搜档网
当前位置:搜档网 › 液位传感器工作原理

液位传感器工作原理

液位传感器工作原理
液位传感器工作原理

液位传感器(静压液位计/液位变送器/液位传感器/水位传感器)是一种测量液位的压力传感器.静压投入式液位变送器(液位计)是基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号(一般为4~20mA/1~5VDC)。

分为两类:一类为接触式,包括单法兰静压/双法兰差压液位变送器,浮球式液位变送器,磁性液位变送器,投入式液位变送器,电动内浮球液位变送器,电动浮筒液位变送器,电容式液位变送器,磁致伸缩液位变送器,侍服液位变送器等。第二类为非接触式,分为超声波液位变送器,雷达液位变送器等。

静压投入式液位变送器(液位计)适用于石油化工、冶金、电力、制药、供排水、环保等系统和行业的各种介质的液位测量。精巧的结构,简单的调校和灵活的安装方式为用户轻松地使用提供了方便。4~20mA、0~5v、0~10mA等标准信号输出方式由用户根据需要任选。

利用流体静力学原理测量液位,是压力传感器的一项重要应用。采用特种的中间带有通气导管的电缆及专门的密封技术,既保证了传感器的水密性,又使得参考压力腔与环境压力相通,从而保证了测量的高精度和高稳定性。

是针对化工工业中强腐蚀性的酸性液体而特制,壳体采用聚四氟乙烯材料制成,采用特种氟胶电缆及专门的密封技术进行电气连接,既保证了传感器的水密性、耐腐蚀性,又使得参考压力腔与环境压力相通,从而保证了测量的高精度和高稳定性。

工作原理:

用静压测量原理:当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力公式为:Ρ = ρ .g.H + Po式中:

P :变送器迎液面所受压力

ρ:被测液体密度

g :当地重力加速度

Po :液面上大气压

H :变送器投入液体的深度

同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压 Po 与传感器的负压腔相连,以抵消传感器背面的Po ,使传感器测得压力为:ρ .g.H ,显然, 通过测取压力P ,可以得到液位深度。

功能特点:

◆稳定性好,满度、零位长期稳定性可达 0.1%FS/ 年。在补偿温度

0 ~70 ℃范围内,温度飘移低于0.1%FS ,在整个允许工作温度范围内低于0.3%FS 。

◆具有反向保护、限流保护电路,在安装时正负极接反不会损坏变送器,异常时送器会自动限流在35MA 以内。

◆固态结构,无可动部件,高可靠性,使用寿命长。

◆安装方便、结构简单、经济耐用。

主要技术参数:

工艺: 扩散硅陶瓷电容蓝宝石电容任选。分体式一体式可选,量程: 0---0.5---200米,输出: 4---20mA (2线制)供电: 7.5---36VDC 推荐

24VDCCBM-2100/CBM-2700 投入式静压液位计可靠防腐并带有陶瓷测量单

元的探头,用于净水、污水及盐水的物位测量。

编辑本段投入分体式液位传感器

适用于:水库大坝、城市地下水监测、供水系统、水文水利、石油化工、工业现场等液位测量与控制

编辑本段投入分体式液位变送器

⊙选用美国进口的高精度、隔离式敏感组件,性能可靠

⊙表压或绝压测量

⊙量程宽:1mH2O~200mH2O

⊙输出:4~20mA或0~5V

⊙电源电压:24VDC(12~36VDC),mV 输出型为恒流1.5mADC 或恒压12VDC 供电

⊙精度高,优于0.2%F.S

⊙100%防水防潮,防护等级IP68

⊙完备的电路功能,调校方便

CCD与CMOS图像传感器的成像原理

工业相机,选择TEO CCD与CMOS图像传感器的成像原理你还在为不知道工业相机图像传感器的成像而苦恼吗?美国TEO为您做了以下解析,希望对工业相机爱好的朋友们有所帮助。 在接受光照之后,感光元件(感光二极管PD:photodiode)产生对应的电流,电流大小与光强对应,因此感光元件直接输出的电信号是模拟的。在CCD 传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。 由于感光元件生成的电信号实在太微弱了,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理—这项任务是由CCD传感器中的放大器专门负责,经放大器处理之后,每个像点的电信号强度都获得同样幅度的增大;但由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以二进制数字图像矩阵的形式输出给专门的DSP 处理芯片。 而对于CMOS传感器,上述工作流程就完全不适用了。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。 换句话说,在CMOS传感器中,每一个感光元件都可产生最终的数字输出,

工业相机,选择TEO 所得数字信号合并之后被直接送交DSP芯片处理—问题恰恰是发生在这里,CMOS感光元件中的放大器属于模拟器件,无法保证每个像点的放大率都保持严格一致,致使放大后的图像数据无法代表拍摄物体的原貌—体现在最终的输出结果上,就是图像中出现大量的噪声,品质明显低于CCD传感器。

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

传感器及其工作原理 说课稿 教案

传感器及其工作原理 【三维目标】 1.知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 2.过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践 能力和创新思维能力。 3.情感、态度与价值观 (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【教学过程】 一、引入新课 准备知识:从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

各类传感器的工作原理

传感家族-各类传感器的工作原理 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量;

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

传感器及其工作原理教案

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过实验,知道常见传感器的工作原理;③初步探究利用和设计简单的传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力和创新思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点 1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环节教学内容及师生互动设计情感与方法 一.课题的引入 二.什么是传感器?【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开 关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移 走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路 图,了解元件“干簧管”的结构。探明原因:玻璃管内封入 两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧 片被磁化而接通,电路导通。所以,干簧管能起到开关的作 用。 师点拨:这个装置反过来还可以让我们通过灯泡的发 光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够 感受某些信息,通过它能实现电路的自动控制,这种元件有 一个专门的名称:传感器。什么是传感器呢?它能够感受诸 如力、温度、光、声、化学成分等非电学量,并能把它们按 照一定的规律转换为电压、电流等电学量,或转换为电路的 通断。我们把这种元件叫做传感器。它的优点是:把非电学 量转换为电学量以后,就可以很方便地进行测量、传输、处 理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感 器。请大家相互说说看,你家里,或者在你的生活当中,都 (演示实验1: 干簧管传感器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉,因 此才有了好奇。 声光控开关在 生活中很普及, 所以又有亲切 感

各类传感器原理及说明

热电式红外传感器原理及说明 热电式红外传感器是被动式的红外传感器,其内部核心芯片为Biss0001。 下面对biss0001做重点介绍: Biss0001有如下特点: .CMOS工艺 .数模混合 .具有独立的高输入阻抗运算放大器 .内部的双向鉴幅器可有效抑制干扰 .内设延迟时间定时器和封锁时间定时器 .采用16脚DIP封装 图3-1B ISS0001引脚图 表3.1 BIS0001引脚及其功能介绍 引 名称I/O 功能说明 脚 1 A I 可重复触发和不可重复触发选择端。当A为“1”时,允许重复触 发;反之,不可重复触发 2 VO O 控制信号输出端。由VS的上跳变沿触发,使Vo输出从低电平跳 变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的 上跳变时,Vo保持低电平状态。 3 RR1 -- 输出延迟时间Tx的调节端 4 RC1 -- 输出延迟时间Tx的调节端 5 RC2 -- 触发封锁时间Ti的调节端 6 RR2 -- 触发封锁时间Ti的调节端

7 VSS -- 工作电源负端 8 VRF I 参考电压及复位输入端。通常接VDD,当接“0”时可使定时器复 位 9 VC I 触发禁止端。当VcVR时允许触发 (VR≈0.2VDD) 10 IB -- 运算放大器偏置电流设置端 11 VDD -- 工作电源正端 12 2OUT O 第二级运算放大器的输出端 13 2IN- I 第二级运算放大器的反相输入端 14 1IN+ I 第一级运算放大器的同相输入端 15 1IN- I 第一级运算放大器的反相输入端 16 1OUT O 第一级运算放大器的输出端 引脚名称I/O 功能说明 1 A I 可重复触发和不可重复触发选择端。当A为“1”时,允许重复 触发;反之,不可重复触发 2 VO O 控制信号输出端。由VS的上跳变沿触发,使Vo输出从低电平跳 变到高电平时视为有效触发。在输出延迟时间Tx之外和无VS的上跳变时,Vo 保持低电平状态。 3 RR1 -- 输出延迟时间Tx的调节端 4 RC1 -- 输出延迟时间Tx的调节端 5 RC2 -- 触发封锁时间Ti的调节端 6 RR2 -- 触发封锁时间Ti的调节端 7 VSS -- 工作电源负端 8 VRF I 参考电压及复位输入端。通常接VDD,当接“0”时可使定时器 复位 9 VC I 触发禁止端。当VcVR时允许触发(VR≈0.2VDD) 10 IB -- 运算放大器偏置电流设置端 11 VDD -- 工作电源正端 12 2OUT O 第二级运算放大器的输出端

CMOS图像传感器的工作原理

CMOS图像传感器的工作原理 1引言 图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device 电荷耦合器件)模型器件。到90年代初,CCD技术已比较成热,得到非常广泛的应用。但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。20世纪80年代,英国爱丁堡大学成功地制造出了世界上第一块单片CMOS图像传感器件。目前,CMOS图像传感器正在得到广泛的应用,具有很强地市场竞争力和广阔地发展前景。 2 CMOS图像传感器基本工作原理

右图为CMOS图像传感器的功能框图。 首先,外界光照射像素阵列,发生光电效应,在像素单元内产生相应的电荷。行选择逻辑单元根据需要,选通相应的行像素单元。行像素单元内的图像信号通过各自所在列的信号总线传输到对应的模拟信号处理单元以及A/D转换器,转换成数字图像信号输出。其中的行选择逻辑单元可以对像素阵列逐行扫描也可隔行扫描。行选择逻辑单元与列选择逻辑单元配合使用可以实现图像的窗口提取功能。模拟信号处理单元的主要功能是对信号进行放大处理,并且提高信噪比。另外,为了获得质量合格的实用摄像头,芯片中必须包含各种控制电路,如曝光时间控制、自动增益控制等。为了使芯片中各部分电路按规定的节拍动作,必须使用多个时序控制信号。为了便于摄像头的应用,还要求该芯片能输出一些时序信号,如同步信号、行起始信号、场起始信号等。 3象素阵列工作原理 图像传感器一个直观的性能指标就是对图像的复现的能力。而象素阵列就是直接关系到这一指标的关键的功能模块。按照像素阵列单元结构的不同,可以将

传感器及其工作原理 说课稿 教案 教学设计

传感器 【教材分析】: 《6.1 传感器及其工作》是新人教版高中物理选修3-2第六章第一节的教学内容,主要学习一些简单传感器,以介绍为主,课程内容比较简单。 【教学目标】 一、知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 二、过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。 三、情感、态度与价值观: (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。 【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 学情分析: 从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。学生对传感器了解较少,教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【课时安排】1课时 【教学过程】 预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性 一、引入新课: 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放

汽车各传感器构造与原理

电子控制系统构造与原理电子控制系统的组成:由传感器、控制单元、执行器组成

传感器的类型及功能 一、节气门位置传感器 1.功能及类型 功能: ·检测节气门开度转换为电压信号 传递给ECU ·判定发动机运转工况的依据 类型: ·线性输出型(滑动电阻式) ·开关量输出型(触点式) (1)线性输出型 ①结构和原理 ·VCC:传感器电源端子。由ECU提 供 5V电压 ·VTA:节气门开度信号端子。节气 门开度越大,VTA-E2间电阻越大, 开度电压信号越大 ·IDL:怠速开关端子。节气门关闭 时,怠速开关闭合,IDL—E2间电压 为0V;节气门打开时,怠速开关断 开,IDL—E2间电压为12V ·E2:传感器通过ECU接地 ②输出特性 ·输出电压随节气门开度的增大而线性增 大 ·当节气门完全关闭时,怠速触点闭合, 发动机处于怠速状态

③控制电路 ·VTA信号:节气门由关闭逐渐开大,在0~5V间变化 ·IDL信号:怠速时0V,节气门打开时12V (2)开关量输出型 ①结构与原理 ·怠速工况 ②输出特性 ·传感器有开和关两种信号 ·怠速触点闭合:节气门全闭,发动机处于怠速状态 ·全开触点闭合:节气门开度>50℃,发动机处于大负荷状态

③控制电路 ④带ACC信号输出的开关量输出型 ·怠速触点闭合,怠速状态;如高速时怠 速触点闭合,减速状态 ·加减速检测触点闭合,同时该触点与ACC1 和ACC2交替闭合/断开,急加速工况 ·大负荷触点闭合,大负荷工况 ·加减速检测触点断开,同时该触点与ACC1 和ACC2交替闭合/断开,减速工况 二、进气温度传感器(THA) 1.功能与结构 ·检测进气温度转化为电阻信号,送 给ECU作为喷油量修正信号和点火 修正信号,获得最佳空燃比和点火提 前角。 ·热敏电阻传感器

常用传感器的工作原理及应用

第3章常用传感器的工作原理及应用 3.1电阻式传感器 填空: 1、常用的电阻应变片分为两大类:和。 2、金属电阻的是金属电阻应变片工作的物理基础。 3、金属电阻应变片有、及等结构形式。 4、电位器式传感器都是由、和三部分构成。 5、半导体应变片是利用半导体材料制成的一种纯电阻性元件。 6、半导体应变片与金属电阻应变片相比较: 其灵敏度更高,温度稳定性差。 7、弹性元件在传感器中起什么作用? 8、试列举金属丝电阻应变片与半导体应变片的相同点和不同点。 9、绘图说明如何利用电阻应变片测量未知的力。 10、电阻应变片阻值为120Ω,灵敏系数K=2,沿纵向粘贴于直径为0.05m的圆 μ=。求钢柱受10t拉力作用时,应形钢柱表面,钢材的112 E N m 210 =?,0.3 变片的相对变化量。又若应变片沿钢柱圆周方向粘贴、受同样拉力作用时,应变片电阻的相对变化量为多少? 11、采用阻值为120Ω、灵敏度系数K=2.0的金属电阻应变片和阻值为120Ω的 固定电阻组成电桥,供桥电压为4V,并假定负载电阻无穷大。当应变片上的应变分别为1με和1000με时,试求单臂工作电桥、双臂工作电桥以及全桥工作时的输出电压,并比较三种情况下的灵敏度。 3.2电容式传感器 1、电容式传感器采用作为传感元件,将不同的变化转换为的 变化。 2、根据工作原理的不同,电容式传感器可分为、和三种。 3、电容式传感器常用的转换电路有:、、运算放大器

电路、 和 等 。 4、电容式传感器有什么特点?试举出你所知道的电容传感器的实例。 5、试分析电容式物位传感器的灵敏度?为了提高传感器的灵敏度可采取什么措 施并应注意什么问题? 6、为什么说变间隙型电容传感器特性是非线性的?采取什么措施可改善其非线 性特征? 7、变间隙电容传感器的测量电路为运算放大器电路,如图所示。传感器的起始 电容量pF C x 200=,定动极板距离mm d 5.10=,pF C 100=,运算放大器为理想放大器(即∞→∞→i Z K ,),f R 极大,输入电压t u i ωsin 5=V 。求当电容传感器动极板上输入一位移量mm x 15.0=?使0d 减小时,电路输出电压0u 为多少? 8、 如图所示正方形平板电容器,极板长度cm a 4=,极板间距离mm 2.0=δ。 若用此变面积型传感器测量位移x ,试计算该传感器的灵敏度并画出传感器的特性曲线。极板间介质为空气,m F /1085.8120-?=ε。 9、一电容式传感器的两个极板均为边长为10cm 的正方形,间距为1mm ,两极板 间气隙恰好放置一边长为10cm ,厚度为1mm ,相对介电常数为4的正方形介质。该介质可在气隙中自由滑动。若用该电容式传感器测量位移, 试计算当

《常见传感器的工作原理》教学设计要点

《常见传感器的工作原理》教学设计 山东版高中物理选修3-2第六章第二节 福建省建阳一中李瑜 一.教学思路:根据《课程标准》强调对传感器教学应侧重从技术应用的角度展示物理,强调物理学科与技术的结合,着重体现物理学的应用性、实践性。本课的教学思路是通过创设问题情境,引发对传感器工作原理的探究,进入新课教学。整节课以实验贯穿始终,通过对实验的观察、思考和探究,了解什么是光电传感器、温度传感器,传感器是如何将非电学量转换成电学量的,并抓住这一共性原理特征,使学生学会利用传感器的工作原理设计、制作简单的自控装置。但由于学生思维能力发展上的不成熟性,还不能成为完全独立的探究主体等特点,本节课的实验探究过程是在教师引导和启发下,学生独立思考、主动探索的过程。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。本节课计划用2课时完成,该教学设计为第一课时。 二.教学重点:实验探究光敏电阻和热敏电阻的特性,理解传感器是如何将非电学量转变为电学量的 三.教学难点:本节的教学难点是设计简易温度报警器。虽然原理比较简单,但要学生独立设计出来却不容易。本教学难点的突破应在学生对光电报警电路原理的充分理解和熟知热敏电阻的阻值特性的基础上,通过提升传感器控制电路的共性特征,使设计简易温度报警器的难度降低,水到渠成。 四.教学目标:通过对光敏电阻阻值特性、热敏电阻阻值特性的实验探究,让学生在了解传感器是如何将非电学量转变为电学量的基础上,学会利用传感器设计简单的自控装置。在此过程中让学生经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践能力和创新思维能力。通过动手实验,激发学生的学习兴趣,拓

传感器及其工作原理教案

传感器及其工作原理教案 This model paper was revised by the Standardization Office on December 10, 2020

江苏省淮阴中学06-07年度优秀教学案例 《传感器及其工作原理》的创新教学设计 王刚 教学依据 ①物理(新人教版)选修3-2第六章第1节《传感器及其工作原理》(P56-P60); ②新物理课程标准(实验). 教学流程图

教学目标1.知识与技能:①知道非电学量转换成电学量的技术意义;②通过 实验,知道常见传感器的工作原理;③初步探究利用和设计简单的 传感器. 2.过程与方法:①通过对实验的观察、思考和探究,让学生了解传 感器、熟悉传感器工作原理;②让学生自己设计简单的传感器,经 历科学探究过程,学习科学研究方法,培养学生的实践能力和创新 思维能力. 3.情感态度与价值观:在理解传感器工作原理的基础上,通过自己 设计简单的传感器,体验科技创新的乐趣,激发学习物理的兴趣. 重、难点1.几种常见传感器的工作原理(演示实验);2.学生自己设计简单的传感器. 教学策略 用几个有趣的传感器实验引入课题,激发学生探究传感器原理的兴趣.给出“传感器就是把非电学量转换为电学量”的概念之后,重点介绍光敏电阻、金属热电阻、热敏电阻.安排音乐茶杯和火警装置两个设计性问题让学生体会传感器的简单应用.结合电容、霍尔效应、电阻定律等知识让学生设计传感器,进一步深化传感器的工作原理.最后在对本节课总结的基础上,结合《思考与讨论》进行教学反馈. 教学程序 教学环 节 教学内容及师生互动设计情感与方法 一.课题的引 入 二.什么是传感器【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外 没有开关,但是把磁铁B放到盒子上面,灯泡就会发 光,把磁铁移走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的 控制 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内 的电路图,了解元件“干簧管”的结构。探明原因: 玻璃管内封入两个软磁性材料制成的簧片。当磁铁靠 近干簧管时,两个簧片被磁化而接通,电路导通。所 以,干簧管能起到开关的作用。 师点拨:这个装置反过来还可以让我们通过灯 泡的发光情况,感知干簧管周围是否存在着磁场。 【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元 件能够感受某些信息,通过它能实现电路的自动控 制,这种元件有一个专门的名称:传感器。什么是传 感器呢它能够感受诸如力、温度、光、声、化学成分 等非电学量,并能把它们按照一定的规律转换为电 (演示实验1: 干簧管传感 器) (干簧管的实 物及原理图) 学生对干簧 管并不熟悉, 因此才有了好 奇。声光控开 关在生活中很 普及,所以又 有亲切感

传感器及其工作原理

传感器及其工作原理 【教学目标】 1.知识与技能: (1)、了解什么是传感器,知道非电学量转化为电学量的技术意义; (2)、知道传感器中常见的三种敏感元件光敏电阻、热敏电阻和霍尔元件及其它们的工作原理。 (3)、了解传感器的应用。 2.过程与方法: 通过对实验的观察、思考和探究,让学生在了解传感器、熟悉传感器工作原理的同时,经历科学探究过程,学习科学研究方法,培养学生的观察能力、实践 能力和创新思维能力。 3.情感、态度与价值观 (1)、体会传感器在生活、生产、科技领域的种种益处,激发学生的学习兴趣,拓展学生的知识视野,并加强物理与STS的联系。 (2)、通过动手实验,培养学生实事求是的科学态度、团队合作精神和创新意识。【教学重点】:理解并掌握传感器的三种常见敏感元件的工作原理。 【教学难点】:分析并设计传感器的应用电路。 【教学方法】:实验、探究、讨论 【教学用具】:干簧管,磁铁,光敏电阻、热敏电阻演示仪、传感器简单应用实验盒、万用表。 【教学过程】 一、引入新课 准备知识:从上世纪八十年代起,国际上出现了“传感器热”,传感器在当今科技发展中有着十分重要的地位。本课的设计思路是通过对实验的观察、思考和探究,了解什么是传感器,传感器是如何将非电学量转换成电学量的,传感器在生产、生活中有哪些具体应用,为学生利用传感器制作简单的自控装置作一铺垫。教学时力避深奥的理论,侧重于联系实际,让学生感受传感器的巨大作用,进而提高学生的学习兴趣,培养学生热爱科学的情感和崇尚科学的精神。 今天我们生活中常用的电视、空调的遥控器是如何实现远距离操纵的?楼梯上的电灯如何能人来就开,人走就熄的?工业生产中所用的自动报警器、恒温烘箱是如何工作的?“非典”病毒肆虐华夏大地时,机场、车站、港口又是如何实现快速而准确的体温检测的?所有这些,都离不开一个核心,那就是本堂课将要学习的传感器。 二、新课教学 1.什么是传感器 演示实验1:如图1所示,小盒子的侧面露出一个小灯泡,盒外没有开关,当把磁铁放到盒子上面,灯泡就会发光,把磁铁移开,灯泡熄灭。

CCD图像传感器的原理及应用

CCD图像传感器的原理及应用 摘要:随着科技的迅猛发展,人们希望在生活生产中更多地实现自动化,而在实现自动化的过程中,传感器起着举足轻重的地位。传感器其实就是人类感官的延伸,因此也叫“电五官”。而图像传感器就是“电视觉”,本文就图像传感器中的一种——CCD图像传感器的原理及应用做一介绍。 关键字:CCD图像传感器原理应用 CCD图像传感器是通过将光学信号转换为数字电信号来实现图像的获取、存储、传输、处理和复现。光学信号转化为数字信号主要由CCD感光片完成。CCD感光片由三部分组成,即镜片,彩色滤镜和感应电路,如下图。镜片和彩色滤镜主要是对接受的光线(即图像)进行一定的预处理,感应电路为CCD传感器的核心,它又可分为光敏元件阵列和电荷转移器件两部分。 下面我们介绍一下感应电路的构成,CCD的感应电路是由若干个电荷耦合单元组成,该单元的结构如图所示。其最小单元是在P型(或N型)硅衬底上生长一层厚度约为120nm的SiO2作为光敏器件,再在SiO2层上依次沉积铝电极而构成MOS的电容式转移器。将MOS阵列加上输入、输出端,便构成了CCD的感应电路。

当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,其多数载流子被栅极电压排开,少数载流子则被收集在势阱中形成信号电荷。当向SiO2表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)电荷转移的控制方法,类似于步进电极的步进控制方式。也有二相、三相等控制方式之分。下面以三相控制方式为例说明控制电荷定向转移的过程。 三相控制是每一排像素上有三个金属电极P1,P2,P3,依次施加三个相位不同的脉冲,使得每排电极下电荷包向一侧移动,如下页图。 随着控制脉冲的分配,电荷包从一侧转移到最终端,由输出二极管收集后送给放大器处理,实现电荷移动。当各排电荷全部移出感应区即扫描完成一幅画面,这些电荷最终以二进制的形式存储或修改。 以上是从微观方面介绍了CCD图像传感器中核心原件感官电路的原理,在宏观方面按照结构又可分为两类:CCD线列图像传感器和CCD面阵图像传感器,它们在结构方面的差异导致了用途的不同,但原理一样,都是利用了CCD的光电转换和电荷转移的双重功能制成,线阵CCD:用一排像素扫描过图片,做三次曝光——分别对应于红、绿、蓝三色滤镜,正如名称所表示的,线性传感器是捕捉一维图像。而CCD面阵图像传感器有呈二维矩阵排列的感光单元——感光区、信号存储区和输出转移部分组成,根据传输和读出的结构方式不同又

传感器及其工作原理的教案

传感器及其工作原理 一、教学目标 1、知道非电学量转换成电学量的技术意义; 2、通过实验,知道常见传感器的工作原理; 3、初步探究利用和设计简单的传感器. 二、重、难点 1.几种常见传感器的工作原理(演示实验); 2.学生自己设计简单的传感器. 三、教学过程 (一)课题的引入 【演示实验1】干簧管控制电路的通断 如图,小盒子A的侧面露出一个小灯泡,盒外没有开关,但是把磁铁B放到盒子上面,灯泡就会发光,把磁铁移走,灯泡熄灭. 师问:盒子里有怎样的装置,才能实现这样的控制? 生猜:(可以自由讨论,也可以请学生回答) 师生探究:打开盒子,用实物投影仪展示盒内的电路图,了解元件“干簧管”的结构。探明原因:玻璃管内封入两个软磁性材料制成的簧片。当磁铁靠近干簧管时,两个簧片被磁化而接通,电路导通。所以,干簧管能起到开关的作用。 师点拨:这个装置反过来还可以让我们通过灯泡的发光情况,感知干簧管周围是否存在着磁场。【演示实验2】声光控开关控制电路的通断 ①先在普通光照条件下, ②在把开关置于黑暗环境中。 师生总结:声光控开关 师:刚才的两个实验,都用了一种元件,这些元件能够感受某些信息,通过它能实现电路的自动控制,这种元件有一个专门的名称:传感器。什么是传感器呢?它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。 其实,传感器并不神秘。你家里可能就有很多的传感器。请大家相互说说看,你家里,或者在你的生活当中,都使用过,或听说过什么样的电器中有传感器? 生讨论并交流:例如,①当冰箱内的温度高于设定值时,制冷系统自动启动,而当温度低于设定值时,制冷系统又会自动停止。冰箱的控制,是通过温度传感器实现的。②楼梯道的电灯,晚上,有人经过楼道时,开关自动接通,灯就亮;白天,不管是否有人经过,开关都是断开的,灯总是不亮,这种开关用的就是声光传感器。③为了防止火灾的发生,在宾馆房间的天花板上大多有一个小盒子,当房间失火时它能感知出现的烟雾,通过电路发出警报,这个小盒子就是烟雾传感器。④其他如宾馆洗手间的墙壁上干手机的湿度传感器、电视机里换频道的红外传感器、电饭锅的温控开关、养鸡场里的孵化器、交警用来测驾驶员是否酒后开车的酒精气体测试仪、磁悬浮列车里的加速度测试器、电容式话筒里的电容式传感器、自动洗衣机里的压力传感器等等.可以说,传感器的广泛使用,丰富了我们的生活,使 我们的生活更加方便、安全和舒适。 师:为了制作传感器,需要一些元器件,下面我们就来看几个实际的例子。 【演示实验3】比较光敏电阻在不同光照条件下的电阻之不同 学生完成:两人一组,用万用电表(由投影仪投出表盘)的欧姆挡测量一只光敏 电阻的阻值,实验分别在室内自然光的照射下和用手掌遮光时进行。 学生总结实验结果:光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小。 师生总结:光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量。

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS 图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS 图像传感器的种种干扰。

相关主题