搜档网
当前位置:搜档网 › 八年级上册全等三角形达标检测(Word版 含解析)

八年级上册全等三角形达标检测(Word版 含解析)

一、八年级数学全等三角形解答题压轴题(难)

1.如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.

(1)求m和n的值.

(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.

(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.

【答案】(1)

4

2

m

n

=-

?

?

=

?

(2)详见解析;(3)NB﹣FB=4(是定值),即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.

【解析】

【分析】

(1)由点D,点B的坐标和四边形AOBD的面积为12,可列方程组,解方程组即可;(2)由(1)可知,AD=OA=4,OB=2,并可求出AB=BD=25,利用SAS可证

△DAC≌△AOB,并可得∠AEC=90°,利用三角形面积公式即可求证;

(3)取OC=OB,连接AC,根据对称性可得∠ABC=∠ACB,AB=AC,证明

△ABH≌△CAN,即可得到结论.

【详解】

解:(1)由题意()()

2

1

812

2

m n

n m m

--=

?

?

?

++-=

??

解得

4

2

m

n

=-

?

?

=

?

(2)如图2中,

由(1)可知,A(﹣4,0),B(0,2),D(﹣4,4),

∴AD

=OA =4,OB =2,

∴由勾股定理可得:AB =BD =25, ∵AC =OC =2, ∴AC =OB ,

∵∠DAC =∠AOB =90°,AD =OA , ∴△DAC ≌△AOB (SAS ), ∴∠ADC =∠BAO , ∵∠ADC +∠ACD =90°, ∴∠EAC +∠ACE =90°, ∴∠AEC =90°, ∵AF ⊥BD ,DE ⊥AB , ∴S △ADB =

12?AB ?AE =1

2

?BD ?AF , ∵AB =BD , ∴DE =AF .

(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,

∵AG =BG , ∴∠GAB =∠GBA , ∵G 为射线AD 上的一点, ∴AG ∥y 轴, ∴∠GAB =∠ABC , ∴∠ACB =∠EBA ,

∴180°﹣∠GBA =180°﹣∠ACB , 即∠ABG =∠ACN , ∵∠GAN =∠GBO , ∴∠AGB =∠ANC , 在△ABG 与△ACN 中,

ABH ACN

AHB ANC AB AC ∠=∠??

∠=∠??=?

, ∴△ABH ≌△ACN (AAS ), ∴BF =CN ,

∴NB ﹣HB =NB ﹣CN =BC =2OB ,

∵OB=2

∴NB﹣FB=2×2=4(是定值),

即当点H在GB的延长线上运动时,NB﹣HB的值不会发生变化.

【点睛】

本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.

2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;

(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明

△DBE≌△CFD,得出EB=DF,即可得出结论;

(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.

试题解析:(1)证明:如图,作DF∥BC交AC于F,

则△ADF为等边三角形

∴AD=DF,又∵∠DEC=∠DCB,

∠DEC+∠EDB=60°,

∠DCB+∠DCF=60°,

∴∠EDB=∠DCA ,DE=CD,

在△DEB和△CDF中,

120

EBD DFC

EDB DCF

DE CD

∠=∠=?

?

?

∠=∠

?

?=

?

∴△DEB≌△CDF,

∴BD=DF,

∴BE=AD .

(2).EB=AD成立;

理由如下:作DF∥BC交AC的延长线于F,如图所示:

同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,

又∵∠DBE=∠DFC=60°,

∴△DBE≌△CFD(AAS),

∴EB=DF,

∴EB=AD.

点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.

3.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.

(1)求证:BG=CF;

(2)请你判断BE+CF与EF的大小关系,并说明理由.

【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析

【解析】

【分析】

(1)先利用ASA判定△BGD CFD,从而得出BG=CF;

(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.

【详解】

解:(1)∵BG∥AC,

∴∠DBG=∠DCF.

∵D为BC的中点,

∴BD=CD

又∵∠BDG=∠CDF,

在△BGD与△CFD中,

DBG DCF BD CD

BDG CDF ∠=∠

?

?

=

?

?∠=∠

?

∴△BGD≌△CFD(ASA).

∴BG=CF.

(2)BE+CF>EF.

∵△BGD≌△CFD,

∴GD=FD,BG=CF.

又∵DE⊥FG,

∴EG=EF(垂直平分线到线段端点的距离相等).

∴在△EBG中,BE+BG>EG,

即BE+CF>EF.

【点睛】

本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.

4.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且

PA=PE,PE交CD于F

(1)证明:PC=PE;

(2)求∠CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠A BC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

【答案】(1)证明见解析(2)90°(3)AP=CE

【解析】 【分析】

(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP 和△CBP 全等,然后得出PA=PC ,

∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE. 【详解】

(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,

在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;

(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP , ∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°; (3)、AP =CE

理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP , 在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∠BAP=∠DCP ,

∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE

考点:三角形全等的证明

5.如图1,在ABC ?中,ACB ∠是直角,60B ∠=?,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .

(1)求出AFC ∠的度数;

(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)

(3)如图2,在△ABC ?中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.

【答案】(1)∠AFC=120°;(2)FE与FD之间的数量关系为:DF=EF.理由见解析;(3)AC=AE+CD.理由见解析.

【解析】

【分析】

(1)根据三角形的内角和性质只要求出∠FAC,∠ACF即可解决问题;

(2)根据在图2的 AC上截取CG=CD,证得△CFG≌△CFD (SAS),得出DF= GF;再根据ASA 证明△AFG≌△AFE,得EF=FG,故得出EF=FD;

(3)根据(2) 的证明方法,在图3的AC上截取AG=AE,证得△EAF≌△GAF (SAS)得出

∠EFA=∠GFA;再根据ASA证明△FDC≌△FGC,得CD=CG即可解决问题.

【详解】

(1)解:∵∠ACB=90°,∠B=60°,

∴∠BAC=90°﹣60°=30°,

∵AD、CE分别是∠BAC、∠BCA的平分线,

∴∠FAC=15°,∠FCA=45°,

∴∠AFC=180°﹣(∠FAC+∠ACF)=120°

(2)解:FE与FD之间的数量关系为:DF=EF.

理由:如图2,在AC上截取CG=CD,

∵CE是∠BCA的平分线,

∴∠DCF=∠GCF,

在△CFG和△CFD中,

CG CD

DCF GCF

CF CF

=

?

?

∠=∠

?

?=

?

∴△CFG≌△CFD(SAS),

∴DF=GF.∠CFD=∠CFG

由(1)∠AFC=120°得,

∴∠CFD=∠CFG=∠AFE=60°,

∴∠AFG=60°,

又∵∠AFE=∠CFD=60°,

∴∠AFE=∠AFG,

在△AFG和△AFE中,

AFE AFG

AF AF

EAF GAF

∠=∠

?

?

=

?

?∠=∠

?

∴△AFG≌△AFE(ASA),

∴EF=GF,

∴DF=EF;

(3)结论:AC=AE+CD.

理由:如图3,在AC上截取AG=AE,

同(2)可得,△EAF≌△GAF(SAS),

∴∠EFA=∠GFA,AG=AE

∵∠BAC+∠BCA=180°-∠B=180°-60°=120°

∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-

1

2

(∠BAC+∠BCA)=180°-

1

2

×120°=120°,

∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,

∴∠CFG=∠CFD=60°,

同(2)可得,△FDC≌△FGC(ASA),

∴CD=CG,

∴AC=AG+CG=AE+CD.

【点睛】

本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.

6.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.

(1)求∠AFE的度数;

(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;

(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=

2

9

CP,求

PF

AF

的值.

(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)

【答案】(1)∠AFE=60°;(2)见解析;(3)

7

5

【解析】

【分析】

(1)通过证明BCE CAD

≌得到对应角相等,等量代换推导出60

AFE

∠=?;(2)由(1)得到60

AFE

∠=?,CE AD

=则在Rt AHF

△中利用30°所对的直角边等于斜边的一半,等量代换可得;

(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF顺时针旋转60°也是一种思路.)

【详解】

(1)解:如图1中.

∵ABC为等边三角形,

∴AC=BC,∠BAC=∠ABC=∠ACB=60°,

在BCE和CAD中,

60

BE CD

CBE ACD

BC CA

=

?

?

∠=∠=?

?

?=

?

∴BCE CAD

≌(SAS),

∴∠BCE=∠DAC,

∵∠BCE+∠ACE=60°,

∴∠DAC+∠ACE=60°,

∴∠AFE=60°.

(2)证明:如图1中,∵AH ⊥EC,

∴∠AHF=90°,

在Rt△AFH中,∵∠AFH=60°,

∴∠FAH=30°,

∴AF=2FH,

∵EBC DCA

≌,

∴EC=AD,

∵AD=AF+DF=2FH+DF,

∴2FH+DF=EC.

(3)解:在PF上取一点K使得KF=AF,连接AK、BK,

∵∠AFK=60°,AF=KF,

∴△AFK为等边三角形,

∴∠KAF=60°,

∴∠KAB=∠FAC,

在ABK和ACF中,

AB AC

KAB ACF

AK AF

=

?

?

∠=∠

?

?=

?

∴ABK ACF

≌(SAS),BK CF

=

∴∠AKB=∠AFC=120°,

∴∠BKE=120°﹣60°=60°,

∵∠BPC=30°,

∴∠PBK=30°,

2

9

BK CF PK CP

===,

7

9

PF CP CF CP

=-=,

45

()

99 AF KF CP CF PK CP CP CP ==-+=-=

7

7

9

55

9

CP

PF

AF CP

== .

【点睛】

掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.

7.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若

AB=82,BC=16.

(1)如图1,当点P为AB的中点时,求CD的长;

(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设

BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.

【答案】(1)4;(2)8

【解析】

【分析】

(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出

BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;

(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=

1

2

BF,由(1)证明方法可得△PFD≌△QCD 则有CD=

1

2

CF,即可得出BE+CD=8.

【详解】

解:(1)如图①,过P点作PF∥AC交BC于F,

∵点P 和点Q 同时出发,且速度相同, ∴BP=CQ , ∵PF ∥AQ ,

∴∠PFB=∠ACB ,∠DPF=∠CQD , 又∵AB=AC , ∴∠B=∠ACB , ∴∠B=∠PFB , ∴BP=PF ,

∴PF=CQ ,又∠PDF=∠QDC , ∴△PFD ≌△QCD , ∴DF=CD=

1

2

CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=1

2

BC=8, ∴CD=

1

2

CF=4; (2)8BE CD λ+==为定值. 如图②,点P 在线段AB 上, 过点P 作PF ∥AC 交BC 于F ,

易知△PBF 为等腰三角形, ∵PE ⊥BF ∴BE=

12

BF ∵易得△PFD ≌△QCD

∴CD=

12

CF ∴()1111

82222

BE CD BF CF BF CF BC λ+==+=+== 【点睛】

此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.

8.综合实践

如图①,90,,,ACB AC BC AD CE BE CE ∠=?=⊥⊥,垂足分别为点D E 、,

2.5, 1.7AD cm DE cm ==.

(1)求BE 的长;

(2)将CE 所在直线旋转到ABC ?的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;

(3)如图③,将图①中的条件改为:在ABC ?中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论. 【答案】(1)0.8cm; (2)DE=AD+BE;

(3)DE=AD+BE ,证明见解析. 【解析】 【分析】

(1)本小题只要先证明ACD CBE ?,得到AD CE =,CD BE =,再根据

2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;

(2)先证明ACD CBE ?,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;

(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ?,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系. 【详解】

解:(1)∵,AD CD BE CE ⊥⊥ ∴90ADC E ?∠=∠=

∴90ACD DAC ?∠+∠= ∵90ACB ?∠= ∴90ACD BCE ?∠+∠= ∴ACD BCE ∠=∠

在ACD 与CBE △中,90ADC E ACD BCE

AC BC ??∠=∠=?

∠=∠??=?

∴ACD CBE ? ∴,AD CE CD BE ==

又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =

(2)∵,AD CD BE CE ⊥⊥ ∴90ADC E ?∠=∠= ∴90ACD DAC ?∠+∠= ∴90ACB ?∠= ∴90ACD BCE ?∠+∠= ∴ACD BCE ∠=∠

在ACD 与CBE △中,90ADC E ACD BCE AC BC ??∠=∠=?

∠=∠??=?

∴ACD CBE ? ∴,AD CE CD BE == 又∵ED EC CD =+ ∴ED AD BE =+

(3)∵BEC ADC BCA α∠=∠=∠= ∴180BCE ACD a ?∠+∠=-

180BCE BCE a ?∠+∠=-

∴ACD BCE ∠=∠

在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=??

∠=∠??=?

∴ACD CBE ? ∴,AD CE CD BE == 又∵ED EC CD =+ ∴ED AD BE =+

本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.

9.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .

(1)PC=___cm ;(用含t 的式子表示) (2)当t 为何值时,△ABP ≌△DCP ?.

(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由. 【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53

v = 【解析】 【分析】

(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;

(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值. 【详解】

解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm = ∵12BC cm =

∴()122PC BC BP t cm =-=- 故答案为:()122t - (2)∵ABP DCP ??? ∴BP CP = ∴2122t t =- 解得3t =.

(3)存在,理由如下:

①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ , ∴PC=AB=5 ∴BP=BC-PC=12-5=7 ∵2BP tcm = ∴2t=7

∴CQ=BP=7,则3.5v=7 解得2v =.

②当BA CQ =,PB PC =时,ABP QCP ??? ∵12BC cm =

∴1

62

BP CP BC cm === ∵2BP tcm = ∴26t = 解得3t = ∴3CQ vcm =

∵5AB CQ cm == ∴35v = 解得53

v =

. 综上所述,当2v =或5

3

v =时,ABP ?与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】

本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.

10.综合与实践:

我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等. (1)请你用所学知识判断乐乐说法的正确性.

如图,已知ABC ?、111A B C ?均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ??≌.

(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等. 【答案】(1)见解析;(2)钝角三角形或直角三角形. 【解析】 【分析】

(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出

∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出

BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.

(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证. 【详解】

(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,

则11111190BDA B D A BDC B D C ∠=∠=∠=∠=?. 在BDC ?和111B D C ?中,

1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,

∴111BDC B D C ??≌, ∴11BD B D =.

在Rt BDA ?和111Rt B D A ?中,

11AB A B =,11BD B D =,

∴111Rt Rt (HL)BDA B D A ??≌, ∴1A A ∠=∠.

在ABC ?和111A B C ?中,

1C C ∠=∠,1A A ∠=∠,11AB A B =,

∴111(AAS)ABC A B C ??≌.

(2)如图,当这两个三角形都是直角三角形时,

∵11AB A B =,11BC B C =,190C C ∠==∠?. ∴Rt ABC ?≌111Rt A B C ?(HL );

∴当这两个三角形都是直角三角形时,它们也会全等;

如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,

与(1)同理,利用AAS 先证明111BDC B D C ??≌,得到11BD B D =, 再利用HL 证明111Rt Rt BDA B D A ??≌,得到1A A ∠=∠, 再利用AAS 证明111ABC A B C ??≌;

∴当这两个三角形都是钝角三角形时,它们也会全等; 故答案为:钝角三角形或直角三角形. 【点睛】

本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.

相关主题