) 5. 频率响应(frequency response ) f) 6. 信噪比(signal to noise ratio ) 噪声定义:除被测信号之外的任何干扰。 g) 7. 零点漂移(zero drift ) 仪器的输入量在恒定不变(或无输入信号)时,输出量偏离原 来起始值而上、下飘动、缓慢变化的现象称为零点漂移。 8. 共模抑制比(CMRR ——common rejection ratio ) 衡量放大差模信号和抑制共模信号的能力为共模抑制比,用下式表示:CMRR=Ad/Ac; 9. 共模抑制比(CMRR )是衡量诸如心电、脑电、肌电等生物电放大器,对共模干扰抑制能力的一个重要指标 三.建立生理系统模型的基本方法 将实际条件理想化,将具体事物抽象化,将复杂系统简单化 四.构建生理模型的常用方法 理论分析法:应用自然科学中已被证明的正确的理论、原理和定律,对被研究系统的有关要素进行分析、 演绎、归纳,从而建立系统的数学模型。建模案例:无创血氧饱和度检测 类比分析法:建模案例:无创连续血压测量 数据分析法:心率变异性分析 四、医学仪器的分类 1.基本分类方法:(1)根据检测的生理参数来分类;(2)根据转换原理的不同进行分类 (3)根据生理系统中的应用来分类;(4)根据临床的专业进行分类 2.医学仪器按用途分类 (1)诊断用仪器(2)理疗用仪器 (一)物理模型::根据实体性质构造的模型 (二)数学模型:利用数学表达式刻画系统内部的数量关系,定量探求系统运转规律。1、黑 箱方法2、推导方法 (三)描述模型:抽象(没有物理实体)、不能(或很难)用数学方程表达,只能用自然语 言或程序语言描述的系统模型,即尚未数学化或有待数学化的模型。 医学仪器设计步骤:1.生理模型的构建,2系统设计。3实验样机设计。4动物实验研究。5 临床实验。6仪器的认证与注册。 第二章 生物信息检测中的噪声和干扰 (一)干扰源:能产生一定电磁能量影响周围电路正常工作的物体或设备称为干扰源。 (二)干扰耦合途径:传导耦合:经导线传播把干扰引入测试系统,称为传导耦合。 经公共阻抗耦合:在测试系统内部各单元电路之间,或两种测试系统之间存在公共阻抗,电流流经公共 阻抗形成的压降造成干扰。 电场和磁场的耦合:场的特性取决于“场源”的性质、场源周围的介质以及观察点与源之间的距离等。 近场感应耦合:1)电容性耦合,2)电感性耦合 生物电测量中电场的电容性耦合 采取下述方法减小U2S : 远离干扰源,削弱干扰的影响。采用绞合线的走线方式。尽量减少耦合通路,即减少面积A 和cos θ值。 二. 合理接地与屏蔽:一)合理接地:一类是安全接地,称为保护接地;一类是工作接地,即对信号电压设立基准电位。二)屏蔽效果 泛指在两个空间区域加以金属隔离,用以控制从一个区域到另一个区域电场或磁场的传播 三. 其它抑制干扰的措施:隔离,去耦,滤波,系统干扰的抑制。 生物医学测量系统中的主要噪声类型:1/f 噪声--闪烁噪声、低频噪声 ,热噪声,散粒噪声 描述放大器噪声性能的参数:1。Un.In 参数。(二)噪声系数 F=总的输出噪声功率/源电阻产生的输出噪声功率=总的等效输入噪声功率/源的热噪声功率=输入信噪比(Si/Ni)/输出信噪比(So/No);意义:噪声系数是放大器引起的信号质量(信噪比)恶化程度的度量。(三)多级放大器的总噪声 噪声性能指标:用放大器输入端对地短路时的固有噪声Uni 作为放大器的噪声性能指标。 第三章 信号处理 差动放大电路分析方法:1. 共模抑制比CMRRr=Ad/Ac1;定义由外电路电阻匹配精度所限定的放大器的共模抑制比为CMRRR ,所用的集成器件本身的共模抑制比为CMRRD 。 差动放大器的共模抑制能力受到以下因素的影响:1闭环电路的增益;2外电路电阻匹配精度;3放大器本身的共模抑制比等。 解决方法(提高生物电放大器前置级的输入阻抗): 方案一:是把差动输入信号都从同相侧送入,采用图3-3的同相并联结构。 方案二:是在差动放大电路前面增加一级缓冲级(同相电压跟随器),实现阻抗变换。 同相并联差动放大电路构成生物电前置级时,其共模抑制能力取决于: (1)A1,A2运放器件的CMRR1和CMRR2的对称程度; (2)A3运放器件的共模抑制比; (3)差动放大级的闭环增益; (4)RF,R1电阻的匹配精度; (5)同相并联的第一级差动增益。 浮地(或浮置),即信号在传递的过程中,不是利用一个公共的接地点逐级地往下面传送(如阻容耦合、直接耦合等),而是利用诸如电磁耦合或光电耦合等隔离技术,信号从浮地部分传递到接地部分,两部分之间没有电路上的直接联系。 设计方法:公式法 图表法: 有源带阻滤波器 滤除频带中某一频段内的成分 阻带宽度B ——表征带阻滤波器的频率抑制或选频特性。B 越小表示阻带越窄,即陷波器对阻带外的信号衰减越小。 品质因数Q ——Q 越高,频率选择性越好,但是较高的Q 值会导致滤波器性能不稳定。 工频陷波器——双T 有源陷波器和文氏桥陷波器 极化现象:在有电流通过电极/溶液界面时,电极电位从平衡电极电位E (0)变为一个新的、与电流密度有关的电极电位E (i ),将电极在有电流通过时的电极电位与它没有电流通过时的平衡电极电位发生偏离的现象 电极的极化:当电流流经一对电极时,电极会出现极化现象并产生极化电位。 标准导联:以两肢体间的电位差为所获取的体表心电。 心电图机信号通道部分电路:输入部分,威尔逊电阻网络,时间常数,导联切换复零电路,1mv 定标电路,电极脱落检测电路,肌电滤波电路,50Hz 滤波电路,灵敏度选择电路,光耦隔离电路 心电图机的主要性能参数:输入电阻,灵敏度,噪声和漂移,时间常数,线性,极化电压,阻尼,频率响应特性,共模抑制比,走纸速度,绝缘性能。 脑电图机导联:单极导联法是将活动电极置于头皮上,并通过导联选择开关接至前置放大器的一个输入端(G1);无关电极置于耳垂,并通过导联选择开关接至前置放大器的另一个输入端(G2)。 双极导联法不使用无关电极,只使用头皮上的两个活动电极。这样记录下来的是两个电极部位脑电变化的差值,因此可以大大减小干扰,并可排除无关电极引起的误差; 生理血压力量的直接测量:第一类:将血管内测量点的压力引出(一般通过充满液体的导管)体外,传感器置于体外进行测量; 第二类:测量则是将传感器置于导管的顶端,直接进入血管内测试点进行测量。 传感器置于体内的测量 :这是一种将传感器置于导管端部,并能直接达到被测部位的测量方式。由于不需要置于体外的传感器中所用的传导压力量的液体,因此在频响和时延方面均能达到更理想的指标(一般可达几千赫兹)。 血压传感器标定原理电路:传感器的灵敏度加以标定。并使不同灵敏度的传感器与同一测量电路相配时,仍可得到同样的结果显示。 血压间接测量:1超声法原理:运用超声波对血流和血管壁运动的多普勒效应来检测收缩压和舒张压。2,测振法(示波法)首先把袖带捆在手臂上,自动对袖带充气,到一定压力(一般为180- 230 mmHg )开始放气,当气压到一定程度,血流就能通过血管,且有一定的振荡波,振荡波通过血管传播到机器里的压力传感器,压力传感能实时检测到所测袖带内的压力及波动。逐渐放气,振荡波越来越大。再放气由于袖带与手臂的接触越松,因此压力传感器所检测的压力及波动越来越小。 第六章:医用监护仪器 监护仪的分类:1.监护仪器按结构可以分成以下四类:便携式监护仪、一般监护仪、遥测监护仪、Holter 心电监测记录仪。 2、依据病症分类:有冠心病自动监护仪、危重病人自动监护仪、手术室自动监护仪、手术后自动监护仪等等。 3、根据使用范围分类:有床边监护仪、中央监护仪和离院监护仪三种,智能化和非智能化; 医用监护仪结构:一是工业电视摄像与放像系统;二是必要的抢救设备,三是多种生理参数智能监护仪。 呼吸测量:1、热敏式呼吸测量;2、阻抗式呼吸测量:呼吸引起的肌体组织电阻抗变化; 血氧饱和度:透射法:根据郎伯-比尔定律,当一束光照射到某种物质的溶液上时,物质对光有一定的吸收衰减,透射光强I 与入射光强I0之间有以下关系:I =I0e-cd;利用氧合血红蛋白和非氧合血红蛋白对不同波长红光和红外光的吸收存在差异. 第七章:心脏起搏器与除颤器:心脏起搏器:能人工产生起搏兴奋脉冲波并把它释放给心脏的装置。用较强的脉冲电流通过心脏来消除心律失常,使之恢复窦性心律的方法,称为电击除颤或电复律术。 用于心脏电击除颤的设备称为除颤器, 起搏器的作用:1、治疗:人工心脏电起搏器能治疗一些严重的心律失常。2、诊断:还可用于某些疾病的诊断。3、药理及实验研究: 脏起搏器的适应症:房室传导阻滞、三束支阻滞、病态窦房结综合症 心脏起搏器的分类:1、感应式:2、经皮式;3、埋藏式;(非同步型:同步型起搏器) 除颤器原理:除颤机制:用强电击来使绝大多数心肌细胞同时去极,压制快速兴奋波的产生,这些细胞可以重新极化,回到各自的相位。 起搏和除颤的区别:起搏是用一定形式的脉冲电流刺激心脏,使有起搏功能障碍或房室传导功能障碍等疾病的心脏按一定频率应激收缩。 除颤(电击复律)时作用于心脏的是一次瞬时高能脉冲,一般持续时间是4~10ms ,电能在40~400瓦·秒(焦耳)内。 心脏除颤器的一般原理 :电压变换器是将直流低压变换成脉冲高压,经高压整流后向储能电容C 充电,使电容上获得一定储能。 除颤治疗时,控制高压继电器J 动作,使充电电路被切断,由储能电容C 、电感L 及人体(负荷)串联接通,使之构成RLC (R 为人体电阻、导线本身电阻、人体与电极的接触电阻三者之和)串联谐振衰减振荡电路,即为阻尼振荡放电电路,通过人体心脏的电流刺激心肌完成除颤功能。 高频电刀:通过有效电极尖端产生的高频(通常200kHz 至3MHz)高压电流与肌体接触时对组织进行加热,实现对肌体组织的分离和凝固,从而起到切割和止血的目的。 高频电刀工作模式:单极模式:用一完整的电路来切割和凝固组织,该电路由高频电刀内的高频发生器、病人极板、接连导线和电极组成。在大多数的应用中,电流通过有效导线和电极穿过病人,再由病人极板及其导线返回高频电刀的发生器。 2.双极模式:双极电凝是通过双极镊子的两个尖端向机体组织提供高频电能,使双极镊子两端之间的血管脱水而凝固,达到止血的目的。它的作用范围只限于镊子两端之间,对机体组织的损伤程度和影响范围远比单极方式要小得多,

医学仪器(1)复习题(含答案)

医学仪器(1)复习题 第 1 章现代医学仪器设计概论 1.医学仪器设计的基本步骤是什么? 答:(1)生理模型的构建;(2)系统设计;(3)实验样机研制;(4)动物实验研究;(5)临床实验;(6)仪器的认证与注册。 第 2 章生理系统建模与仪器设计 2.建立类比模型对研究生理系统有什么益处? 答:可以帮助我们把比较了解和熟悉的系统,推广到还不了解和生疏的系统中去。 3.为什么说生理系统建模是医学仪器设计中最为关键的一步? 答:建模是医学仪器设计的第一步,也是最为关键的一步,它是我们对生命现象进行科学定量描述的产物,在满足特定条件的医学临床与研究的前提下,生理系统模型为医学仪器设计提供了可参照的理论依据。生理系统建模为医学仪器设计提供了理论指导。 4.写出血氧饱和度表达式、在用理论分析法对血氧饱和度的无创检测建模的实验观察中滤波后的电流分为哪两部分?其中与用于血氧饱和度测量的是哪一部分?血氧饱和度的无创检测建模是如何采用近似来简化其数学模型的?用于检测的光线有哪两种?为什么采用这两种光线? 答:滤波后的电流分为直流(DC)和交流(AC),其中交流部分用于血氧饱和度的测量。根据△Imax/Imax和△I′max/I′max远小于1,故将分子和分母中的对数项按级数展开后,取级数的第一项近似,得到其数学模型。波长为805nm的近红外光和波长为650的红光,因为氧合血红蛋白与还原血红蛋白对这两种光的吸收不一样。 5.人体心血管的力学和电学模型建模中血流力学方程和血流的电学方程是什么关系? 答:两者的形式是一样的。 6.什么是金标准比较法? 答:即把样机与医学上公认的标准方法进行实验比较,或与临床使用多年已被国际有关权威机构认同的仪器作实验比较,然后再对模型参数和仪器设计作相应的改进与完善。 7.采用“散点图”法,进行两种仪器或两种方法的比较,为何比其他方法更科学? 答:因为“散点图”法是对所得数据进行平均值和标准差两方面的比较。 第 3 章虚拟医学仪器设计 8.虚拟医学仪器与传统医学仪器相比有何特点?

现代电子系统设计论文

卷积神经网络在计算机视觉领域的发展 卷积神经网络作为类脑计算领域的一个重要研究成果,已经广泛应用到计算机视觉、自然语言处理、信息检索、语音识别、语义理解等多个领域。卷积神经网络以原始数据作为输入,再从大量训练数据中学习特征,最终达到分类或者识别的功能。经过长时间的研究,如今的卷积神经网络可以用局部连接、权值共享等操作来降低网络复杂度,减少训练参数的数目,使模型对平移、扭曲、缩放图片的识别具有一定的不变性。目前,深度卷积神经网络主要是通过增加网络的层数,使用更大规模的训练数据集,或者改进现有神经网络的网络结构及训练学习算法等方法,来提高神经网络的性能,进而模拟人类视觉系统,使机器获得“抽象概念”的能力。 目前深度卷积神经网络在图像分类、目标检测、人脸识别、行人再识别等多个计算机视觉任务中都取得了巨大成功。本文的主要内容是回顾卷积神经网络的发展历史。重点从增加网络层数、增加数据集规模、以及使用数据扩增技术三个方面介绍卷积神经网络的代表性成果,并展示各种技术方法对于图像分类精度的提升效果。 1.卷积神经网络的发展 从二十世纪四十年代开始,人工神经网络领域已提出了上百种的神经网络模型,其中具有代表性的网络包括感知机、反向传播网络、自组织映射网络、Hopfield 网络、玻尔兹曼机、适应谐振理论等,这些网络在手写体识别、语音识别、图像识别和自然语音处理等领域取得了成功的应用。 目前,卷积神经网络(Convolutional NeuralNetworks, CNN)得到了广泛应用,它是首个真正被成功训练的深层神经网络。该网络的设计灵感来源于Hubel和Wiesel在1962年提出的高级动物视觉系统的认知机理模型。该模型提出高级动物视觉神经网络由简单细胞和复杂细胞构成,神经网络底层的简单细胞的感受野只对应视网膜的某个特定区域,并只对该区域中特定方向的边界线产生反应。复杂细胞通过对特定取向性的简单细胞进行聚类,拥有较大感受野,并获得具有一定不变性的特征。上层简单细胞对共生概率较高的复杂细胞进行聚类,产生更为复杂的边界特征。通过简单细胞和复杂细胞的逐层交替出现,视觉神经网络获得

现代医疗电子仪器-02-05期末试题库

填空: 第一章:概述 1.医学仪器主要用于对人的疾病进行和。 2.共模抑制比定义为与之比。 3.信噪比定义为与之比。 4.频率响应是指仪器保持时,允许的范围,它是衡量系统增益随频 率变化的一个尺度。 5.仪器的灵敏度是指与之比。 6.从人体拾取的生物信号不仅、而且。常见的交流感应噪声 和电磁感应噪声危害较大。一般来说,更有意义。 7.精密度是指指仪器对测量结果区分程度的一种度量。用它可以表示 在条件下所得数值的接近程度。 8.医用仪器的检测对象是人体。应确保、、和,有时 因产生的危害也是不允许的。 9.医学仪器按用途可分为两大类:和。 10.生物信号一般为、信号,常见的和危害较大。一般 来说,更有意义。 11.生物信号一般为、信号,必须尽量采取各种措施,使噪声影响减至最 小。一般来说,更有意义。 12.输入量时,输出量而上、下漂动、缓慢变化的现象称为零点漂移。 13.在医学仪器的临床应用中,操作者为医生或医辅人员,因此要求医学仪器 必须、、。 14.由一个实际系统构造一个模型的任务一般包括两方面的内容:第一是第二 是。 15.模型的有效性用符合程度来度量,它可分以下三个不同级别的模型有 效:;;。 16.物理模型,根据其与原型相似的形式可分为如下四种类 型:;;;。 17.建立生理系统数学模型的方法主要有和两种。 18.医学仪器设计步骤:;;;;;。

第二章:噪声和干扰 19.干扰形成的三个条件:、与。 20.生物信息测量中干扰耦合途径有: ;;;;;。 21.生物医学测量系统中的主要噪声类型是:、、。 22.信号隔离是依靠或来传送信号的。 23.通常为了统一,用放大器的固有噪声作为放大器的噪声性能指标。 24.低噪声设计的目的是减小到最低程度。通常为了统一,用时放大器 的固有噪声作为放大器的噪声性能指标。 25.所谓屏蔽泛指在两个空间区域加以,用以控制从一个区域到另一个区 域的传播。 26.隔离的方法是使两部分电路,,从而切断从一个电路进入另一个电路 的。 第三章:信号处理 27.根据生物电信号的特点以及通过电极的提取方式,对生物电放大器前置级 提出下述要求:;;、;并设置保护电路。 28.作为生物医学测量的生物电放大器,应在前置级设置保护电路,包括保护电路 和保护电路。 第四章:生物电测量仪器 29.神经和肌肉细胞在静息情况下,细胞在静息状态下称为静息电位,有 时也叫膜电位。 30.细胞处于静息状态时,细胞膜外电位细胞膜内电位,称为极化状态。 31.当给细胞一个刺激时,膜内电位,并膜外电位,这个过程称为去极化。 32.在一个盛满稀释食盐的容器中放入一对由等值而异号的电荷组成的电偶极子,则容器内 各处都会有一定的电位。在电偶极子位置、方向和强度都不改变的情况下,电场的分布是恒定的,电流充满整个溶液,我们将这种导电的方式称为,容器中的食盐溶液称为,其间分布的电场称为。

最新现代电子系统设计-EDA教案

目录 “现代电子系统设计”课程教学大纲 ................................................................................. - 1 - 湖南农业大学课程教学周历............................................................................................... - 1 - “现代电子系统设计”教案 ................................................................................................. - 1 - 第一次课........................................................................................................................ - 1 - 第二次课........................................................................................................................ - 3 - 第三次课........................................................................................................................ - 4 - 第四次课........................................................................................................................ - 6 - 第五次课........................................................................................................................ - 8 - 第六次课...................................................................................................................... - 10 - 第七次课....................................................................................................................... - 11 - 第八次课...................................................................................................................... - 13 - 第九次课...................................................................................................................... - 15 -

现代电子系统设计与实践

现代电子系统设计与实践 昆明理工大学津桥学院学生实验报告 (2013—2014学年第1学期) 课程名称:现代电子系统设计与实践开课实验室:B3-4 2013年12月10日 年级、专业、班班学号姓名成绩实验项目名称指导教师 教 师 评语 教师签名: 年月日 一:实训目的 熟悉电子产品设计制作熟悉电子产品设计制作及画图的过程,运用专业知识,进行实际电路设计,加深对抓呢知识的理培养专业知识和实践相结合的实践技能。提高学生分析理解问题的能力。 回顾电路图绘制软件的相关常识及其特点; 熟悉电路图绘制软件的使用方法; 用Protel软件绘制电路原理图;并在Protel软件环境中自定义库元件; 熟练掌握电路板布局布的设置方法;并会使用Protel软件生成实用的电路板图;提高基于计算机和EDA等再试试解决电子信息方面常见实际,问题的能力,进行基本的技能训练。 培养自我创新能力,根据自己的补不足,提升个人动手能力。

二:实训原理 (一):三极管放大电路(公射放大) 1:电路图 图1-1 射极偏置电路 2:静态工作点的测量 (1)函数发生器产生1kHz 、10mV (用低频毫伏表测量)的正弦信号,接入输入端,即Vs=10 mV (正弦有效值);调节RW1 使V CE1=6V ,用示波器观察输出信号波形,输出信号不失真的条件下,用万用表分别测量:V BEQ ,V CEQ ,I BQ ,I EQ ,I CQ 。 Vceq=6V Icq=Vcc-Vceq/ Rc1+Re11+Re12=12-6/4051=1.5mA Icq=Ieq=1.5mA 3:倍数的测量 在3(1)的条件下,当R L =∞或R L =3k 时分别用低频毫伏表测量输出信号V O 的有效值,然后计算出两种情况下的电压放大倍数A V 。 通过理论分析计算出电压放大倍数A V ,be ' L i o r R βv v A -==v ,其中 EQ EQ bb be I 26mV β) (1300I 26mV β) (1r r '++=++≈,R L ’=R C1‖R L 。

2020年智慧树知道网课《现代电子系统设计基础》课后章节测试满分答案

第一章测试 1 【单选题】(20分) 在输出电流比较小且负载几乎不变的场合,宜采用的滤波方式是? A. 电容输入式滤波电路 B. 以上都 C. 电感输入式滤波电路 D. 以上都行 2 【多选题】(20分) 使用集成芯片的优点? A. 外围电路简单 B. 可以使测试更方便 C. 可以使系统稳定 D. 需要更多的专业知识

3 【单选题】(20分) 通用型集成运放适用于放大() A. 低频信号 B. 中频信号 C. 高频信号 D. 任何频率信号 4 【单选题】(20分) 多级放大电路的级数越多,则其() A. 放大倍数越小,而通频带越窄

B. 放大倍数越大,而通频带越窄 C. 放大倍数越大,而通频带越宽 D. 放大倍数越小,而通频带越宽 5 【单选题】(20分) 在单相桥式整流电路中,若有一只整流管接反,则() A. 输出电压约为U/2 B. 输出电压约为2U C. 整流管将因电流过大而烧坏 D. 变为半波整流

第二章测试 1 【判断题】(20分) 改变ICL8038的4、5管脚的外部电阻RA和RB的值,使他们不相等,可改变占空比。 A. 错 B. 对 2 【判断题】(20分) 方波-三角波发生器中,为了获得锯齿波,应该调节RW使充放电时间不相同。 A. 对 B. 错 3 【单选题】(20分) 下列选项不能消除竞争冒险的是: A. 改变输入信号

B. 引入选通脉冲 C. 修改逻辑设计 D. 接入滤波电容 4 【单选题】(20分) 对于同步时序电路而言: A. 电路中触发器必须具有复位功能 B. 电路中各触发器由同-时钟触发 C. 以上说法都不对 D. 电路由同一种类型触发器构成 5 【单选题】(20分)

相关主题