搜档网
当前位置:搜档网 › 北京地铁5号线盾构隧道设计施工要点

北京地铁5号线盾构隧道设计施工要点

北京地铁5号线盾构隧道设计施工要点
北京地铁5号线盾构隧道设计施工要点

北京地铁5号线盾构隧道设计施工要点

北京城建设计研究总院杨秀仁

摘要:北京地铁五号线首次在北京地区采用盾构法修建地铁隧道,盾构试验段工程已经取得成功。鉴于盾构隧道设计和施工在很大程度上依赖于地质条件,而北京与上海和广州的地质条件差异较大,因此,通过盾构试验段工程对设计和施工进行了系统的研究。

一、工程背景及盾构隧道基本情况

1、地铁五号线概况

北京地铁五号线南起丰台区的宋家庄,北至昌平区的太平庄。线路全长27.6Km,在四环路南北分别采用了地下和地面、高架线路型式,南段的地下线长16.9km,北部的地面和高架线10.7km。全线共设22座车站,其中地下站16座,高架和地面站6座。图1为地铁五号线工程线路示意图。

图 1 北京地铁五号线工程线路示意图

在地铁五号线工程地下线路段,部分线路受环境条件限制,隧道基本在现状低矮破旧的建筑物下通过,对地面沉降的要求较高,加上工程地质和水文地质条件复杂,地面无降水条件,因此采用盾构法施工。采用盾构法施工的区段为宋家庄~刘家窑地段、东单~和平里北街地段。

2、盾构试验段概况

由于北京以往没有采用盾构法施工地铁隧道的工程经验,且本地区的地质条件与国内其他采用过盾构法施工的城市有比较大的区别,为了确保地铁五号线正式施工能够顺利进行,首先选择正线典型的地段开展试验段施工,以摸索和掌握北京地区特有条件下的盾构隧道设计、施工技术。盾构试验段选在北新桥站~雍和宫站区间线路的左线(西侧),试验段隧道长度约688m。试验段线路平面见图2,由图上可以看出,试验段隧道基本在现状建筑物下方穿过。

图2 盾构试验段线路平面图

3、试验段工程地质及水文地质条件

(1) 工程地质条件

沿线隧道通过的地层均为第四纪冲洪积地层,除表层的填土外,主要有粘土、粉土、砂及卵石等地层,其中卵石的最大粒径为250mm。图3为试验段地质纵断面图。

(2) 水文地质条件

根据工程勘察报告,地层中赋存有上层滞水、潜水和承压水。

上层滞水:水位埋深在5.0~7.0m之间。

潜水:水位埋深在14.0m左右。潜水具有弱承压性,水位高出含水层顶板为0.5~2.8m。

承压水:含水层的顶板埋深为21.0~25.0m,水头高出含水层顶板为1.0~3.0m。

4、试验段盾构隧道有关设计参数

(1) 隧道直径:盾构区间隧道采用圆形结构,隧道管片设计内净空5400mm,(其中考虑了隧道施工误差、测量误差及隧道变形等因素周边

预留100mm的裕量保证限界直径5200mm的要求),管片厚度为300mm,隧道管片衬砌外径为6000mm。

(2) 管片的型式及构造 (见图4):管片环宽1200mm,环向分6块,即3块标准块(中心角67.5°),2块邻接块(中心角67.5°),一块封顶块(中心角22.5°)。管片之间采用弯螺栓连接(螺栓直径24mm),环向有纵缝6个,每接缝有环向螺栓2个;纵向端面共设纵向螺栓16个(封顶块1个,其它管片端面3个)。

(3) 管片环与环之间采用错缝拼装方式。管片端面采用平面式,仅在设置防水胶条处留有沟槽。

(4) 管片有3种类型,即标准环、左转环和右转环。

二、盾构试验段工程的主要研究内容

盾构隧道的设计与施工在很大程度上依赖于地质条件,我国的上海和广州已经采用盾构法成功实施了不少工程,也作过不少研究,但这两地区的地质条件与北京差异较大。上海地区的地层为淤泥质地层,非常松软,自稳能力差,侧压力比较大且分布均匀;广州地区的地层除在浅表有一层比较薄的

土层外,基本为强风化~中风化~微风化岩层,围岩的强度模量高,自稳能力好,而河网发育,地下水充沛,时有构造断裂出现在工程线路上;而北京地区表层从0~80m范围基本为第四纪冲洪积地层,既有表层的松散回填土层,又有从粘土~粉土~各种粒径的砂层~砾石层~卵石层等各层交替组合形成的地层,从性质上与上海地区截然不同,而与广州地区的地层也有较大的区别。

试验段工程从设计、管片生产和施工等方面进行了系统的研究,主要开展的研究项目有:

1.盾构隧道管片地层的相互作用和管片接头刚度研究

通过室内模型试验、管片接头试验、管片抗弯试验和现场大量的实验测试,并结合理论分析,探索北京特有地层条件下的盾构隧道管片与地层的相互作用形式及规律。提出北京特有地层条件下,盾构隧道周围地层荷载的分布、变化规律和取值方法。基于研究成果提出的土压分布规律,对管片设计进行优化;

2.管片生产技术的研究

为确保混凝土管片的质量,对高性能混凝土配合比、混凝土构件自动蒸养系统、盾构管片生产工艺及试验设施、施工机具等进行研究,并编制了管片生产企业标准和预制混凝土盾构管片操作质量标准。

3.盾构施工技术的研究

在试验段施工过程中,对盾构始发技术、开挖面稳定措施、管片拼装技术、地表沉降控制技术、壁后注浆技术、盾构施工监测技术和盾构施工测量技术等进行研究。

三、北京特有地层条件下盾构工法隧道衬砌设计与施工

通过开展上述各项研究,初步掌握了北京特有地层条件下盾构工法隧道衬砌设计和施工技术。

1、管片接头研究

管片接头作用力的大小,将直接影响到整环隧道的受力,一般情况下螺栓的作用越强,隧道的内力就越大,另外,螺栓对隧道的变形有一定的限制作用。

我们从两个方面研究了采用弯螺栓连接的管片接头。

(1)现场测试研究

我们在试验段隧道埋设了螺栓应力计,以测试管片拼装后到推出盾尾一段时间螺栓的受力行为和螺栓应力值,每组测试断面由两环管片组成,相互验证。

试验段只进行了环向螺栓应力测试,螺栓应力随时间变化规律见图5、图6所示,其应力变化过程主要有初始阶段、推进阶段、应力维持阶段和应力上升阶段等。

l 初始阶段

对螺栓首先进行标定,然后插入到螺栓孔中,在螺栓上紧以前,其应力维持在较低的水平。螺栓拧紧分两次实现,第一次先进行预紧,施加总紧固力的20%~30%,第二次紧固到位,从图上可以明显看出其过程,拧紧螺栓后,当管片尚位于盾尾内部时,螺栓应力一直维持在紧固应力的水平。l 推进阶段

随着盾构机的推进,衬砌管片被推出盾尾,在此过程中,螺栓的应力均匀下降,其下降幅度很大,有些部位甚至螺栓应力接近0,这一过程显示出螺栓的暂时“失效”现象。

初步分析其主要原因是:随着盾构管片推出盾尾,具有一定压力的同步注浆浆液逐步充满管片衬砌周围,产生径向的压力,使各管片之间的橡胶止水带被进一步挤密,导致螺栓松弛。

l 应力维持阶段

盾构推出盾尾,螺栓应力松驰后,在一定时间范围内,螺栓继续

维持低应力水平,量值增加不大。一般情况下这一阶段可持续8~10个小时左右,与浆液的凝固时间基本一致。

初步分析其主要原因是:盾尾注浆浆液凝固并达到强度以前,对隧道衬砌的作用仍基本类似液体作用方式,管片内力以轴力为主,与上一阶段相似。

l 应力上升阶段

应力维持阶段后,随时间的推移,螺栓的应力呈线性上升,直到维持与初期紧固应力相当的水平。应力上升阶段的时间一般持续30天左右。

初步分析其主要原因是:随着注浆浆液硬化,管片与地层间形成了硬性接触,地层的变形直接作用在管片上,又由于各方向地层荷载的不同,破坏了原来一直保持的周边均匀作用,使管片接头发生转角,螺栓受拉。这种地层变形达到一定的程度后,地层与隧道衬砌间又形成了一个相对平衡的受力体,并维持稳定。

根据以上各阶段的情况,可以初步归纳以下几个结论:

a. 在盾尾拼装阶段,螺栓的主要作用是将预制管片连接起来,确保推出盾尾前衬砌环的稳定,并保持衬砌环的形状;

b. 盾尾注浆浆液的凝固时间决定了盾构隧道与地层作用(直接作用)的早晚,地铁五号线盾构试验段隧道的这一时间为8~10小时。在有条件的情况下,应尽量缩短浆液的凝固时间;

c. 由于北京地层具备比较好的自稳能力,对圆形盾构隧道而言,隧道与地层相互作用达到稳定的时间比较长,约为30天;

d. 隧道与地层的受力平衡作用要靠隧道衬砌的变形来形成,一般情况下螺栓应力上升阶段的时间比较长,建议施工期间在管片推出盾尾后2

天左右对螺栓进行二次紧固,这样可以相对提早使隧道与地层间形成受力平衡关系;

e. 地铁五号线盾构试验段螺栓的初始紧固应力为50~100MPa 左右。

(2)管片接头刚度试验研究

根据对不同接头刚度的管片环的力学分析,接头刚度大小对管片的受力有较大影响,而管片接头刚度由于接触面受力和变形的复杂性,仅靠理论分析无法准确给出。因此我们开展了管片接头刚度室内试验研究,采用原型管片进行测试。

试验主要想达到以下几个目的:

a. 研究管片环向接头弯曲变形特性;

b. 研究管片环向接头的刚度;

c. 研究弯曲过程中接头联接螺栓的受力和变形规律;

d. 研究弯曲过程中接头附近的钢筋与混凝土的变形和破坏规律。

试验采用的管片型式与加载方式见图7。

图7 试验采用的管片型式与试验加载方式示意图

(注:横向力考虑从内侧和外侧分别加载两种方式)

为了能够模拟管片接头的实际受力状态,分别考虑从顶部施加不同量值轴力和从侧向施加侧力。轴力值范围由25t~175t,侧力值由0开始一直加载至构件破坏。

试验所得M—θ关系曲线见图8、图9。接头的破环方式基本为管片边缘外皮的呈层剥落。

试验基本结论:

l 通过试验发现,在一定的轴力作用下,管片的张开角度与弯矩基本呈直线变化。但当弯矩超过某一特定值时,其线性关系的斜率增大。该特定值已经大大超过管片的实际限值。

l 由于管片螺栓布置对截面的不对称,内刚度(向内弯曲刚度)一般相当于外刚度(向外弯曲刚度)值的两倍。

l 在试验段隧道轴力作用下的转角基本上可以用下述公式描述(不同轴力条件下也同样可以有类似公式描述):

向内弯曲:

由上述公式可以推导出地铁五号线盾构试验段管片的向内和向外弯曲的接头刚度为:

Kθ内=34000kN·m/rad

Kθ外=17000kN·m/rad

考虑到北京地区地层具有一定的自稳能力,在设计计算时,可对实验数据作一定折减后采用,建议取值为:

Kθ内=30000kN·m/rad

Kθ外=15000kN·m/rad

2、盾构隧道与地层的相互作用规律研究

为研究盾构隧道施工过程中地层荷载作用的变化规律以及荷载分布规律,我们进行了现场测试、室内模型试验和理论分析等方面的研究。(1)现场测试研究

在现场进行了大量的结构内力、隧道与地层的接触应力和变形测试。

经过现场测试发现,无论管片与地层的接触应力还是钢筋应力均呈现与前述螺栓轴力基本相似的变化状态和规律。

接触应力发展规律(见图10):

l 初始阶段

当管片拼装完成,仍停留在盾尾内部时,由于尚未受到周围的荷载作用,因此接触应力较小。

l 推进阶段

管片逐步推出盾尾并同步注浆后,接触应力呈线性逐渐增加。主要原因是管片推出后,由于注浆浆液压力形成了对管片的作用。此过程一般持

续1~2小时。

l 稳定阶段

在管片推出盾尾,同步注浆完成后,其接触应力能够维持在一定数值范围内,直到注浆浆液凝固。

l 后期发展

接触应力在盾构刚刚推出盾尾时,在隧道周边的分布是比较均匀的,反映出半流体作用的特征(见图11)。但当浆液凝固后,周边的接触应力发展则呈现出不平衡的状态,上大下小(见图12)。

初步分析其原因,在管片刚刚推出盾尾并进行同步回填注浆时刻,

此时的土压力基本呈现出受浆液流体压力作用的形态,即在隧道周边分布比较均匀,其量值与注浆压力基本一致,注浆压力将使周围土体与管片之间产生一定的超压(预压),此阶段的土压力最大。这充分反映出注浆压力是管片与土作用发生的一个最关键因素。

当注浆浆液凝固后,随着地层应力重分布和超压减小,土压力分布发生了微妙的变化。注浆造成的周边地层超压逐渐减小甚至消失,使周边地层的土压力减小。同时,由于顶部超压减小后,地层在一定范围内的塌落作用,在隧道拱顶两侧形成马鞍形的土压力分布,侧压力也基本呈上大下小的形式分布。之所以出现这种现象,初步分析是由于北京地层较好,顶部土层松弛荷载不能完全传递到隧底,最终稳定的土压力呈现出倒梯形或矩形的形态。

根据盾构试验段测试结果,研究显示隧道的拱部荷载仅相当于上部一定范围内超压消失后形成的土体卸载拱压力,反映出土体有部分自承载作用,其卸载拱高度视不同隧道的埋深和地质条件而不同,基本在1.0D~1.6D 之间(D为隧道直径)。而由于初始注浆预加压力的作用,实际侧压力值远较理论侧压力值大,在试验段条件下,其量值接近于隧道顶部的压力值。

侧压力在高度方向的分布基本为顶部偏大,底部偏小。但考虑到随时间推移而产生的土体蠕变还将造成底部压力逐步上升,因此,设计时基本可按照矩形分布考虑。

钢筋应力的发展规律基本相似,本文不再赘述。

根据研究的管片接头及土压力分布规律,我们对隧道进行了优化计算和重新设计,大大减少了管片的配筋。优化前后的钢筋用量见下表:

3、管片构造方面需要注意的问题

(1)管片的钢筋构造形式与受力

在盾构试验段实施过程中,我们开展了管片钢筋构造形式有关的试验研究,进行了原型管片的弯曲试验。一般情况下,管片钢筋可采用网片式分布和肋形分布方式。网片式分布是在管片的内外各设一层由主筋和附加筋组成的网片,两层网片间设拉结钢筋;肋型分布是将管片的钢筋按照一榀一榀钢筋骨架的方式布置,类似一条条小梁的钢筋骨架,钢骨架之间采用箍筋连接。

我们采用原型管片进行了纯弯实验,以测试构件的抗弯能力。

由于肋形布筋方式内外侧钢筋的整体联系牢靠,一般情况下其承载能力较网片布筋方式高,因此,建议今后设计时宜采用肋式布筋方式。(2)管片的细节构造设计应注意的问题

l 管片螺栓手孔和注浆孔部位应设置加强筋。

由于管片螺栓手孔较大(长度可能达到300mm以上),对管片结构混凝土有明显的削弱,设计时应考虑设置加强筋,这样除补强外,还可以起到避免螺栓的紧固力对孔口混凝土的破坏的作用。

在管片安装时,基本是利用管片注浆孔兼作起吊孔,拉拔试验显示的破坏形态证明比较容易产生埋件周围混凝土的拉脱,因此孔周应设螺旋状加强筋。这样可以有效提高埋件的抗拉拔能力。

管片边角应设至少5mm*5mm的倒角;螺栓孔口等空洞的周围也应设倒角,以方便螺栓穿入。

注浆孔埋件在迎土侧应保留20~25mm的混凝土层,以防止同步注浆浆液流入,对注浆孔的抗渗有积极作用,需要由管片注浆时可用钢钎击穿预留混凝土。

4、关于管片混凝土配合比

盾构隧道管片一般采用高性能混凝土。高性能混凝土对耐久性、工作性、适应性、强度、体积稳定性等方面均有较高的要求。盾构试验段管片高性能混凝土的主要要求是:

l 塌落度40-60mm,易于浇注和振捣;

l 抗压强度大于C50;

l 抗渗等级P10;

l 低碱集料反应活性即每立方米混凝土中的总碱含量低于3Kg;

l 低收缩性即28天的收缩绝对值小于400*10-6(目的是保证管片的尺寸精度);

l 硬化后混凝土外观要求无裂缝,气泡少,颜色均匀。

在上述要求中,强度和抗渗指标是比较容易满足的,但抗裂和收缩要求对混凝土配合比的要求很难满足,通过多种配合比的试验研究,最终采用的管片混凝土配合比如下:

采用此配合比生产的管片除强度等满足要求外,也具有很好的外观质量。

地铁五号线盾构试验段工程管片的养护采用自主研发的能自动控温控湿的蒸养罩,有效地防止了混凝土因温度原因产生开裂。

5、掌子面稳定、壁后注浆和沉降预测

在施工过程中,为确保地层的稳定,有效控制沉降,采取了一系列的措施。经过验证,取得了比较好的效果,施工完成的隧道,其上方地表沉降基本控制在17mm以内,有效防止了上方地面建筑物的破坏。本文仅简要阐述几个主要的结果。

掌子面的稳定、壁后注浆和沉降控制为相辅相成的三个方面,只有三个方面都得到保证,才能达到目的。

(1)掌子面的稳定

不同地层条件下,应采取不同措施稳定掌子面。

a) 粘质粉土、粉质粘土地层

土的粘结力较大,在盾构掘进施工过程中,易造成粘性土附着于刀盘上造成刀盘扭矩增大,或者土体进入土仓后被压密固化,造成开挖、排土均无法进行的情况。此时应通过刀盘上的注浆孔向刀盘前方的土体注入泡沫,在增加土体流动性的同时,降低其粘着性,防止开挖土附着于刀头或土室内壁。

b) 粉细砂及砂砾层及卵石层

由于其渗透性较大,流动性差,对刀具的磨损大,施工期间仅靠泡沫的润滑和地层改良作用已不能完全满足施工的要求。在推进过程中除了使用泡沫以外,还应辅以膨润土浆液,以加强刀具的润滑、冷却,改善工作状态,

同时起到补充地层土体微细颗粒的不足,提高土体流动性和止水性的作用。掘进结束时仓内的水、泡沫容易通过地层流失,造成土仓内压力的消散,给土压力维持稳定带来一定的困难。此时,在盾构掘进结束,需较长时间停机时,应向土仓内注入膨润土浆液并用刀盘充分搅拌,改善土仓内土体的密闭性,防止开挖面坍塌。

c) 粉土层及砂质地层

由于粉土与砂土在土仓内较好地拌和,粉土中的粘粒成分改善了土仓内土的流动性,因此在通过这类地层时,刀盘的扭矩较小,掘进速度接近与粘质粉土粉质粘土层中的速度,唯一比较困难的是土压力的维持相对较难,土仓内压力散失较快,停机需向内加入膨润土浆液,以维持土压和开挖面稳定。

盾构密闭舱的土压力大小是保证前方土体稳定的重要因素。根据试验段经验,密闭舱的土压力一般宜保持在开挖面理论土压力的1.3倍左右。图13是施工中密闭舱土压力和开挖面理论土压力比较,图中压力水平较高的部分是盾构始发段,此阶段为确保开挖面的稳定,人为加大了密闭舱的土压力。

(2)衬砌背后注浆

管片衬砌从盾尾推出时,管片与地层间的空隙采用注浆的办法填

充。根据北京地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能:

a. 具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。

b. 具有良好的充填性能。

c. 在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。

d. 浆液在地下水环境中,不易产生稀释现象。

e. 浆液固结后体积收缩率小,泌水率小。

f. 材料来源丰富、经济,施工管理方便,并能满足拌合、集运、压注等施工自动化技术要求。

g. 浆液无公害,价格便宜。

根据上述要求,基本可以确定应采用惰性浆液。我们在实验室对惰性浆液的成分和配比进行了大量的实验后确定了浆液的成分和凝结时间。

浆液的主要成分为生石灰、粉煤灰、细砂、膨润土(钠土)和水等材料,凝结时间在10小时左右。

注入压力要考虑不同地层的多种情况,注入压力一般是2~4bar,由于在砂质或砂卵石地层中浆液的扩散快,因此注入压力可比其它地层的注入压力适当减小。

一般每环管片的浆液注入量为3~4m3,施工中如果发现注入量持续增多时,必须检查超挖、漏失等因素。而注入量低于预定注入量时,可以考虑是注入浆液的配比、注入时期、盾构推进速度过快或出现故障所致,必须认真检查采取相应的措施。

(3)沉降预测

沉降控制主要是通过施工中的开挖面稳定和隧道背后注浆实现。但在施工过程中应根据不同的地质条件对地面沉降进行初步的预测,以指导施工采取措施。

盾构试验段工程作了大量的地表沉降观测和拱顶下沉观测,这些实测数据反映了盾构隧道推进过程各个阶段地表隆沉的情况。图14显示出某一监测断面在离开开挖面不同距离时的地表隆沉情况。根据沉降特点,将沉降分为以下几个阶段:

l 预先隆沉阶段

当盾构机距离观测断面较近时(0~2.5D),由于盾构机推力对土体扰动,地下水位、变化开挖面塌落、施工参数(如土压、推力等)变化等多方面因素影响,地表可能产生沉降或轻微隆起;

l 盾构机通过阶段

盾构机通过直到盾尾经过观测断面正下方期间(-2.5D~0),因盾构机主体脱出前,浆液未及时充填引起的沉降及施工中超挖后土体应力状态变化较大,引起地层损失,这是盾构施工中产生地表沉降最主要的组成部分;

盾构隧道穿越既有建筑物施工应对技术

盾构隧道穿越既有建筑物施工应对技术 文章摘要: 盾构隧道穿越既有建筑物施工应对技术摘要:随着近几年地下工程建设的不断发展,盾构施工技术已越来越成熟,特别是在城市轨道交通建设中更显示出其优越性。但是,对于盾构施工过程中穿越障碍物或近距离通过既有建(构)筑物的施工还缺少相应的工程实例,经验相对也较少。近年来,我国城市轨道交通建设发展迅速,但是面临着越来越复杂的周边环境和施工条件,因此研究和制定相应的施工技术和应对措施十分必要。文章针对盾构施工穿越城市内河、下穿既有隧道以及湖底施工、下穿古城墙等工程实例进行分析研究,提出了针对类似情况的应对技术措施。 1 引言 随着国民经济的发展和城镇化建设的加速,国内城市轨道交通建设发展也越来越迅速。在轨道交通建设中,盾构工法由于其优越性在国内的应用越来越多。为了使轨道交通尽快形成网络达到预期的规模效应,轨道交通的建设也在加速。随着初期单条线的建成,后续线路建设的难度会越来越大。同时,伴随城市规划建设,特别是通常伴随地铁建设的沿线开发的增多,工程建设所面临的是越来越复杂的周边环境,穿越障碍物或近距离通过既有建(构)筑物的情况也越来越多。工程施工时既需要对既有建(构)筑物进行保护,又要确保工程本身的安全性和进展顺利,因此对不同的情况采用相应的应对技术十分必要。本文以南京地铁施工中已成功完成的盾构施工穿越障碍物的几个实例为基础,研究分析相应的应对技术。 2 下穿既有河流 2.1 工程实例 金川河宽10.4m,河堤深4m, 水深1.3m,为污水河。盾构隧道与 该河近正交下穿通过,盾构机与 河床底净间距6.2m。该段 地质情况自上而下分别是:② -1d3-4粉细砂(3.5m)、②-2c2-3 粉土(约6.0m)、②-2b4淤泥质粉 质粘土(约3m)、③-2-1b2粉质粘 土(4m)、③-3-1(a+b)1-2粉质粘 土(约 4.7m)。隧道主要在② -2c2-3粉土、②-2b4淤泥质粉质 粘土(上部)和③-2-1b2粉质粘土 (下部)地层中穿过(图1)。 该工程盾构机于2002年5月 9日~2002年5月10日和2002年 12月28日~2002年12月29日分 别在下行线和上行线顺利通过金 川河,沉降监测结果良好,没有采 用应急预案。但是在下行线掘进

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技 术方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 图1盾构隧道施工流程图 1.2盾构始发流程图 图2 始发流程 图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约200t ,分解为 5 块,最大块重约60t 。综合考虑吊机的起吊 能力和工作半径,安排1 台200t 和一台40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图3。 图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。 图4盾构管片反力架示意图 掘进

图5 盾构始发托架示意图 3.盾构机安装调试 3.1盾构机的安装主要工作 1.盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接。 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4.台车顶部皮带机及风道管的连接; 5.刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1.刀盘转动情况:转速、正反转; 2.刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩; 4.推进千斤顶的工作情况:伸长和收缩; 5.管片安装器:转动、平移、伸缩; 6.保园器:平移、伸缩; 7.油泵及油压管路; 8.润滑系统; 9.冷却系统; 10.过滤装置; 11.配电系统; 12.操作控制盘上各项开关装置、各种显示仪表及各种故障显示灯的工作情况。 盾构机在完成了上述各项目的检测和调试后(具体应遵照盾构机制造厂家提供的操作手册进行),即可判定该盾构机已具备工作能力。 4.盾构进洞 1.盾构进洞前50 环进行贯通测量,以确定盾构机的实际位置和姿态。此后的掘进不允许有大的偏差发生,逐渐按偏差方位调整盾构机姿态和位置,满足盾构进洞尺寸要求。这一调整应在盾构刀盘进入洞前加固土前完成,以避免盾构进洞发生意外。

地铁隧道盾构法施工中的地面沉降问题探析

地铁隧道盾构法施工中的地面沉降问题探析 摘要:随着我国经济的高速发展,我国地铁高速发展,盾构法具有不影响地面 交通、对周围建(构)筑物影响小、适应复杂地质条件、施工速度快等众多优点而 在地铁工程建设中广泛应用。但盾构法隧道工程是在岩土体内部进行的,无论其埋深大小,开挖施工都不可避免地会对周围土层产生扰动,从而引起地面沉降(或隆起),危机邻近建筑物或地下管道等设施的安全。因此,施工能产生多大的沉降或隆起, 会不会影响相邻建筑物的安全,是地铁隧道盾构施工中最关键的问题。要在地铁工程施工前对工程可能引起的地面沉降问题有所估计,就首先需要了解盾构法施工引起的地面沉降的一般规律和机理,进而提出相应的安全判别标准和控制原则,达到 事先防控的目的。 关键词:地铁隧道;盾构法;地面沉降 引言 随着城市交通事业的高速发展,在地铁施工中盾构施工最为普遍,地铁施工引发的地面 沉降问题逐渐受到了人们的重视,怎样对盾构施工中的地面沉降问题进行合理的预测和防范,成为了地铁盾构施工亟需解决的重要问题。本文主要阐述了有关地铁隧道盾构法施工中的地 面沉降问题研究。 1地铁隧道盾构施工引起地面沉降主要影响因素分析 1.1覆土厚度H和盾构外径D的影响 在地铁施工过程中隧道盾构技术非常重要,盾构外径越大,由盾构施工引起的单位长度的 地层损失就越大,在相同地面沉降槽宽度下,最大地面沉降也随着增大;而隧道覆土厚度越大,则 最大地面沉降值就会越小,但地面沉降槽宽度会越大。最大地面沉降随覆土厚度H与盾构外径 D的比值即H/D的增大而减小。 1.2盾构到达时的地层沉降,开挖面前的沉降或隆起 在地铁隧道施工过程中,沉降是非常重要的,自开挖面距观测点约3m-10m时起,直至开 挖面位于观测点正下方之间所产生的隆起或沉降现象。实际施工过程中设定的盾构土压舱压 力很难与开挖面土体原有土压力达到完全的平衡,多因土体应力释放或盾构反向土仓压力引起 的土层塑性变形所引起。 1.3盾构穿越土层性质 隧道开挖在软土层中,主要的土层性质有砂质粉土、淤泥质粘性土、砂土层以在不同的 土层穿越中对地面沉降也有不同的影响。在保持其他工艺条件都不变的情况下,穿越砂土层 相对于黏土层来说,其沉降槽宽度的系数也更小,因此沉降量也是最大的。设地层损失率为2%,盾构埋深为 10m,盾构半径为 3.2m,计算分析穿越不同土层的宽度系数与沉降量的关系。通过计算分析后可知,在穿越不同土质时地面沉降效应也不同,穿越黏土时的沉降槽宽 系数最大,对地面沉降影响的范围也最大,穿越砂质粉土层,宽度系数比黏土层小,沉降量 显著,在穿越砂土地面时沉降量最大。 1.4盾尾间隙沉降 隧道施工过程中,地表沉降是由于地铁盾尾通过测点后产生的,一般的范围约在后尾通过 测点后0-20m范围。由于盾构外径大于管片外径,管片外壁与周围土体间存在空隙,往往因注 浆不及时和注浆量不足,管片周围土体向空隙涌入,造成土层应力释放而引起地表变形,这一期 间的地表沉降约占总沉降的40%-45%。 2盾构隧道的地面沉降机理 在盾构隧道施工开挖的过程中,地面沉降是由于面的附加应力、应力释放等引起地层产 生的弹塑性变形。隧道施工所引起的地面沉降,主要包括开挖卸载时开挖面周围土体向隧道内 涌入所引起的地面沉降,支护结构背后的空隙闭合所引起的地面沉降,管片衬砌结构本身变形 所引起的地面沉降以及隧道结构因整体下沉所引起的地面沉降,可称为开挖地面沉降。盾构法 隧道在施工期的地面沉降可认为主要由开挖沉降、固结沉降和次固结沉降组成,而次固结沉降

地铁隧道盾构施工安全管理(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 地铁隧道盾构施工安全管理(标 准版) Safety management is an important part of production management. Safety and production are in the implementation process

地铁隧道盾构施工安全管理(标准版) 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO 后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大

城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一

北京地铁十号线某标工程概况及重点难点施工方案

第2章工程概况 2.1 工程范围 北京地铁十号线xx期工程(第三批)01标段,包括万柳站、起点~万柳站区间、万柳站~苏州街站区间和车辆出入段线区间、倒车线及其附属工程。万柳车站总建筑面积16196.08m2·,正线区间总长度1118.55m,车辆段出入线区间1166.6m,倒车线244.6m。 1、万柳站为明挖车站,包括主体结构、4个出入口和两个风亭; 2、起点~万柳站为明挖区间,由标准段和交叉渡线段组成; 3、万柳站~苏州街站区间以K0+540明暗挖分界点,西侧为明挖区间,东侧为暗挖区间,K0+805处设联络通道一个,联络通道里程处设竖井一座。 4、车辆出入线段分为左线和右线,左线全部为明挖结构,主要衔接万柳站与万柳车辆段。右线为明暗挖相结合,K0+416处为明暗挖分界处,主要衔接万柳车辆段与苏州街站方向。 5、车辆倒车线:长244.6单延米,明挖结构。 6、具体图见2-1全标段工程范围示意图。 隧道洞口 图2-1 全标段工程范围示意图 2.2 工程设计简介 2.2.1 万柳站 万柳站位于巴沟村北路以北,沿巴沟村北路呈东西方向设置,为明挖侧式车站,车站起讫里程为K0+269~K0+497,全长228m。有效站台中心里程为K0+379。车站结构采用双跨单柱结构(局部为双柱三跨结构)。地下一层为车站站厅层,站厅层-出露地面0.6~1.3m,地下二层为车站站台层,站台宽12m,有效长度为120m。车站有效站台中心线处轨顶距地面为11.808m。车站主体工程采用明挖顺作法施工,主体结构外包轮廓尺寸为:长229.6米,宽33.1米,深13.75米。万柳站车站平面图见图2-2。 1、主体结构 主体结构为现浇钢筋混凝土地下双层双跨箱形结构,断面结构尺寸31.5m(宽)×14.1m

浅论上海地铁盾构法施工的隧道后期变形

浅论上海地铁盾构法施工的隧道后期变形 摘要文章以上海市轨道交通M8线淮海路站~复兴路站区间隧道的施工为例,对引起隧道施工后期变形的多种因素进行分析,并阐述了防治措施。 关键词盾构法隧道后期变形影响因素防治措施 1 概述 在上海地铁隧道施工过程中,经常发现已拼装成环的隧道在刚离开盾尾或脱离盾尾3~4环后,就发生环面不平整现象,即D块管片滞后于B1、B2块管片,B1、B2块管片滞后于L1、L2块管片,从而产生管片角部碎裂,影响隧道的施工质量。 通过对环缝错位现象的分析,认为这种现象是由于成环管片在出盾尾后发生了隧道的后期变形(上浮或沉降)而导致的。以上海轨道交通M8线复兴路站~淮海路站区间隧道施工的有关数据为依据,阐述影响隧道后期变形的各种因素,并介绍相应的防治措施。 2 工程概况 上海轨道交通M8线复兴路站~淮海路站区间隧道起始于复兴路站北端头井,止于淮海路站南端头井,推进里程为SK20+236.595~SK19+409.846,全长826.749 m,在SK19+785.640处设有1条联络通道。土压平衡盾构机由复兴路站北端头井下井,出洞后上行线沿西藏南路往北推进,途径自忠路、方浜路、浏河路、会稽路、寿宁路、桃源路、淮海路,穿越众多管线后到淮海路站南端头井。盾构机在淮海路站端头井内调头后,下行线沿西藏南路往南推进到复兴路站北端头井(见图1)。 图1 区间隧道示意图 3 工程地质 工程地质是影响隧道后期变形的主要因素之一。 本工程隧道穿越的土层为④淤泥质粘土层、⑤1粉质粘土层,各土层性能指标及特征见表1。

4 影响隧道后期变形的主要原因及分析 4.1 设计轴线 复兴路站~淮海路站区间隧道最大坡度为-11.675‰,隧道顶覆土厚9.0~16.3 m。上、下行线隧道推 进竖向轴线坡度见表2。

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

北京地铁10号线二期简介

北京地铁10号线二期简介 地铁10号线二期将于12月28日启动土建工程,预计2013年9月30日竣工。届时,将与已通车的一期工程组成本市第二条地铁环线,连接城市东南部、西北部最为密集的居住区,有效缓解三环路交通压力。

地铁10号线二期工程全长32公里,起点劲松站,终点巴沟站,中间设车站23座,其中换乘站12座。根据10号线二期初步规划,23座车站包括:潘家园站、十里河站、分钟寺站、成寿寺站、宋家庄站、石榴庄站、大红门站、角门东站、角门西站、草桥站、樊家村站、孟家村站、前泥洼站、西局站、六里桥站、马官营站、莲花桥站、公主坟站、西钓鱼台站、慈寿寺站、车道沟站、长春桥站、火器营站。 中铁十六局集团中标北京地铁十号线二期11标工程 2008年10月中旬,中铁十六局集团中标“北京地铁十号线二期11标工程”。 北京地铁十号线二期11标段全长约4.6km,包括两座车站(马官营、莲花桥站)四个区间(西局~六里桥、六里桥~马官营、马官营~莲花桥、莲花桥~公主坟区间),工程位于海淀区、丰台区。其中:西局~六里桥、六里桥~马官营为盾构法施工隧道,马官营和莲花桥站主体均采用盖挖法施工,马官营~莲花桥区间为盾构法和浅埋暗挖法隧道,莲花桥~公主坟区间浅埋暗挖法隧道。项目总投资为81716万元,开工日期为2008年12月28日,完工日期为2013年9月30日。 1、西局~六里桥区间:该区间左、右线里程分别为K43+674.160~K45+056.479(长1382.319m)、K43+674.160~K44+956.000(长1281.840m),区间设2个联络通道,采用盾构法施工,从六里桥南端头始发,到达西局站北端调头,向六里桥方向推进。 2、六里桥~马官营区间:该区间里程为K45+242.879~K46+35.97,线路双线长度为793.091m,设联络通道一个。区间出六里桥站后即下穿京石高速公路,之后沿南北向莲怡园东路方向敷设。莲怡园东路道路红线宽30m,东侧为八一电影制片厂和六里桥北里小区,均为6层住宅楼;西侧是风荷曲苑小区和莲香园小区,临街为18~24层住宅楼,区间结构距离建筑物较近。 3、马官营站:车站位于吴家村与莲怡园东路交叉路口南侧,沿莲怡园东路南北向布置,主体总长度163m,标准段总宽度20.9m,基坑深度约22.5m,覆土厚度约3.5m,有效站台中心里程为K46+107.020,共设3个出入口、2组风亭。围护结构采用钻孔灌注桩+内支撑,主体结构采用钢筋混凝土箱型结构,结构外侧设全包防水层,与钻孔桩一起组成复合墙体系。车站两端区间均为盾构区间,南北两端盾构井均为调头井。 车站周边两条路均已实施规划,其中吴家村道路红线宽40m,莲怡园东路红线宽30m.周边建筑物以住宅及商业为主,东西两侧距离现状建筑物较近,南端盾构井距西侧18层住宅楼仅5.5m.车站主体中部距西侧24层住宅楼为8.0m.路面地下管线较多,施工前需对管线进行改移处理。本站主体结构施工结合两侧建筑物保护方案,采取盖挖法施工,附属结构均采取明挖法施工。 4、马官营~莲花桥区间:该区间里程为K46+197.37~K47+486.198,长度1288.828m.在右线里程K47+241处设盾构始发接收井一座,其中施工期间兼作矿山法隧道施工竖井,永久使用兼联络通道,并在右线里程K46+805处设置联络通道一个。本区间采用一台盾构机从始发井始发,向马官营站掘进,到马官营站后调头,最后在区间盾构井吊出。 5、莲花桥站:车站位于西三环中路莲花立交桥桥区内,主体位于西三环主路下,成南北向布置。主体总长度146.3m,标准段总宽度20.7m,站台宽度12m,底板埋深约18m,顶板覆土平均厚度约3.5m,为岛式站台车站。车站主体基坑围护采用钻孔灌注桩+钢支撑支护结构型式,主体结构为地下两层三跨的矩形框架结构。为了压缩车站长度,且充分利用路西侧绿地,车站布置采用设备用房外挂方案。车站共设2个风道、5个出入口及1个安全出入口。 车站主体结构采用盖挖法施工,分幅施做车站顶板结构;出入口通道及风道结构跨路段采用暗挖法施工,其余附属结构采用明挖法施工。 6、莲花桥~公主坟区间:该区间起讫里程为K47+632.498~K48+466.873,线路双线长度为834.375m,

北京地铁5号线23座车站乘坐手册

1、天通苑北站 A西出口:东三旗。 B东出口:新亚市。 提示A、B口处均有电梯,可在售票处及问讯处买票,免费厕所位于站台东南侧,站台两侧各设有触摸信息屏和信息显示屏。 2、天通苑站 A北出口:汤立路、航空医院门诊部。 B南出口:汤立路、太平庄。 提示检票大厅位于地面,南端有公安办事处,中间有免费公厕。 3、天通苑南站 检票大厅位于地面,只有一个向南开的A出口:汤立路、亚美医院、天通苑五区、西单商场天通苑购物中心。 提示检票大厅北端有免费公厕。地上一层候车大厅东部中间和西部中间有触摸屏,两侧候车区域有盲道。候车大厅内分别悬挂着4对、8个显示屏,东、西每侧各2对、4个。 4、立水桥站(与13号线换乘) A西北出口:汤立路、东小口镇、祥和宏兴商品市场。 B东出口:安立路、北方明珠大厦、中石化党校。 提示B出口又分为B1东北出口、B2东南出口,均有电梯。

A口设有售票处及问讯处,B出口设有免费公厕,站台两侧有触摸信息屏和信息显示屏。 该站为五号线唯一的地面换乘车站,从A口走出约两分钟,可到达13号线立水桥站换乘。 5、立水桥南站 A西北出口:北苑路、花卉市场、黄金苑。 B东北出口:暂时还不能通行,桥体位置刚刚打好施工用的脚手架,混凝土桥体尚未浇灌。开通后B口周围将封闭起来继续施工。 C东南出口:春化路、中国环境研究院。 D西南出口:北苑路、清阳湖公园、乐驰汽车精品超市。 提示A口只有台阶通往地面。C、D口为台阶和上行自动扶梯。 地面到地上一层,有3个进出口,地上一层检票大厅南北相连,北端有公安办事处、免费公厕。整个售票大厅都有盲道通往地上和地下二层的候车站台。 地上二层为候车大厅,东北角和西南角有触摸屏。候车大厅内分别悬挂着4对、8个显示屏。东、西每侧各2对、4个。 6、北苑路北站 A西出口:北苑路、拂林园、傲城北辰家园、北辰绿色家园。 分为西南方A1出口,西北方A2出口(暂定)。 B东出口:北苑路、航空工业中心医院、北京航空研究院,分为东北方B1出口,东南方B2出口(暂定)。

北京地铁10号线一期(含奥运支线)

北京地铁10号线一期(含奥运支线) 北京地铁 10号线一期 工程系段由海 淀区的万柳站 向东苏州街、 黄庄、科南路、 知春路、学院 路、花园东路、 八达岭高速、 熊猫环岛、安 定路、北土城 东路、芍药居、 太阳宫、三元 桥、亮马河、 农展馆、工体 北路、呼家楼、光华路、国贸、双井至劲松站共设22座车站,全部为地下车站,一座车辆段(万柳车辆段)占地面积17.0公顷,一期工程线路全长为24.685km,其中与其他线立交换乘站7座,黄庄站与4号线的黄庄站十字形换乘,知春路与13号线的知春路站为丁字形换乘站经地下通道换乘,惠新西里南口站与5号线惠新西里南口站为十字形换乘站。芍药居站与13号线芍药居站为L字形换乘站经地下通道换乘,三元桥站与机场线三元桥站换乘为平行形通道换乘,国贸站与1号线国贸站换乘为L字形地下通道换乘。熊猫环岛站与奥运支线熊猫环岛站丁字形换乘,奥运支线由熊猫环岛、奥体中心、奥林匹克公园、森林公园,共4座车站,线路全长4.5km。 地铁十号线一期是2003年12月28日开工,计划2008年6月30日竣工通车运营。总投资138亿元,平均每公里造价55904.4万元人民币。奥运支线,投资21亿,平均每公里造价46666.67万元人民币。 城建院是工程的总体设计单位,并负责设计了全线的:线路、轨道、行车组织与管理,供电、客户服务(PIS)、自动售检票(AFC)、安全门、电扶梯、综合监控、勘探、测量,还有13座(10号线9个、奥运支线4座)车站的结构、建筑,动力照明、通风空调、给排水与消防、环控(BAS)、自动报警(FAS)、奥运支线4座车站的精装修设计等专业设计。

北京地铁奥运支线工程 根据2008年第二十九届奥运会申办报告对国际奥委会的承诺,在2008年奥 运会之前,完成300公里的轨道交通线网建设,建成一条直达奥运会中心区的地 铁专线,奥运支线就是为落实上述承诺修建的奥运专用地铁线路。地铁奥运支线 通过地铁十号线与整个北京地铁线网连接,承担了奥林匹克中心区奥运会举办期 间大量观众的疏散任务,疏散客流量达每小时2.88万人次,对于顺利举办第29 届奥运会具有重要意义。 地铁奥运支线利用的是北京市规划轨道交通线网中的8号线中的一部分, 南端起点为熊猫环岛,沿北中轴路中间绿化带和奥林匹克公园中轴线向北,穿过 北四环 路、成Array府路、 大屯路、 辛店村 路后, 终点设 在规划 森林公 园南门。 线路全 长 4.528km,全部为地下线。全线设4座车站,全部为地下站,分别是熊猫环岛站、 奥体中心站、奥运公园站和森林公园站。 为保证奥运期间乘客的安全集散,为节约能源,降低运营费用,经市政府专 门批准,奥运支线车站将安装站台屏蔽门,车站空调系统相应变更为屏蔽门空调 系统。奥运支线的控制中心近期与地铁十号线合建,远期并入地铁八号线。 本工程投资总额27243.6万元。地铁奥运支线采用了与以往北京地铁其他 建设项目不同的BT融资方式实施,2005年6月28日开工建设,2008年6月1 日建成通车。 城建院是该工程的总体设计单位,同时承担了全部土建工点和除通信信号 系统之外的全部设备系统得设计任务。 设计单位:北京城建设计研究总院 项目负责人:曹宗豪 设计时间:2005年--2008年

地铁盾构法隧道施工技术方案

地铁盾构法隧道施工技术方案

艮丿丿架安■ 苗沟机就位调试 --------- A 丿- 达- 止加掘逬 洒门螯封陽住妓 盾构札托歆- iVt 汕 涧门处牟站) 1 隆护舞曲除1 头 再次琥程啊试 期门篷刘圈安寢 — "L J V 割门处牢站 再就解1 側护堆凿陈■ 图1盾构隧道施工流程图 地铁盾构法隧道施工技术方案 1.施工流程图 1.1盾构法隧道施工流程图 初蜡掘it 到ii 终点

1.2盾构始发流程图 图2始发流程图 2.盾构机下井 盾构机从盾构工作井吊入,每台盾构机本身自重约 200t ,分解为5块,最 大块重约60t 。综合考虑吊机的起吊能力和工作半径,安排 1台200t 和一台 40t 汽车吊机进行吊入任务。盾构机下井拼装顺序见图 3。 始 发 准 备 拆 除 临 时 墙 掘 进

图3盾构机下井拼装示意图 在吊入盾构机之前,依次完成以下几项工作: 1.将测量控制点从地面引到井下底板上; 2.铺设后续台车轨道; 3.依次吊入后续台车并安放在轨道上; 4.安装始发推进反力架,盾构管片反力架示意图见图4; 5.安装盾构机始发托架,盾构始发托架示意图见图5。

8储口F诧 5*注腿諜 >—£ L27KW 图4盾构管片反力架示意图 3盾构机安装调试 3.1盾构机的安装主要工作 1?盾构机各组成块的连接; 2.盾构机与后续设备及后续台车之间各种线路、管线和机械结构的连接 3.盾构机内管片安装器、螺旋输送器、保园器的安装; 4?台车顶部皮带机及风道管的连接; 5?刀盘上各种刀具的安装。 3.2盾构机的检测调试主要内容 1?刀盘转动情况:转速、正反转; 2?刀盘上刀具:安装牢固性、超挖刀伸缩; 3.铰接千斤顶的工作情况:左、右伸缩;

北京地铁5号线设计技术创新

do:i 10.3969/.j issn .1672-6073.2010.03.004 都市快轨交通#第23卷第3期2010年6 月 快轨论坛 北京地铁5号线设计技术创新 张继菁 张 磊 刘 明 (北京城建设计研究总院有限责任公司 北京 100037) 摘 要 北京地铁5号线充分体现轨道交通/以人为本、科技创新0的设计理念,采用多项新技术、新工艺,展现全新的轨道交通形象,在设计、施工及管理等很多方面都开创了北京乃至全国轨道交通建设领域的第一,如:开创在地铁开通运行之初就实现高密度4m i n 间隔的新记录;在国内首次实施了AFC 网络清算中心(ACC )、采用全高和半高安全门(PSD );首次系统解决了轨道交通与其他交通形式的衔接问题;在国际轨道交通工程中首次设计了曲线梁斜拉桥、首次全面开展北京地区特有地层条件下地铁盾构隧道设计施工技术研究并成功应用;在国内外暗挖地铁建设中首次设计和实施了22.6m 大跨度单拱单柱双层岛式暗挖结构;在国内首次提出并成功实施的轨道交通路网指挥中心(TCC ),使轨道交通网络线路间的指挥协调以及轨道交通与城市防灾系统的联动成为现实,为网络化轨道交通的安全运营提供了保证。 关键词 北京地铁5号线 以人为本 技术创新 绿色环保 中图分类号 U 231.4 文献标志码 A 文章编号 1672-6073(2010)03-0023-05 1 北京地铁5号线概述 北京地铁5号线是奥运承诺工程之一,线路全长27.6km,车站23座,于2002年底开工建设,2007年10月通车试运行。通车2年多来,运行状况良好,发挥了巨大的社会效益。 北京地铁5号线是北京新一轮轨道交通建设时期的首条线路,工程的设计始终贯彻/以人为本、技术创新、绿色环保、安全可靠、经济实用、设备国产化0等原则,并得以实现。 5号线(见图1)沿线环境、地质条件复杂、管线与 收稿日期:2009-01-05 修回日期:2010-01-08 作者简介:张继菁,女,工程硕士,主要从事轨道交通车站设计与研 究,996315@s i na.c om 图1 北京地铁5号线 建(构)筑物众多,全线 与已建或规划的10条轨道交通交叉、换乘;线路穿越5条河流,结构形式与施工方法多样,几乎采用了国内所有的辅助施工工法。线路分别下穿了2号线崇文门区间、上跨1号线王府井)东单区间、下穿2号线雍和宫站,距离地铁1号线东单站顶部仅0.5m,这也是迄今为止北京地铁隧道建设中与原建筑物最近的距离。沿线还经过了天坛、雍和 宫、地坛等世界文化遗产和重点文物古迹,通过一系列技术创新、优化设计,很好地保护了沿线的文物。 2007年10月7日,北京地铁5号线实现了高水平开通,国内首次在开通之日即实现了全线全部系统的开通,并在国内首次实现了开通即达到高峰时间4m i n 的行车间隔。经过2年多的运营,线路结构稳定,设备运行良好,满足设计及使用功能,质量总评为优良。 北京地铁5号线在北京乃至全国城市轨道交通建设史上有着其重要的地位,是一条具有示范效应的典范工程,及重要的里程碑;是首条贯通北京南北的地下交通大动脉,在社会生活中发挥着越来越重要的作用,大大缩短了沿线居民的出行时间,减轻了地面交通的压力,节约了能源,同时极大地促进了沿线经济发展,显示出令人惊叹的/地铁效应0。该线是在新的历史时期、新技术时代建设的地下轨道交通,对北京乃至全国的地下轨道交通建设有着积极的影响。 23

北京地铁十号线二期公主坟站下穿既有车站施工方案研究

北京地铁十号线二期公主坟站下穿既有车站施工方案研究 摘要:随着城市地下轨道交通及市政管线等建设,新建线路下穿既有线路愈发常见。本文依托北京地铁十号线二期公主坟站下穿既有一号线车站工程,从施工角度,探讨大断面暗挖隧道“零距离”下穿既有车站施工中,根据施工现场动态完善方案,有效控制既有站沉降的相关技术措施。 关键词:暗挖隧道、下穿、既有车站 1、工程概况 1.1新建站简介 新建的10号线二期公主坟车站,位于复兴路与西三环中路交汇的新兴桥桥区绿地内,采用“分离岛”站台形式与既有1号线十字交叉换乘。 车站全长193.65m,为两端双层、中间单层车站。其中中间下穿既有1号线段长26.1m,结构净宽11.75m,高6.32m,顶板覆土约12.5m,为单层双跨平顶直墙矩形结构,采用“CRD+千斤顶”暗挖法施工。 1.2既有站简介 既有站为钢筋混凝土矩形框架结构,长169.69m、宽20.3m、高7.95m;底板厚0.8m、侧墙厚1m,顶板厚1.3m。自投入运营已近40年,在下穿施工前,由业主委托有资质的第三方对既有线结构现状进行全面的调查评估,根据评估结论,业主组织各方据以制定保证既有线运营安全的施工技术措施。 1.3新建站与既有站位置关系 新建站的车站主体单层段为两个分离式双跨矩形断面,单个矩形断面的开挖尺寸为宽×高=14.5m×9.32m,两矩形断面之间净距49.2m,采取十号线顶板紧贴一号线底板的“零距离”刚性接触下穿既有站。下穿横断面如图1.1新建站与既有站位置关系横断面图。 新建站单层段下穿施工影响范围内存在既有1号线车站四条变形缝,左线左侧距变形缝1.271m,右线右侧距变形缝2.409m。

地铁盾构隧道施工技术现状

地铁盾构隧道施工技术现状 发表时间:2019-04-26T15:54:01.173Z 来源:《建筑学研究前沿》2018年第36期作者:张磊翟宝伶[导读] 利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。天津国际工程建设监理公司天津市 300191 摘要:随着我国私家车数量的不断增多,交通拥堵已成为城市发展难题之一,空气质量也受之影响,在一定程度上阻碍了社会的发展。在低碳环保,科学发展观的践行之下,必须行,绿色出行为前提下,乘坐公共交通地铁的出行为交通拥堵疏解了巨大的压力。截止目前,我国的很多城市都已经有了正式的轨道交通,并且各种线路在逐渐的发展和扩大,地铁轨道的运行在我国有了很大的突破和进步,取得了很大的成绩,对于社会的发展具有很强的推动作用。地铁轨道的优点较多,例如地下轨道交通快捷,节约资源,对环境破坏较小,以及可以抵抗自然风雪的伤害,安全舒适。当然地铁的运行离不开地下隧道,盾构法作为地铁工程建设的常用方法,在地铁工程建设中发挥了至关重要的作用。利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。 关键词:地铁;盾构;隧道;施工技术 1盾构的分类 盾构机按其适用的地质情况不同主要分为泥水式盾构机、土压平衡式盾构机等类型。下面简单介绍通用的两种:泥水盾构机是在盾构机前面设置挡板,与刀盘泥浆槽之间形成稳定的开挖面,泥土进入泥浆仓内,形成一个不透水的薄膜在掌子面以此为张力来保持水压力,与开挖面的土压和水压之和保持平衡。挖出的土泥以泥浆的方式运输到地面,然后泥浆和水通过处理设备将泥土分离出来,分离出来的泥水经过处理后再循环利用到开挖中。 土压平衡盾构机是当盾构机向前推时,通过前面刀盘旋转切削土体切下来的土被运到土仓。当土仓被削下来的土填满时,被动土压力与开挖面上的土压和水压力之和保持平衡,因此实现掌子面平衡。 2盾构法施工的原理 盾构法开挖隧道本质上就是在盾构机开挖的过程中同步进行管片的拼装和盾尾注入浆体。根据开挖面所处的土层条件等状况,选择相应的盾构机机型。现在常见的形式包括密闭式、敞开式、土压式、泥水式等类型的盾构机。盾构机开挖隧道的施工过程:1.在隧道两端各建造一个盾构工作井:2.在两端的工作井处分别安装盾构设备;3.当盾构区间较长时宜进行设置中间维修井并在起始工作井处由千斤顶来提供推力使盾构机从开孔位置顶出;4.盾构机进行掘进时是根据设计位置来开挖并在开挖过程中管片安装和土体的排出同步进行;5.对盾尾的注浆必须及时用以固定衬砌管片的位置和减小土体的变形。盾构机在开挖的整体流程下存在的重要技术分为四块:1刀盘切入土层过程2开挖土层过程3盾构时管片衬砌的安装过程和最后的盾尾同步注浆过程。 (a)切入土层:盾构顶推力的大小是由本身存在的千斤顶来进行支持,当盾构的切口环进入到土体所顶进的长度和千斤顶所顶进的距离相对等。 (b)土体开挖:相对应地区的地质特性和机械的类型不同所进行的开挖方式也会有着千差万别。具体开挖方式有:网格式机械切削式敞开式和挤压式等开挖方式。 (c)衬砌拼装:在地质情况或承载力较小时一般会使用衬砌管片预制拼接来施工,同时根据设计要求存在其他的衬砌施工方法例如现浇式和复合式。 (d)盾尾同步注浆:在实际盾构开挖过程中盾构机开挖出的洞口大小比要拼接管片外径还要大一些,所以在盾构继续开挖时前期拼装好的管片会受到周围围岩作用并在盾尾通过后形成盾尾空隙。这种空隙在盾构施工中是一种十分严重的问题,如果没有对空隙及时的进行填充就会严重影响到管片的整体安全性。 3盾构隧道工程施工工艺 3.1盾构机进出洞时作业控制 地铁工程施工人员在进行盾构机的进出洞操作时,必须对作业、操作进行严格控制。利用盾构机挖掘隧道,必然会涉及到盾构机的进出洞,而这一过程的作业控制直接关系到盾构法的施工质量。如果盾构机进出洞操作出现问题,则整个地铁工程建设都有可能失败。为此,施工人员必须充分重视盾构机的进出洞作业控制。通常情况下,盾构机首先进行进洞作业,而后再进行出洞作业。在盾构机进行进洞作业之前,施工人员必须明确地铁隧道的作业路线,避免出现较大的轴线误差。同时,施工人员还应仔细勘察施工路线周围的环境,根据实际情况进行具体的操作。如果存在威胁盾构机施工作业的潜在因素,则必须在作业前制定好预防措施以及应急措施,避免在施工过程中出现重大事故,干扰盾构机的顺利施工。在进行盾构机的出洞作业前,施工人员需彻底审查各项工作,避免存在漏洞影响出洞作业。 3.2盾构机挖掘施工时作业控制 盾构机的挖掘作业是地铁施工盾构法的主要工作,此项作业在地铁工程建设的盾构施工中具有十分重要的作用。在盾构机进行挖掘施工的过程中,应尽量避免挖掘施工对周边土层产生较大影响,以保证开挖土层的稳定性。要减少盾构机挖掘施工对周边土层稳定性产生的影响,施工人员必须在挖掘作业前科学合理地调整盾构机的参数。同时,在挖掘施工过程中,使用人员应注意盾构机的姿态,避免盾构机因姿态问题影响挖掘工作的顺利进行。盾构机的姿态不仅会影响挖掘工作的进行,还会影响管片作业的拼装质量。为此,在盾构机的挖掘施工过程中必须严格控制其姿态。盾构机的姿态控制与注浆方式、盾构坡度等各项参数具有十分密切的关系,只有在控制好各项参数的前提下才能真正实现对盾构机姿态的有效控制。盾构机各项参数量的控制需要建立在可靠的测量工作之上,在进行可靠性的测量之后,才能实现对盾构机各项参数量的精准控制。此外,要将土体压力控制在可控范围内,还需严格调控盾构机的前进速度和排土容量。 3.3推进操作和纠偏 盾构在实施的时候,首先需要对围岩的范围进行观察,以此确保实施的安全性,实时对千斤顶的行程和推力进行观察,沿既定路线方向准确掘进。因此,有必要正确推进盾构的运行,随时纠正偏差。盾构掘进过程中,为了保证盾构掘进功能在计划路线上的正确性,防止偏移、偏转和俯仰,应适当调整千斤顶行程和推力,破坏不方便掘进面的稳定性。一般采用开挖后立即推进。或者一边挖一边推。因此,任何时候都要正确操作屏蔽体,任何时候都要进行纠偏的路线。

北京地铁五号线出入口及站外广场设计

北京地铁五号线 北京规划在今后的十年中建设400多公里的地铁线网,中心城区将基本达到发达国家城市的地铁覆盖率,以解决目前日益增加的路面交通负担。在新一轮的 地铁线网建设中,五号线是最先启动并开通的线路。 5号线是继20世纪60年代和70年代建造的l、2号线之后的第三条穿越北京老城区的地铁线,南起宋家庄,北至天通苑北,全长27.6公里,在城市中轴线的东侧贯通城区南北。16个地下站中有9个位于老城区内,如位于古都风貌保护区的东四站、张自忠站、北新桥站、雍和宫站。同时经过3个国家级、市级重点文物所在地:天坛、雍和官和段祺瑞府。 5号线的通车改善了北京南北城连通不畅问题使 北部最大的天通苑居住区近20万人的出行更为方便,使天坛、雍和官、东单、东四等名胜古迹和著名商业街更加有效的发挥作用,丰富都市生活。 都市回廊——五号线出人口的设计构思 5号线的站点大多位于城市的交叉路口,为满足不同方向的人流,一般四个街角各有一个出入口,全线共有近60个出入口建筑。 出入口建筑的功能单一,体量小、数量多,又位于城市的不同环境中,设计构思的出发点变得很关键。随着思考的深入,关注点集中在以下三个方面。 场所与人的行为特征 地铁在街道上唯一可见的便是地面出入口。出入口是人们行走和穿越的场所,匆匆而过,不需要停留。因此,地铁口只是起连接作用的媒介,不是目的性空间,这与一般建筑不同。 室外自然光从白天到夜晚,一年四季不断的变化,而地下空间的人工光环境基本均质,没有变化。地铁出人口正是地下与地表、自然光与人工照明变化的分界点。 人们通过地铁口只需一两分钟,而且大多在上下楼梯,注意力在脚下。视觉在游弋,身体在移动,所有的要素都是在运动中感受的,因此,地铁出入口给人们留下的不是空间形象而是移动中的瞬间记忆。 出人口与街道环境 位于街头的地铁出入口离不开城市背景环境,5号线由于跨越北京城市的南北,并且穿过老城区,因此,沿线的街道环境丰富多样,折射出北京由历史到现在不同发展阶段的城市特征及矛盾,概括起来主要有以下四 视堕鎏《一

地铁隧道盾构施工安全管理措施 - 制度大全

地铁隧道盾构施工安全管理措施-制度大全 地铁隧道盾构施工安全管理措施之相关制度和职责,1引言安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业... 1引言 安全管理工作己在我国得到了日益重视,尤其是在加入了WTO后,全球经济趋于一体化,要求发展中国家的安全生产管理水平赶上世界先进水平,企业安全管理工作已作为和生产管理并列的一项企业管理重要内容。而建筑业是伤亡事故多发的行业,仅次于矿山作业。隧道施工具有建筑业和矿山业的一些共同特点,施工危险程度大,安全隐患多。盾构施工隧道技术是一项先进的隧道施工技术,开挖面处在盾构体的保护下,可以最大程度避免土体失稳或冒顶带来的人身伤亡事故,近年来,在上海、广州、北京和深圳等地得到了较为广泛的应用。 盾构法隧道施工技术由英国工程师布鲁诺尔发明于1818年,并于1825年运用于工程实践。我国从1956年开始引进盾构施工技术,从20世纪80年代开始得到了快速发展,目前,在上海、广州等大城市中逐渐成为城市地下铁道施工的主流方法,其特有的安全施工和管理问题引起犷广泛注意,本文为结合多年的盾构施工实践和安全管理经验的总结。 2盾构机刀盘前的压气作业 2.1盾构机的压气作业 当操作人员必须进人盾构机前体刀盘内作业时,如果盾构机前方或上方的土体不能自稳,上体可能通过刀盘的开日处进人刀盘内,威胁作业人员的安全。大多先进的盾构机均配备了压气系统,即通过密封刀盘和盾构前体的通道,向刀盘内注入无油空气,使刀盘内的压力升高,以达到平衡外侧土体压力的目的,压力最大可达到3-4kg/cm2。为了保证操作人员的适应性,一般在通道卜设置密闭的过渡增压舱,这将在很大程度上缓解压力变化带给操作人员的影响。由于操作人员是在一个密闭的环境中工作,刀盘内空间狭窄,不能有多人同时作业,压人的空气质量也可能含有一定的杂质,且工作面的环境温度将会很高,当操作人员出现不适时,需要经过一定时间减压过渡后才能得到医疗。因此,压气作业是盾构安全施工的一个重点,也是一个值得注意的危险源。 2. 2压气作业的相应措施 (1)尽量减少在不良地质条件下进人刀盘内,尽可能地在基本可以自稳的地层中进行开舱作业,这样可以不用压气作业。因此,要根据地质条件的变化,选择适当的时机,提前或推迟进人刀盘内,尤其是更换刀具时要有预见性。 (2)要挑选身体健康、强壮的工人作为进人刀盘内的操作人员,并经过职业病医院严格的身体检查,确保对恶劣环境的抵抗力。一般压气作业一天不宜超过4小时。 (3)如需压气作业时,一定要选用无油型空压机,确保空气质量,减小环境污染。 (4)准备好通迅工具,无间断地保持联络。 (5)做好应急准备,必要时要能在减压舱(刀盘与盾构前体间的密封过渡通道)内抢救伤员,并与有关医院签好急救协议。有条件的要配备专用的流动医疗舱,以便在送往医院的过程中,保持伤员所受体外压力差基本一致。 3盾构刀具更换 随着地质条件的变化,隧道掘进过程中需要对刀具进行更换,尤其是当岩石强度较高时,需要

相关主题