搜档网
当前位置:搜档网 › DOS态密度汇编

DOS态密度汇编

DOS态密度汇编
DOS态密度汇编

态密度(Density of States,简称DOS)

在DOS结果图里可以查看是导体还是绝缘体还是半导体,请问怎么看。理论是什么?或者哪位老师可以告诉我这方面的知识可以通过学习什么获得。不胜感激。

查看是导体还是绝缘体还是半导体,最好还是用能带图DOS的话看费米能级两侧的能量差

谢希德。复旦版的《固体能带论》一书中有,请参阅!另外到网上或者学校的数据库找找“第一性原理”方面的论文,里面通常会有一些计算分析。下面有一篇可以下载的:ZnO的第一性原理计算

hoffman的《固体与表面》对态密度的理解还是很有好处的。

下面这个是在版里找的,多看看吧:

如何分析第一原理的计算结果

用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:

1、电荷密度图(charge density);

2、能带结构(Energy Band Structure);

3、态密度(Density of States,简称DOS)。

电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(d ef-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s 或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。

能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则

为半导体或者绝缘体。对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。不过仍然可以总结出一些经验性的规律来。主要有以下几点: 1)因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。原则上讲,这个区域的能带并不具备多大的解说/阅读价值。因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。

2)能带的宽窄在能带的分析中占据很重要的位置。能带越宽,也即在能带图中的起伏越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp -like band)之名。反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质量相对较大。

3)如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般而言在能隙处会出现一条新的、比较窄的能带。这就是通常所谓的杂质态(doping state),或者按照掺杂半导体的类型称为受主态或者施主态。

4)关于自旋极化的能带,一般是画出两幅图:majority spin和minority spin。经典的说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。注意它们在费米能级处的差异。如果费米能级与majority spin的能带图相交而处于minority spin的能隙中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(half metal)。因为majority spin与费米能级相交的能带主要由杂质原子轨道组成,所以也可以此为出发点讨论杂质的磁性特征。

5)做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同的情况。具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费米能级正好处在导带和价带之间。这样,衬底材料就呈现出各项异性:对于前者,呈现金属性,而对于后者,呈现绝缘性。因此,有的工作是通过某种材料的能带图而选择不同的面作为生长面。具体的分析应该结合试验结果给出。(如果我没记错的话,物理所薛其坤研究员曾经分析过$\beta$-Fe的(100)和(111)面对应的能带。有兴趣的读者可进一步查阅资料。)

原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可

以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。简要总结分析要点如下:

1)在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电子的非局域化性质很强。相反,对于一般的过渡金属而言,d轨道的DOS一般是一个很大的尖峰,说明d电子相对比较局域,相应的能带也比较窄。

2)从DOS图也可分析能隙特性:若费米能级处于DOS值为零的区间中,说明该体系是半导体或绝缘体;若有分波DOS跨过费米能级,则该体系是金属。此外,可以画出分波(PDOS)和局域(LDOS)两种态密度,更加细致的研究在各点处的分波成键情况。

3)从DOS图中还可引入“赝能隙”(pseudogap)的概念。也即在费米能级两侧分别有两个尖峰。而两个尖峰之间的DOS并不为零。赝能隙直接反映了该体系成键的共价性的强弱:越宽,说明共价性越强。如果分析的是局域态密度(LDOS),那么赝能隙反映的则是相邻两个原子成键的强弱:赝能隙越宽,说明两个原子成键越强。上述分析的理论基础可从紧束缚理论出发得到解释:实际上,可以认为赝能隙的宽度直接和Hamiltonian矩阵的非对角元相关,彼此间成单调递增的函数关系。

4)对于自旋极化的体系,与能带分析类似,也应该将majority spin和minority spin 分别画出,若费米能级与majority的DOS相交而处于minority的DOS的能隙之中,可以说明该体系的自旋极化。

5)考虑LDOS,如果相邻原子的LDOS在同一个能量上同时出现了尖峰,则我们将其称之为杂化峰(hybridized peak),这个概念直观地向我们展示了相邻原子之间的作用强弱。

请教楼主:

1、我一直不明白DOS图中的非键的概念。这里的非键,到底是什么意思?DOS图中能不能看出来?如何看?

2、金属中除了金属键,电子都是以什么状态存在的?是非键吗?所谓的非键是不是就是我们过去所说的自由电子?还是说,金属键的电子就是自由电子呢?

金属中金属键占大部分啊,还是说非键占大部分?

3、离子键在DOS中能不能看出来?如何看?

4、我曾看到文献上说,费米能附近的非键是金属性的标志。这句话如何理解?

1.其实DOS是固体物理的概念,而非键(以及成键和反键等)是结构化学的概念,但是现在经常用在同一个体系说明不同的问题。先说一下非键,然后在把它跟BAND和DOS结合起来。

从结构化学的角度来说,分子轨道是由原子轨道线性组合而成。如果体系有n个原子轨道进行组合,就会产生n个分子轨道(即轨道数目守恒,其实从量子力学的角度,就是正交变换

不会改变希尔伯特空间的维数)。这些分子轨道的能量,可以高于,近似等于,或是低于原子轨道的能量,它们分别对应于成键,非键,或是反键态。简单的说,非键轨道跟组成它的原子轨道能量差不多,如果有电子排在该轨道上,则对体系成键能量上没有太大帮助。

由于固体中的每个能带都是有许多原子轨道组合而成,简单的说,对于某一只能带,它的上半部对应化学上所谓的反键态,下半部分对应于成键态,而中部的区域对应于非键态。但是,由于能带是非常密集的,从而是连续(准连续的),对于某个具体的能级,往往很难说出具体是什么键态,如果这个能级不是对应于能带低,或是能带顶的话。而且,一般费米面附近的能带不仅仅由一种原子轨道扩展而成,而是不同种轨道杂化而成,要定量说明是比较难的。

2.关于金属,粗糙的说,金属中的电子是以电子气的情况出现,分布于整个金属所在的空间。正价离子实通过对“公共”电子气的吸引而聚集在一起。从化学上讲,金属键可以看做是一种共价键,只是没有饱和性和方向性。但是这种理解太粗糙。从固体物理的角度,金属中电子分布跟半导体,绝缘体(也就是电介质)类似,对基态都是按照能量最低排在能带上。只不过,金属的费米能级穿过电子所在的能带(也就是电子没有占满该能带),从而使得费米面附近的电子参与导电。所以,非键并不是我们说的自由电子,两者没有必然的联系。金属中的电子也不是完全的自由电子,其波函数还是受离子周期调制的布洛赫波,而非平面波。

3.离子键等不能在DOS中看,我发过专门的帖子。单纯的从DOS最多可以定性的看出杂化,但是不能看出杂化轨道中的电子究竟偏向哪个原子,因此不能看出离子键或是共价键的情况。最近我师弟问我一个很垃圾杂志上用DOS分析离子键或是共价键的文章,这个文章我看了一下,它的分析是错的。

4.根据我上面的说法,由于固体的“非键态”在DOS或是BAND的中部,当费米能级附近是非键态时,换句话说,就是表明费米能级穿越了能带的中部,说明电子没有占满,因此是金属晶体,是金属性的标识。这么理解有道理。

第一原理计算结果讨论(系列二)

讨论一:电荷密度图(charge density),变型电荷密图(def-ormation charge density)和差分电荷密度图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“变型”是指原子组成体系(团簇)之后电荷的重新分布,“差分”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损

失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。

问题:我对这三种电荷图理解的不透彻,通过这三种电荷密度图能判断出是共价键和离子键

吗?如果能,怎样判断出来?最好能给出三种电荷图加以说明。

讨论二:对于成键分析用的晶体轨道重叠布局图,如何分析?谁会MULLIKEN电荷布局图,请各

位虫友帮忙讨论这个问题,最好给个图,分析一下。多谢。

讨论三:TDOS,SDOS,SPDOS,LDOS,PDOS是从不同的侧面去描写体系的电子结构,反应的意义也不同,大家谁知道TDOS,SDOS,SPDOS,LDOS,PDOS的区别?最好贴个图,一起分析一下,共

同学习。

希望得到版主和各位虫友的支持,会的在温习一下,不会的就当学点新知识,大家共同学习。

【讨论】关于用态密度来看体系成键的性质

这里,先摆出我的观点,就是态密度跟体系成键性质(也就是局域键是共价,离子,金属,或是混合键等等之类),并没有直接关系,但它可以从整体上(而非局域键)判断体系是金属,半导体或是绝缘体(这是能带论的根本观点之一)。

态密度的定义为(单位体积)单位能量上的状态数。简单的说,就是在某个能量附近,体系状态的分布的稠密程度。举个简单的例子,比如常见的氢分子和CO2分子的态密度,很显然,在不考虑能级各种展宽因素影响的情况下,都是DELTA函数。那么,从这一堆DELTA 函数,能看出来前者是共价键而后者是共价键和离子键的一种混合键吗?显然不能。(要注意的是,CO2中C-O有离子成分的,不是纯的共价键,虽然离子成分较少。)

对于固体,我们能从TDOS的带隙来判断体系的整体性质,比如是金属还是半导体等等。但是无法给出更细的信息。那么LDOS和PDOS呢?它们能给出什么信息。以LDOS为例,我们可以给出体系某个原子的LDOS。我认为LDOS只能给出该原子原子轨道成键后的杂化情况,但是说明不了与周围原子的价键性质,也就是不能直接说明是离子键还是共价键。其实这点很容易理解,比如,考虑A原子的S轨道和B原子的S轨道有杂化(为简单起见不考

虑其他轨道的杂化情况),这说明S和S电子之间有转移,但是是由A的S到B的S,还是反过来?就不能仅仅的用LDOS来判断了,必须考虑A和B具体的电负性。不过,由LDOS 的宽窄情况,可以看出来轨道的杂化程度,如果比较窄,则杂化不强烈(仍保持原子轨道DELTA函数的形式),如果比较宽,证明杂化比较强。其实能带中由孤立原子能级变为能带,就是杂化的过程,内层电子杂化不明显,能带较窄,而外层电子则相反。

好了,对于这个小问题,就说这么多。说的也不一定对,如果哪个虫友有其他看法,跟我的不一样,还请赐教。

基本上同意你的观点,只是一些概念上需要澄清:1.DOS的概念是相对于固体而言的,小分子没有DOS这个概念,只有energy level. DOS用于说明轨道相互作用情况比较合适。

2.关于“杂化”,化学上有特殊含义,是同一原子的不同轨道再组合,老外叫它hybridization,而你这里实际应该是指mixing

3.要甄别是“共价键”还是“离子键”,用电荷密度来讲,可能更好一些。

4.化学键没有绝对的共价与离子,只是看哪种作用力更明显一些而已。

呵呵,对不起,你有的观点我不是很同意,简单说说我的看法,可以讨论一下。

1.分子也是有DOS的,不过DOS是一些DELTA函数而已。LS是做量子化学的,不知道用过没有用过(或者听没听说过)ADF软件,计算后可以直接把DOS画出来。

2.当然,原子轨道杂化(比如C的SP3杂化),是一个基本的定义。不过,现在就我看到的文献,对于不同原子的轨道叠加,也可以说是“杂化”(说成你所谓的mixing也行)。例如,有文献经常说某个分子的HOMO是由A原子的3P轨道和B原子的2S轨道杂化而成,等等。这么说,似乎也不会引起误解。

3.要鉴别离子键跟共价键用电荷密度来说是更合适,这点我同意,这也是众所周知的事实。不过,我这里只是说明单纯从DOS上看不出来共价键或是离子的性质。并没有讨论用什么物理量(比如电荷差分密度,电荷变形密度等等)来看键的性质更合适。

4.化学键没有绝对的共价键或是离子键,我同意。其实,不仅仅是分子,固体中的情况也一样。比如常见的离子晶体NACL,离子成分也不是100%的。你说的的第三、第四个问题我并没有在这个帖子中展宽讨论。可能让你有所误解,对不起。

我觉的LS似乎微观图像不清楚。当然,这只是我的感觉,未必准确。也可能是我的微观图像不清楚。“但是结合你的初始结构来看,ldos基本上还是比较准确的”,这句话有问题,首先,即使是结合LDOS看结果,也应该是结合优化过的构型,而不能是初始构型。更重要的是,即使忽略这个小的错误,这句话也不对。以最简单的氢分子为例,其成键和反键态波函数只是差一个正负号,都是两个原子的S轨道杂化而成。因此从LDOS上,两个态所显示的都是两个S的重叠,无非是所处能量位置不同。因此,我即使把氢分子的结构(其实就是两点一线段)和LDOS给你,仅从这两个信息你也不能通过LDOS给出成键态和反键态的形状,自然不能给出键的方向。更不用说是多原子分子了。另外,“临近原子的相对位置,是可以看出是什么样的结合键的”,我不知道你这里的键是从

分子轨道理论过来的,还是从价键(VB)理论过来的。现在一般都是分析分子轨道理论的结果。对于分子轨道,例如HOMO,HOMO-1,HOMO-2,......都是一个整体,每个轨道都代表一个电子在是空间的分布,单独看他们在某几个原子间的分布,并判断是什么键,似乎不对

共价键在两个元素之间的局部区域电子密度会有较强的分布",这句话定性上是对的,如果差分电荷密度或是变形电荷密度集中在某两个原子间,证明共价键比较强。

然而“你可以看到Ti和C之间区域电子密度较小,这是离子键的明显特征”,这句话的意思容易明白,但是,我觉得直接用原子的MULLIKEN电荷大小来说明离子性的强弱,可能更好一点。或许会有人说,MULLILKEN电荷并不准确。的确,从其本身的算法来看,是这样。但是,用来定性分析还是有意义的。特别是相对大小的比较。因为“Ti和C之间区域电子密度较小”,怎么个小法才能体现离子键?这很不容易说清楚。

最后,至于LDOS和PDOS的区别,前者侧重于具体原子的态密度,后者是整个晶胞的S,P,D 的电子分布。其实,往往在使用LDOS中,我们也是把该原子的S,P,D电子分开的,确切的说是LPDOS更合适,呵呵。当然,DOS的种类有很多中,比如TDOS,SDOS,SPDOS,LDOS,PDOS等等,这些DOS反映了体系电子结构的不同侧面,表现了不完全相同的意义。

以上都是最基本的概念,只要你熟悉固体物理,我想理解起来应该没有什么问题。

量化从量子力学而来,从处理小分子开始,建立了一些描述问题的概念,电子分布的描述,引入能级概念,这时的能量分布只是一个个孤立的点;到了扩展体系或者较大的体系时,一些能级间隔逐渐变得很小,以至难以区分,出了个“带”,此时才有了DOS。虽然两者类似,但还是略有区别的,至于什么时候叫energy level,何时称DOS,见仁见智吧,个人认为还是有区别的。至于“杂化”这个概念,无论从物理还是化学的角度讲,原谅我不能接受你的观点,杂化(hybridization)不仅仅是Pauling天才地玩出来的概念,它是有深刻的物理背景的,实际上它是量子力学一个假定(态叠加原理)的具体应用,这和“mixing"是两码事儿;其次,化学上是严格区别”杂化“与”mixing"(混合,化学上多称为轨道组合),“杂化”在化学上是指同一原子不同轨道间的重新组合,而不能用来描述不同原子间轨道的混合(mixing),玩物理的老外们多用state mixing,进口之后,时而才被被玩儿成“杂化”。很惭愧,我不用阿姆斯特丹的东西,虽然知道它不算太贵,但年计费很烦,虽然知道它的band可以计算固体,但还是喜欢维也纳,萝卜青菜,各有所爱吧。谢谢你的讨论!呵呵,原子轨道原本多用STO表示,只是不便于积分,于是采用GTO展开,

形成各色基组,所以,你这里的说法又存在问题了

采用基组原本就是拟合STO或原子轨道的,然后在此基础上,构造分子轨道,并不是直接拿GTO线性组合成MO。我想再次强调的是,LCAO只是构造分子轨道的方法之一,没有人也没有那个原理限制你必须用LCAO,只是它用起来比较简洁、方便、通用且易于程序化而已,如果愿意,大可以采用其它构造方式。恕我直言和坚持。

1.DOS跟能级是有区别的。无论对于分子或是固体,都有能级(只不过固体的能级比较密集,

是连续或是准连续,因而称之为带,或者说,能带是固体能级的一个形象的说法),其实两者都是体系(分子或是固体)薛定谔方程的解,从量子力学的角度来看,并无区别。我们其实也可以把固体中的某个能量叫做能级,比如常见的费米能级,并没有任何妨碍。而态密度是单位能量(单位体积)状态数的分布,对于体系的几何维度或是对称性等没有要求。在周期晶体,非周期固体,分子等等都可以应用。

2.的确,现在hybridization或是mixing用的的确比较烂。不过,量子力学的态叠加原理不仅仅可以用在同一个原子不同轨道的叠加。态叠加原理有着非常深刻的物理含义。换句话说,LS所谓的mixing也是态叠加原理的体现。不过,我觉得你的看法好像不是这样的。

3.我说的ADF指的就是ADF,而不是其中的BAND。ADF可以给出分子的DOS,而BAND 可以给出固体的DOS。当然,BAND一般没人用。

的确,我不认为分别属于两个原子的轨道间的mixing是态叠加原理!说得白话些,描述体系的不同状态波函数间的组合仍是描述体系状态的波函数,这是态叠加原理。描述不同原子的轨道之间的混合即成键是针对不同原子而言,从原子轨道这个层次讲,两个原子是不同体系,因此其轨道的mixing就不能算作态叠加原理,就像你不能把杂化轨道称为分子轨道一样,杂化轨道仍然是原子轨道,而此时的分子轨道不再是原子轨道。嘻嘻,有点牛角尖了,见谅!

既然LS否认不同原子的轨道mixing是态叠加原理的体现。我想请教一下LS,那么在分子轨道理论中,是哪个量子力学基本原理(或者其推论)可以保证体系的分子轨道可以展开为不同原子轨道的线性组合?

我不是搞化学的,对结构化学或是量子化学不熟,不过一些问题可以讨论一下。

将原子轨道线性组合为分子轨道只是构造分子轨道的一种手段,不需要什么量子力学原理来支撑,完全可以不用原子轨道来构造分子轨道,只要你能造出一个描述分子体系电子运动状态的函数就可以,不是有些软件还采用数值轨道的吗.....

用GTO或是STO只是技术上的问题,从物理上说,STO符合实际的电子波函数,但是从计算上说,GTO更方便数值运算。

其实我上面说的很清楚了“分子轨道的展开不一定用原子轨道”,所以并没有一定用LCAO方法,希望你不要误解,呵呵。把分子轨道展开,究竟用什么基组,看计算的方便而定。

可以是有一定物理意义的原子轨道,当然,也可以是没有直接物理意义的GTO基组(通过拟合STO等等手段来表示)等等。甚至,只要你愿意,用平面波形式的基组也可以计算(比如用VASP计算超胞中的孤立分子)。但是无论你用什么基组通过线性叠加来表示分子轨道,其实背后都体现了态叠加原理。否则,从量子力学的角度,没有任何依据可以让你把分子轨道展开成某些函数的叠加形式。

换句话说,只要你把波函数展开,无论用什么基组,都是态叠加原理的体相,选取基组中的有限项来实际的拟合分子轨道。呵呵。

其实,所谓的GTO拟合STO,只是数值计算上的方便,或者说,是一种数学技术,因为不同GTO的乘积可以转换为一个GTO,从而方便数值计算。或者说,把分子波函数展开为slater原子轨道的叠加,这一步才比较清楚的体现了态叠加原理的物理含义。而用GTO拟合STO,是一种数值计算方便的手段,是下一个层次事情,也

就是实际操作。个人意见,嘿嘿。

氢分子的波函数,无论是成键或是反键,都是氢原子的叠加。第一,这只是一个近似,是数学上无法严格求解H2分子的一种“退一步”的近似手段。第二,我要说的是,从态叠加原理来看,我们不仅要注意H2分子轨道跟原来两个氢原子轨道的联系,而且还要时刻注意它们的区别。虽然对H2这个例子不明显,但是,对于其他一些情况这种差异还是很明显的。比如说,许多平面波(扩展态)可以叠加为一个束缚态。这说明叠加态是不同于原有各态的一个新态。而不仅仅是原有态的“机械”叠加。里面蕴含着丰富的物理思想。这一点,似乎很多做化学的人往往意识不到。

以分子为例,其实轨道杂化的方向与各个原子轨道前的系数,包括正负号有很大关系。但是LDOS只能给出定性的重叠。所以从LDOS上的杂化看出成键的方向,基本上是不可能的。是的,真要严格讨论,一般要用OP,如COOP,COHP,但这些都涉及原子基组的问题了,平面波基组也就定性.

LDOS,PDOS都是定性说,一般就是为了文章里面有个图,多一段讨论而已

定性是不假,但是结合你的初始结构来看,ldos基本上还是比较准确的,不是么?虽然不能发在文章里,但是我在分析中好像一直和最后结论差不多。在哪些方向有杂化,临近原子的相对位置,是可以看出是什么样的结合键的,尤其如果你考虑到分解的复杂问题,你可以把你想看的原子们放到一个垂直或平行于与坐标轴的方向的。两位老大在考虑下

恩第一点我就是说根据结构,不是特指优化前的结构。另外针对后面的问题,我知道我们的分歧大概出在哪了,应该因为我,的确在考虑ldos的时候我们是需要考虑band,但homo or homo-1 每一个band都不是所有的原子在提供电子,因此我们是可以根据部分band的ldos来分析键的构型。当然我对这部分的理解有限:),如果只有一个氢分子的话我想考虑所有bands应该可以看出来的吧?

1.比如自然展宽(起源于量子力学的时间-能量的不确定性关系),再比如电子能级跟振动转动能级的耦合。其实完全孤立的原子分子是不存在的,碰撞也可以展宽能级。当然,由于展宽原因不同可以是洛伦兹展宽,FANO展宽等等。

2.版上LDOS和PDOS讨论很多,不多说。

3.的确,杂化这个概念现在用的有些模糊,尤其是在物理中。例如P.W.Anderson处理非磁性金属母体中磁性杂质跟母体巡游电子的相互作用时提出了一个S-D杂化模型哈密顿量,有时又叫Anderson S-D混合哈密顿,其中就用到了“杂化”这个词。不太严格的说,我个人的理解是在物理上杂化往往意味着波函数的交叠(其实这跟化学上MO理论原子轨道线性叠加为分子轨道的情况差不多,分子轨道由若干原子轨道“叠加”而成,从而产生杂化)。不过我没有去扣这个字眼。当然,能带理论中如果说原子外层价电子波函数通过交叠而成为扩展的布洛赫波似乎更有物理味道。细节就不去管它了。

4.A和B只是一个例子,说明两个原子的轨道即使有杂化,如果从LDOS看只是出现定性(最多是半定量)的交叠,不能仅仅由DOS图的“交叠”确定电子的偏离哪个原子。

5.据我所知,COOP可以表明键是成键或是反键的。似乎不能直接用于体系的局域键是共价,离子性质的判断。所以我没有太多讨论COOP.

成键态反键态直接看能量就是了,那里那么麻烦。其实,人每天有很多事情可以做的。

学习了不少。我是主要做化学反应方面的,所以对成健方面很感兴趣。所以在分析成键的时候想利用一些态密度。我感觉所谓一个态就是一个分子轨道,而不同的原子在这个态上都可能会有贡献,比如说A 的s轨道和B的d轨道在某个态上(或在态密度的同一个能量上)有重叠,则就会说明产生成键。这是我的想法,不知道是不是正确。但是我还是在态密度上有些问题:上面说过共价键和离子键,不知道从态密度能否定性分析出来,因为态密度越尖,则电子的局域性越强,同时看两个原子在同一个态上的DOS图像,应该可以看得出电子大部分局与在哪里,如果局域性不强,可以说明是共价键了。还有一种方法,不知道是否可行,就是看看同一个体系有何没有一个原子时,和他邻近原子的态密度的变化,应该可以看得出影响在哪里。比如看共轭效应,可以分析有金属原子和没有金属原子时和他相连原子的态密度变化,就可以分析是如何成键的了。这些都是我的愚见,还是希望高人指点。

建议你读一下这篇文章:J. Am. Chem. Soc., 2008, 130 (12), pp 3720–3721 J. Am. Chem. Soc., 2009, 131 (12), p 4551(Addition/Correction) 虽然文章不长,你一定会有不少收获的。

举个简单的例子吧:譬如有两个H原子,分别标记为H1和H2,描述H1、H2的原子轨道分别是psai1、psai2。那么,请问一下,psai1、psai2能分别独立描述氢分子中的电子态吗?

当然不行。不过,这问题能说明什么问题呢?

那么,psai1与psai2做个线性组合又是什么?态叠加吗?如果是,那么组合后得到的态与组合前的原子轨道描述的是相同的体系吗?

这个其实就是态叠加原理(也就是你所谓的mixing)。组合后的态用来描述新的体系。两个H原子形成H分子时,氢分子的轨道虽然是原来氢原子的线性组合,跟原来的原子轨道有关,但也有不同的地方(比如对称性不同,氢原子轨道是O4李群对称性,而氢分子轨道是D*h 线性群对称性),一个描述氢原子,一个描述氢分子,当然不同。因此,H2的波函数用来描述H2分子中电子的概率分布,是一个“新”的态。不同于原子的情况。

密度泛函理论(DFT)

一、 计算方法 密度泛函理论(DFT )、含时密度泛函理论(TDDFT ) 二、 计算方法原理 1. 计算方法出处及原理 本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。那么一个固定的电子态可以用波函数 Ψ(1r , · · · ,N r ), 并且满足多 N 电子体系薛定谔方程: ()() 22????,2N N N i i j i i i i j H T V U V r U r r E m

333*231212()(,,)(,,) N N N n r N d r d r d r r r r r r r =???ψ???ψ?????? (2-4) 更重要的是, DFT 的核心理念告诉我们, 对于一个给定的基态, 如果基态 的电子密度0()n r 是知道的话, 那么基态的波函数012(,,)N r r r ψ???就唯一确定。也就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为: [] 00n ψ=ψ (2-5) 既然有以上的假定, 那么对于基态的任何一个观测量?O , 它的数学期望就应该是0n 的泛函: [][][]000 ?O n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函: [][][]0000 ???E E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00?n V n ψψ可以通过基态的电子密度0 n 来精确表达: 300[]()()V n V r n r d r =? (2-8) 或者外部势能?V ψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =? (2-9)

初学VASP中电子态密度计算设置参考

初学VASP中电子态密度计算基本设置参考主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

密度泛函理论的进展与问题

密度泛函理论的进展与问题 摘要:本文综述了密度泛函理论发展的基础及其最新进展,介绍了求解具体物理化学问题时用到的几种常用的数值计算方法,另外对密度泛函理论的发展进行了展望。密度泛函理论的发展以寻找合适的交换相关近似为主线,从最初的局域密度近似、广义梯度近似到现在的非局域泛函、自相互作用修正,多种泛函形式的相继出现使得密度泛函理论可以提供越来越精确的计算结果。另外,在密度泛函理论体系发展的同时,相应的数值计算方法的发展也非常迅速。随着密度泛函理论本身及其数值方法的发展,它的应用也越来越广泛,一些新的应用领域和研究方向不断涌现。 关键词:密度泛函数值计算发展应用 1 研究背景 量子力学作为20世纪最伟大的发现之一,是整个现代物理学的基石。量子力学最流行的表述形式是薛定谔的波动力学形式,核心是波函数及其运动方程薛定谔方程。对一个外势场v(r)中的N电子体系,量子力学的波动力学范式可以表示成: 即对给定的外势,将其代入薛定谔方程可以得到电子波函数,可以得到所有可观测量的值。 当用量子力学处理真实的物理化学体系时,传统的波动力学方法便显得有点力不从心。因为在大多数情况下,人们只是关心与实验相关的一部分信息,如能量、密度等。所以,人们希望使用一些较简单的物理量来构造新的理论[1]。 电子密度泛函理论是上个世纪60年代在Thomas-Fermi理论的基础上发展起来的量子理论的一种表述方式。传统的量子理论将波函数作为体系的基本物理量,而密度泛函理论则通过粒子密度来描述体系基态的物理性质。因为粒子密度只是空间坐标的函数,这使得密度泛函理论将3N 维波函数问题简化为3维粒子密度问题,十分简单直观。另外,粒子密度通常是可以通过实验直接观测的物理量。粒子密度的这些优良特性,使得密度泛函理论具有诱人的应用前景。 2 密度泛函理论的基础 Thomas-Fermi模型 1927 年Thomas和Fermi分别提出:体系的动能可以通过体系的电子密度表达出来。他们提出了一种的均匀电子气模型,把空间分割成足够小的立方体,通过在这些立方体中求

DOS态密度

态密度(Density of States,简称DOS) 在DOS结果图里可以查瞧就就是导体还就就是绝缘体还就就是半导体,请问怎么瞧。理论就就是什么?或者哪位老师可以告诉我这方面得知识可以通过学习什么获得。不胜感激。 查瞧就就是导体还就就是绝缘体还就就是半导体,最好还就就是用能带图DOS得话瞧费米能级两侧得能量差 谢希德。复旦版得《固体能带论》一书中有,请参阅!另外到网上或者学校得数据库找找“第一性原理”方面得论文,里面通常会有一些计算分析。下面有一篇可以下载得:ZnO得第一性原理计算 hoffman得《固体与表面》对态密度得理解还就就是很有好处得。 下面这个就就是在版里找得,多瞧瞧吧: 如何分析第一原理得计算结果 用第一原理计算软件开展得工作,分析结果主要就就是从以下三个方面进行定性/定量得讨论:1 ?、电荷密度图(charge density); 2、能带结构(EnergyBand Structure);?3、态密度(Density ofStates,简称DOS)。??电荷密度图就就是以图得形式出现在文章中,非常直观,因此对于一般得入门级研究人员来讲不会有任何得疑问。唯一需要注意得就就就是这种分析得种种衍生形式,比如差分电荷密图(def-ormationchargedensity)与二次差分图(difference chargedensity)等等,加自旋极化得工作还可能有自旋极化电荷密度图(spin-polarizedc harge density)。所谓“差分”就就是指原子组成体系(团簇)之后电荷得重新分布,“二次”就就是指同一个体系化学成分或者几何构型改变之后电荷得重新分布,因此通过这种差分图可以很直观地瞧出体系中个原子得成键情况。通过电荷聚集(accumulation)/损失(depl etion)得具体空间分布,瞧成键得极性强弱;通过某格点附近得电荷分布形状判断成键得轨道(这个主要就就是对d轨道得分析,对于s或者p轨道得形状分析我还没有见过)。分析总电荷密度图得方法类似,不过相对而言,这种图所携带得信息量较小。?能带结构分析现在在各个领域得第一原理计算工作中用得非常普遍了。但就就是因为能带这个概念本身得抽象性,对于能带得分析就就是让初学者最感头痛得地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到得能带,如何能从里面瞧出有用得信息。首先当然可以瞧出这个体系就就是金属、半导体还就就是绝缘体。判断得标准就就是瞧费米能级与导带(也即在高对称点附近近似成开口向上得抛物线形状得能带)就就是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以瞧出就就是直接能隙还就就是间接能隙:如果导带得最低点与价带得最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣得方面彼此相差很大,分析不可能像上述分析一样直观与普适。不过仍然可以总结出一些经验性得规律来。主要有以下几点: 1) 因为目前得计算大多采用超单胞(supercell)得形式,在一个单胞里有几十个原

密度泛函理论

密度泛函理论

摘要:介绍了密度泛函理论的发展与完善,运用密度泛函理论研究了钒(Vanadium)在高压下的结构相变。通过计算体心立方结构的钒在不同压强下剪切弹性系数C44,发现当压强约95 GPa时C44<0,说明体心立方结构的钒在此条件下是不稳定的。进一步计算分析得到钒在高压下发生了从体心立方到菱面体的结构相变,相变压强约70 GPa,这一结果与实验结果符合。还首次发现当压强约380 GPa时,将会发生菱面体到体心立方的结构相变,这有待实验的验证。 引言:相变的研究受到广泛重视,通过相变研究可以认识物质的内部结构,可以了解原子核的内部性质。尤其是极端条件下—高温、高压下相变的研究一直是人们关注的热点,能量很高的重离子反应能形成高温、高密的区域,在这种条件下会出现许多奇异现象[1]。原子在高压下也会出现许多新的特征,如发生结构相变。过渡金属钒由于有较高的超导转变温度Tc,最近成为实验和理论研究的主题[2—8]。Ishizuka等[2]对钒的实验研究发现:常压下钒的转变温度Tc为5.3 K,并随压强成线性增长的关系,当压强为120 GPa时Tc=17.2 K(迄今是金属中最大的Tc),但压强大于

120 GPa,Tc出现了反常,即不再随压强成线性增长而保持不变。Takemura等[8]对高压下的钒进行了X射线衍射实验,结果显示状态方程并没有奇异性,体心立方结构的钒在压强达到154 GPa 时仍是稳定的。Suzuki和Ostani利用第一性原理对进行了计算,发现横向声子模在加压下有明显的软化,当压强约130 GPa时变成虚的,能说明可能发生了结构相变,但并未给出相变细节[3]。Nirmal等[4]理论计算表明,压强约140 GPa时会发生体心立方到简立方(sc)的结构相变。Landa 等[5,6]计算了体心立方结构的钒在加压下剪切弹性系数C44的大小,发现压强约200 GPa时会出现力学不稳定,并用费米面嵌套解释了不稳定的原因,但并没有给出相变后的结构。最近Ding 等[7]在常温下首次从实验上得到当准静压约63 GPa时钒会发生从体心立方到菱面体的结构相变,并分析了产生结构相变的原因。他们认为,排除传统的s-d电子跃迁的驱动,相变可能与来自于费米面嵌套、带的Jahn-Teller扭曲以及电子拓扑跃迁等因素有关。 基于如上原因,本文运用密度泛函理论研究钒在高压下的结构相变,即通过计算体心立方结构的

DOS态密度

态密度(Density of States,简称DOS) 在DOS结果图里可以查看是导体还是绝缘体还是半导体,请问怎么看。理论是什么?或者哪位老师可以告诉我这方面的知识可以通过学习什么获得。不胜感激。 查看是导体还是绝缘体还是半导体,最好还是用能带图 DOS的话看费米能级两侧的能量差 谢希德。复旦版的《固体能带论》一书中有,请参阅!另外到网上或者学校的数据库找找“第一性原理”方面的论文,里面通常会有一些计算分析。 下面有一篇可以下载的: ZnO的第一性原理计算 hoffman的《固体与表面》对态密度的理解还是很有好处的。 下面这个是在版里找的,多看看吧: 如何分析第一原理的计算结果 ? ?? ?用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论: ??1、电荷密度图(charge density); ??2、能带结构(Energy Band Structure); ??3、态密度(Density of States,简称DOS)。 ? ? ? ???电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 ? ?? ?能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先

能带结构分析、态密度和电荷密度的分析

电荷密度图、能带结构、态密度的分析 能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。 主要是从以下三个方面进行定性/定量的讨论: 1、电荷密度图(charge density); 2、能带结构(Energy Band Structure); 3、态密度(Density of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion)的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 成键前后电荷转移的电荷密度差。此时电荷密度差定义为:delta_RHO = RHO_sc - RHO_atom 其中RHO_sc 为自洽的面电荷密度,而RHO_atom 为相应的非自洽的面电荷密度,是由理想的原子周围电荷分布堆彻得到的,即为原子电荷密度的叠加(a superposition of atomic charge densities)。需要特别注意的,应保持前后两次计算(自洽和非自洽)中的FFT-mesh 一致。因为,只有维数一样,我们才能对两个RHO作相应的矩阵相减。 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。首先当然可以看出这个体系是金属、半导体还是绝缘体。对于本征半导体,还可

密度泛函理论

1、相对于HF方法,DFT方法的优点 2、密度泛函方法:交换泛函和关联泛函 3、绝热近似的基础(内容):核和电子之间的相互运动,近似看做电子不需要时间靠近核的运动 前提:①核的质量大于电子质量,核看成不动,可以考虑分离②不考虑电子从一个态到另一个态的跃迁 4、DFT方法的分类 LDA:slater、 exchange 、VWN condition GGA:Ex B88 PW91 PBE OPTX HCTH,Ec LYP P86 PW91 PBE HCTH LDA和GGA的优缺点: LDA低估了gap,LDA计算晶格常数总是会偏小一些,这样子可以尽可能得到一个电子密度分布均匀的体系,LDA主要Ex就是来自于均匀电子气的交换能,而Ec部分来自于Quantum Monte Carlo计算拟合,对于均匀电子气体系,LDA是理论上严格精确的。 GGA严重低估了CT、里德堡激发的能量,明显低估了gap,GGA优化时电子密度越不均匀的体系,Exc反而越小,体系能量越低。 LDA计算致密结构的能量更接近真实值,而疏松体系的能量都会偏大;GGA相反,疏松结构的能量更接近真实数值,而致密结构则往往偏大 5、Hohenbong-Kohn定理: 一:不计自旋的全同费米子系统的基态,能量是粒子数密度ρ(r)的唯一泛函 二:如果n(r)是体系正确的密度分布,则E[n(r)]是最低能量,即体系的基态能量。 6、DFT的发展方向(前景)---相对于HF方法,DFT方法的优点 DFT方法考虑了电子相关,这会使得过渡态的能量偏低,造成算出来的活化能偏低而且计算氢键的键能也会偏低,而且算起来也快,在计算有机分子的芳香性也不好,dft会过多考虑电子离域,导致计算出来的能量偏低,对于过渡金属、有机生物分子,DFT方法都能很好的处理,这是它比其它方法好的地方。 上个世纪末,很多使用TDDFT算激发能的文章都得到一个相同的结论,就是B3LYP作TDDFT 激发能计算的结果是不可靠的:对不同的分子体系,有的时候跟实验值相当接近,有的时候却差得不得了。因此在做TDDFT激发能计算的时候,应该多试几种泛函,特别是没有实验值。 B3LYP之所以计算TS能量会偏低,主要在于其交换相关势不够准确,特别是在长程区的渐近行为不够好,也正是如此,b3lyp是不可能准确计算氢键. 除一些简单情况(如单-三重态分裂)外,不能普遍用于电子多重态结构的研究,这是密度泛函理论的重要缺陷之一,不解决这个问题,密度泛函理论方法的应用范围受到很大限制。 人们在用密度泛函理论处理多重态分裂问题中针对不同的问题有不同的方法,但各自都有优缺点,没有统一的方法,发表的文章一般只介绍其所用方法的优点,而避开缺点.但DFT的计算量小确实是它的优势,特别是对于大分子体系及磁性材料,半导体材料等性质的研究,所以人们对用DFT计算比较感兴趣. 7、DFT方法选择 非双杂化泛函的最佳选择: 计算碳团簇用B3LYP 计算硼团簇用TPSSh 计算双核金属用PBE、BP86,勿用杂化(see JCTC,8,908) 计算NMR用KT2,M06-L, VSXC, OPBE, PBE0 计算普通价层垂直激发用PBE0(误差约在0.25eV),M06-2X也凑合

能带,态密度图分析

能带结构和态密度图的绘制及初步分析 前几天在QQ的群中和大家聊天的时候,发现大家对能带结构和态密度比较感兴趣,我做计算已经有一年半了,有一些经验,这里写出来供大家参考参考,希望能够对初学者有所帮助,另外写的这些内容也不可能全都正确,只希望通过表达出来和大家进行交流,共同提高。 MS这个软件的功能确实是比较强,但是也有一些地方不尽如人意的地方。(也可能是我对一些结果不会分析所致,有些暂时不能解决的问题在最后一部分提出,希望大家来研究 研究,看看有没有实现的可能性)。 能带结构、态密度和布居分析是很重要的内容,在 分析能带结构和态密度的时候,往往是先作图,然后分 析。 软件本身提供的作图功能并不是很强,比如说能带结构 (只能带只能做point图和line图),不美观不说,对于 每一个能带的走势也不好观察,感觉无从下手。所以我 一般用origin作图(右图是用origin做的能带图)。能带 结构和态密度的作图过程请参考我给大家提供的动画。 接下来我们先开看看能带结构的分析和制作! 第一部分:能带结构 这个部分打算先简单的介绍一下能带的基础知识,希望能对大家有所帮助,如果对能带了解比较深入的朋友,可以跳过这个部分内容,之中不当之处请勿见笑。^_^ 第一个问题是: 1、能带是怎样形成——轨道和一维体系的能带。 这是最基本的一个问题,我们要对能带结构进行分析,首先要知道它是如何来的。其实能带是一种近似的结果(可以看成一种近似),是周期边界条件(bloch函数)下的一种近似。先来看看一个最简单的问题,非周期体系有没有能带结构?答案是没有的,大家可以试试: ①建一个周期的晶胞②选择build菜单下的symmetry子菜单下的none periodic superstructure去掉周期边界条件性③看看还能够运行吗?运行(run)按钮变灰了,不能提交作业了。这说明什么问题?这说明这个CASTEP这个模块不能计算非周期的体系,另外可以参考MS中的DMOL模块,它可以计算非周期系统,虽然可以计算周期系统,但是仍不能计算能带,大家可以试试,看看property中的band structure能不能选上,一定不能!!^_^ 从这里,我们可以得到一个结论,对于单个原子(分子、单胞)如果不加上周期边界条件,是无法获得能带结构的。所以计算小分子体系,或者采用团簇模型的朋友,这部分内容或许对你们没有帮助!那么,非周期体系的态密度能够计算吗?这应该是能够计算的,曾经开到过文献采用团簇模型,计算出态密度的(phys. Rev. 上的文章)。 那么非周期体系为什么没有能带结构呢? 看一个例子:一个H2分子有能带吗?没有,因为它没有周期边界条件,也就是说在x,y,z方向上没有重复,所以它没有能带结构。那H2分子有什么东西呢?有两个轨道,两个 1s原子轨道,或者说两个轨道能级,它们成键参考右图。 再看另外一个例子:一维无限H原子链 H H H H H H 在一维无限H原子链体系中,产生了能带。 为什么在一维无限H原子链体系中能够产生能带呢?

DOS态密度

如何分析第一原理的计算结果 用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论: 1、电荷密度图(charge density); 2、能带结构(Energy Band Structure); 3、态密度(Den sity of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(d ef-ormation charge density)和二次差分图(differenee charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓差分”是指原子组成体系(团簇)之后电荷的重新分布,二次”是指同一个体系化学成分或者几何构型 改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子的成键情况。通过电荷聚集(accumulation)/损失(depletion )的具体空间分布,看成键的极性强弱;通过某格点附近的电荷分布形状判断成键的轨道(这个主要是对d轨道的分析,对于s 或者p轨道的形状分析我还没有见过)。分析总电荷密度图的方法类似,不过相对而言,这种图所携带的信息量较小。 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则

计算态密度

态密度计算 态密度:表示单位能量范围内所允许的电子数,也就是说电子在某一能量范围的分布情况。因为原子轨道主要是以能量的高低去划分的,所以态密度图能反映出电子在各个轨道的分布情况,反映出原子与原子之间的相互作用情况,并且还可以揭示化学键的信息。态密度有分波态密度(PDOS)和总态密度(TDOS)形式。 原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。 计算过程:主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算。 1,结构优化:原子弛豫,确定体系内每个原子位置。常用INCAR。2,静态自洽计算:(得到自洽的电荷密度CHG、CHGCAR和E-fermi,提供给下一步非自洽计算用) INCAR设置注意,ICHARG = 2 3,非自洽计算(准确计算电荷分布) INCAR设置:ISTART=1(若存在WAVECAR文件时取1);ICHARG=11(表示从CHGCAR中读入电荷分布,并且在计算中保持不变);RWIGS (或LORBIT=11(或10),这时可不设RWIGS); 计算完成时,生成DOSCAR,采用spit_dos.dl小程序把dos分开(注意vp.dl要拷到同目录下),会生成N+1个文件,DOS0为总态密度,DOS1到DOSN为N个原子的分态密度。每个分态密度共7列分布为

—能量→Sup→Sdown→Pup→Pdown→Dup→Ddown 不知道从态密度能否定性分析出来,因为态密度越尖,则电子的局域性越强, 修正版的splitdos有三个文件:vp、sumdos和split_dos.ksh INCAR设置: ISTART = 1;ICHARG = 11 LORBIT = 10 【对于PAW势,可设置LORBIT = 10,此时可不用设置RWIGS参数】或者设置RWIGS参照POTCAR

DFT密度泛函理论使用简介

密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。 理论概述 电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。因为多电子波函数有个变量(为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。 虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。 Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。 最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对

应关系。正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。 密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。处理交换相关作用是KS DFT中的难点。目前并没有精确求解交换相关能的方法。最简单的近似求解方法为局域密度近似(LDA)。LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。 自1970年以来,密度泛函理论在固体物理学的计算中得到广泛的应用。在多数情况下,与其他解决量子力学多体问题的方法相比,采用局域密度近似的密度泛函理论给出了非常令人满意的结果,同时固态计算相比实验的费用要少。尽管如此,人们普遍认为量子化学计算不能给出足够精确的结果,直到二十世纪九十年代,理论中所采用的近似被重新提炼成更好的交换相关作用模型。密度泛函理论是目前多种领域中电子结构计算的领先方法。尽管密度泛函理

VASP中电子态密度计算的流程

VASP中电子态密度计算的流程 主要分成三步:一、结构优化;二、静态自洽计算;三、非自洽计算以Al-FCC为例子 第一步结构优化 输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2 GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 IBRION=2 NSW=50 ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 1.0 4 Direct 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 KPOINT 文件 Automatic generation Mohkorst Pack 15 15 15 0.0 0.0 0.0 第二步静态自洽计算 INCAR:PREC = Medium,ISTART = 0,ICHARG = 2,ISMEAR = -5输入文件(INCAR, POTCAR, POSCAR, KPOINT) INCAR文件 System=Al ISTART=0 ISMEAR=1 SIGMA=0.2 ISPIN=2

GGA=91; VOSKOWN=1; EDIFF=0.1E-05; EDIFFG=-0.01 #IBRION=2 #NSW=50 #ISIF=2 (OR 3) NPAR=10 POTCAR 文件直接在势库中拷贝 POSCAR文件 Al 4.05 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4 Selective Dynamic Direct 0.0 0.0 0.0 T T T 0.5 0.5 0.0 T T T 0.5 0.0 0.5 T T T 0.0 0.5 0.5 T T T KPOINT 文件 Automatic generation

密度泛函理论

密度泛函理论及基本应用 凝聚态物理陈阿海2010210602 摘要:本文讨论了密度泛函理论的基本原理和方法,并讨论了玻色子系统中处于谐振子势以及高斯形势垒下的两粒子问题。随着成对的高斯势垒分别向两边移动,粒子数分布由原来被高斯势垒劈裂的两个峰过度到单个峰。 关键词:密度泛函理论,玻色子,谐振势,高斯势垒 Abstract: The basic method of density functional theory is discussed as well as a case of two bosons trapped in a harmonic external potential with Gaussian potential barrier. With the move of a pair of Gaussian potential barrier to the two edges respectively, the distribution of atoms changed gradually from the two peaks divided by the Gaussian potential barrier in the centre of the system at first to single peak again. Key words: density functional theory, boson, harmonic external potential, Gaussian potential barrier 一、引言 密度泛函理论(density functional theory,DFT)是当前研究量子多体系统的重要理论之一,在物理与化学领域均有广泛的应用。DFT的基本出发点是将量子多体系统的性质全部表达为密度的泛函,从而达到简化系统的目的。 密度泛函理论的基本概念最早起源于十九世纪二十年代的Thomas-Fermi模型(TF)[1][2],但其真正意义上的理论开始于六十年代Hohenberg与Kohn的研究,其在1964年发表的著名论文[3]奠定了密度泛函理论的基础。其后,Kohn与Sham在1965年发表的论文将DFT理论推向了实际应用的水平[4],其提出的Kohn-Sham方法成为密度泛函理论的基本应用框架。Kohn凭借其对密度泛函理论的贡献获得了1998年的诺贝尔化学奖。 在其后的几十年间,DFT在多个领域得到了进一步的发展。在量子多体理论的研究中,DFT已发展成为重要的数值计算手段之一,如同量子蒙特卡罗(quantum monte carlo, QMC),密度重整化群(density matrix renormalization group, DMRG),精确对角化(exact diagonalization, ED)等数值方法一样,是当前量子多体系统最主流的数值计算方法之一。为了进一步扩大DFT的应用范围,相继出现了处理含时问题的含时密度泛函理论(time dependent density functional theory, TDDFT)[5-10],处理自旋系统的自旋密度泛函理论(spin density functional theory, SDFT)[11-17],处理有限温度问题的有限温度密度泛函理论(finite temperature density functional theory, FTDFT)[18-20],整合含时密度泛函理论和自旋密度泛函理论的含时自旋密度泛函理论(time-dependent spin-density functional theory, TD-SDFT)[21]等等各种衍生理论和方法。 本文讨论DFT理论的基本原理和方法,进一步利用一个简单的例子讨论DFT的实际应用。在该例子中,主要讨论受谐振势和高斯型势垒作用的一维玻色系统两粒子问题,其中高斯势垒由势阱中央出现并成对向系统两侧移动。主要讨论了该外势作用下系统粒子分布的变化特点。 本文组织如下:第二节中给出了DFT理论的基本框架和特点,主要包括Hohenberg-Kohn 定理,Kohn-Sham方程以及密度泛函理论计算的主要特点;第三节中讨论了零温下受外势作用的一般一维玻色系统的DFT;第四节具体给出了上述所提的两粒子问题的计算结果并作了简单的讨论;最后给出简单的小结。 二、DFT理论的基本框架和特点 基本的DFT理论基于两大基本原理,即Hohenberg-Kohn定理。 定理1指出量子系统的外势与系统的密度分布一一对应(可相差一个常数),或者说,外势是系统密度的泛函,而这种映射是双向的,即系统外势与系统密度分布具有相互确定的一一对应关系。

密度泛函理论

密度泛函理论-定理介绍 点击查看大图 Density functional theory (DFT) 密度泛函理论是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。 电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock 方法,是基于复杂的多电子波函数的。密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。因为多电子波函数有 3N 个变量(N 为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。 虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。 Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。 最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。 密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。处理交换相关作用是KS DFT中的难点。目前并没有精确求解交换相关能 EXC 的方法。最简单的近似求解方法为局域密度近似(LDA)。LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。 GW近似用于计算多体系统中的自能。利用Green函数G与含屏蔽的相互作用W 对体系自能做展开: GW近似就是截取该展开式的首项:

密度泛函理论简介

密度泛函 密度泛函理论, Density functional theory (DFT) 是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。 目录 简介 密度泛函理论(Density Functional Theory,DFT),是基于量子力学和玻恩-奥本海默绝热近似的从头算方法中的一类解法,与量子化学中基于分子轨道理论发展而来的众多通过构造多电子体系波函数的方法(如Hartree-Fock类方法)不同,这一方法构建在一个定理的基础上:体系的基态唯一的决定于电子密度的分布(Hohenberg-Kohn定理),从而使得我们可以采用最优化理论,通过KS-SCF自洽迭代求解单电子多体薛定谔方程来获得电子密度分布,这一操作减少了自由变量的数量,减小了体系物理量振荡程度,并提高了收敛速度,并易于通过应用HF定理等手段,与分子动力学模拟方法结合,构成从头算的分子动力学方法。这一方法在早期通过与金属电子论、周期性边界条件及能带论的结合,在金属、半导体等固体材料的模拟中取得了较大的成功,后来被推广到其它若干领域。目前常见的基于DFT的商业软件有:VASP,CASTEP等。 Hohenberg-Kohn第二定理 密度泛函理论中的另一条重要定理是Hohenberg-Kohn第二定理证,它证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。 最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。

原子分子物理中用高斯画态密度图的方法

原子分子物理中用高斯画态密度图的方法

用GaussSum用高斯画态密度图的方法 1、用实验室现成的GaussSum做DOS图时,发现log文件过大分析不了,下载到最新版本的问题就解决了。 2、经常出现cclib has problems parsing ***.log问题,检查自己的log文件是否完整。 3、关于做PDOS(重点哈),做单点能计算时必须要有pop=full iop(3/33=1,3/36=-1),关键字,这在GaussSum帮助文件和例子里面写得很详细。至于做PDOS的时候,需要有gr oup.txt文件,选择做atoms时,具体的两个要求是每个原子要列出以及所列原子不能重复,这里我还得补充一点group.txt格式, atoms part1(你所想要分析的某个分子部分) 1-5,8-20,30(该部分原子序号) part2 6-7,21-29,31-33(注意了,直接保存就可以,下面不能有空行,我被这个给整惨了) 在选择用orbitals时,大致一样,唯一不同就是不必列出所有的轨道。 4、就以上例子分析,我要的结果是part1和p

art2的PDOS,但GaussSum做出来的part1和part2的图的结果是part1和total(图上显示的是part2,经过数据对比很明显就是total)或者part2和total(同理),估计是我下载的软件bug,但可以从它产生的DOS Spectrum. txt文件(里面有你想要的part1,part2,tot al)提取数据在origin里面作图,结果就很好了。 5、在做COOP时,和做PDOS一个样。关于做其他图,遇到的问题就没什么了,只要你的l og文件没错,基本就okay! Worked Example Description A study of the electronic structure and vibrational spectrum of 1,4-divinyl-benzene (at the B3LYP/STO-3G level of theory) using Gaussian03W. Configuring GaussSum

密度泛函理论

密度泛函理论(DFT )、含时密度泛函理论(TDDFT ) 一、 计算方法原理 1. 计算方法出处及原理 本计算方法设计来源于量子化学理论中的Born –Oppenheimer 近似,给近似下认为原子核不动, 这样电子就相当于在一个由核产生的外部的静态势场 V 中运动。那么一个固定的电子态可以用波函数 Ψ(1 r v , · · · ,N r v ), 并且满足多 N 电子体系薛定谔方程: ()() 22????,2N N N i i j i i i i j H T V U V r U r r E m

的电子密度0()n r v 是知道的话, 那么基态的波函数012(,,)N r r r ψ???v v v 就唯一确定。也 就是说, 基态的波函数0ψ是基态电子密度0n 的泛函[11], 表达为: [] 00n ψ=ψ (2-5) 既然有以上的假定, 那么对于基态的任何一个观测量?O , 它的数学期望就应该是0n 的泛函: [][][]000 ?O n n O n =ψψ (2-6) 特别的, 基态的能量也是0n 的泛函: [][][]0000 ???E E n n T V U n ==ψ++ψ (2-7) 这里外部势能的贡献[][]00?n V n ψψ可以通过基态的电子密度0 n 来精确表达: 300[]()()V n V r n r d r =?v v (2-8) 或者外部势能?V ψψ可以用电子密度 n 来表达: 30[]()()V n V r n r d r =?v v (2-9) 泛函 T [n ] 和 U [n ] 被称作通用泛函, 而势能泛函 V [n ] 被称做非通用泛函, 因为它与当前研究的系统息息相关。对于一个给定的体系, 就存在一个对 应的?V ,相应的, 该体系的能量可以表达为:

相关主题