搜档网
当前位置:搜档网 › 555定时器应用举例

555定时器应用举例

555定时器应用举例
555定时器应用举例

10.12 555定时器应用举例

10.12.1 单稳态触发器

1.不可重复触发单稳态触发器

由555构成的单稳态触发器及工作波形如图10.12.1所示。平时v

I

≥1/3V CC,电源接通瞬间,电路有一个稳定的过程,即电源通过电阻R向电容C充电,当v C上升到2/3V CC时,基

本RS触发器复位,v

O 为低电平,放电管T导通,电容放电,电路进入稳定状态,如图t

1

前所

示。若触发器输入端施加触发信号(v

1

<1/3V CC),触发器发生翻转,电路进入暂稳态,v O输出

高电平,且管T截止,此后电容C充电至v

C

=2/3V CC时,电路又发生翻转,v O为低电平,T导通,电容C放电,电路恢复至稳态。

图10.12.1 由555定时器构成的单稳态触发器

555定时器构成的单稳态触发器

如果忽略T的饱和压降,则v

C

从零电平上升到2/3V CC的时间,即为输出电压v O的脉宽t W。

这种电路产生的脉冲宽度可从几个微秒到数分钟,精度可达0.1%。

通常R的取值在几百欧姆至几兆欧姆之间,电容取值为几百皮法到几百微法。由图10.12.1可知,如果在电路的暂稳态持续时间内,加入新的触发脉冲,如图10.12.1(b)中的虚线所示,则该脉冲不起作用,电路为不可重复触发单稳。

2.可重复触发单稳态触发器

由555定时器构成的可重复触发单稳电路如图10.12.2所示。

图10.12.2 由555定时器构成的可重复触发单稳态电路

当v

1

输入负向脉冲后,电路进入暂稳态,555定时器内的管T断开,同时外接的管T导通,电容C放电。输入脉冲撤除后,外接的管T也断开,电容C 充电,在v C未充到2/3V CC 之前,电路处于暂稳态。如果在此期间,又加入新的触发脉冲,外接的管T又导通,电容C 再次放电,输出仍然维持在暂稳态。只有在触发器脉冲撤除后且在输出脉宽t W时间间隔内没有新的触发脉冲,电路才返回稳定状态。这种电路可作为失落脉冲检出电路,对机器的转速或人体的心律进行监视,当机器转速降到一定限度或人体的心律不齐时就发出警报信号。

3.脉冲宽度调制器

如果在控制电压端(v

ⅠC

)施加一个变化电压,由555构成的单稳态电路可作为脉冲宽度调制器,如图10.12.3所示。

(a)电路图(b)波形图

图10.12.3 脉冲宽度调制器

脉冲宽度调制器

当控制电压升高时,电路的阈值电压也升高,输出的脉冲宽度随之增加;而当控制电压降低时,电路的阈值电压也降低,单稳的输出脉宽则随之减小。因此,若控制电压为如图10.12.3(b)所示的三角波时,在单稳的输出端便得到一串随控制电压变化的脉冲宽度调制

波,v

ⅠC 与v

O

波形关系可看出,该电路可实现电压-频率转换。

10.12.2 多谐振荡器

由555定时器构成的多谐振荡器如图10.12.4所示,其工作波形如图10.12.4(b)。

图10.12.4 由555定时器构成的多谐振荡器

555定时器构成的多谐振荡器

接通电源后,电容C被充电,v

C 上升,当v

C

上升到大于2/3V

CC

时,触发器被复位,放电

管T导通,此时v

0为低电平,电容C通过R

2

和T放电,使v

C

下降。当v

C

下降到小于1/3V

CC

时,触发器被置位,v

翻转为高电平。电容器C放电结束,所需的时间为

当C放电结束时,T截止,V

CC 将通过R

1

、R

2

向电容器C充电,v

C

由1/3V

CC

上升到2/3V

CC

所需的时间为

当v

C 上升到2/3V

CC

时,触发器又被复位发生翻转,如此周而复始,在输出端就得到一个

周期性的方波,其频率为

由于555内部的比较器灵敏度较高,而且采用差分电路形式,它的振荡频率受电源电压和温度变化的影响较小。图10.12.4所示电路的

t PL≠t PH,而且占空比固定不变。如果将电路改成如图10.12.5所示的形

式,电路利用D

1、D

2

单向导电特性将

电容C充、放电回路分开,再加上电

位器调节,便构成了占空比可调的多

谐振荡器。图中,V CC通过R A、D1向电

容C充电,充电时间为t PH≈0.7R A C

电容C通过D2、R B及555中的管T放

电,放电时间

为t PL≈0.7R B C,因而振荡频率为

图10.12.5 占空比可调的方波发生器

可见,这种振荡器输出波形的占空比为

10.12.3 施密特触发器

将555定时器的阀值输入端和触发输入端连在一起,便构成了施密特触发器,如图10.12.6(a)所示。当输入如图10.12.6(b)所示的三角波信号时,则从施密特触发器的v

01

端可得到方波输出。

(a ) 电路图

(b ) 波形图

图10.12.6 由555定时器构成的施密特触发器

如将图中5脚外接控制电压v ⅠC ,改变v ⅠC 的大小,可以调节回差电压的范围。如果在555定时器的放电管T 输出端(7脚)外接一电阻,并与另一电源V CC 相连,则由v 02输出的信号可实现电平转换。

555定时器的典型应用电路

555定时器的典型应用电路 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因u i=H,所以u o=L。当加入触发信号时,u i=L,所以u o=H,7脚内部的放电管关断,电源经电阻R向电容C充电,u C按指数规律上升。当u C上升到2V CC/3时,相当输入是高电平,5 55定时器的输出u o=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2V CC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用t W表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为u c(0)=0V,无穷大值u c(∞)=V CC,τ=RC,设暂稳态的时间为t w,当t= t w时,u c(t w)=2 V CC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 V CC/3,低电平必须小于 V CC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是R A、R B和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 V CC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2V CC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。

555定时器的基本应用及使用方法

555定时器的基本应用及使用方法 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别 介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是: “RT-6.2-CT”和“CT-6.2-RT”。

第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带 有一个RC微分电路。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。

双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。 555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

实验4指导书 555定时器电路设计

实验4 555定时器电路设计 预习内容 阅读《电工电子实验教程》第6.5节中555集成定时器应用的内容。 预习实验的内容,自拟实验步骤和数据表格,完成理论设计,画出原理电路,选择所用元件名称、数量,熟悉元件引脚,手写预习报告。 一、实验目的 1.熟悉集成定时器555的工作原理及应用。 2.熟悉时钟信号产生电路的设计方法。 3.掌握使用定时器555设计多谐振荡器的方法。 二、知识要点 时钟信号在电子电路中有着非常重要的作用,而生成周期时钟信号的方法也有多种。比较常用的方法就是使用555定时器构成多谐振荡器。此电路广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为7555。555定时器的电源电压范围宽,可在4.5V~16V 工作,7555可在3~18V工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。 图5-1 555定时器的结构图和引脚分布图 1脚-GND,接地脚; 2脚-Trigger,低电平触发端; 3脚-Output,输出端; 4脚-Reset,复位端,低电平有效; 5脚-Control V oltage,电压控制端; 6脚-Threshold,阈值输入端; 7脚-Discharge,放电端; 8脚-V CC,电源端。 三、实验内容 题目:时钟信号发生电路设计 设计一个电路,能够产生时钟信号,要求信号频率可调,设计范围不小于500Hz~1000Hz,

555定时器的应用

上饶师范学院 毕业论文(设计) 题目:555定时器的应用 学生姓名: 学号: 学院: 专业: 班级: 指导老师:

摘要:555定时器是一种多用途的数字--模拟混合型集成电路,通过对555定时器的电路结构与工作原理的充分了解,利用它能够方便地构成施密特触发器、单稳态触发器和多谐振荡器,555应用电路采用这三种方式中的一种或多种组合可以构成各种实用的电子电路,比如相片曝光定时器、电热毯温控器、多用途延迟开光电源插座、555触摸开关、风扇周波调速电路等。因为555定时器在使用上非常灵活、方便,所以555定时器在生活中的诸多领域都具有广泛的应用。 关键词:555定时器;单稳态触发器;多谐振荡器 Abstract:The 555 timer is a multipurpose digital analog hybrid integrated circuit, through the full understanding of circuit structure and working principle of the 555 timer.It is easily to construct Schmidt flip-flop, monostable trigger and multi harmonic oscillator. 555 application circuit using one or more combinations of these three methods may constitute a variety of practical electronic circuit, such as photo exposure timer, electric blanket thermostat, multi-purpose delay switch socket, 555 touch switch, fan frequency speed control circuit. Because the 555 timer can be used flexiblely and conveniently, so the 555 timer are widely used at Many fields of life. Key words:555 timer; single steady state trigger; multi harmonic oscillator

555定时器及其应用

实验六 555定时器及其应用 一.实验目的 1.熟悉555定时器的组成及功能。 2.掌握555定时器的基本应用。 3.进一步掌握用示波器测量脉冲波形的幅值和周期。 二.实验原理 555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。按其工艺分双极型

该端不用时,应将该端串入一只0.01μF 电容接地,以防引入干扰。 7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。 在1脚接地,5脚未外接电压,两个比较器A 1、A 2基准电压分别为CC CC V 3 1 ,V 32的情况下,555时基电路的功能表如表6—1示。

输出高电平时间

2)Vi接连续脉冲f = 512HZ,用示波器观察、记录Vi、V2、V C及V O的波形(以Vi为触发信号),测出V O的脉冲宽度t W,且与理论值相比较。 4.设计一个用555定时器构成的方波发生器,要求方波的周期为1ms,占空比为5%。 四.预习要求 1.搞清555定时器的功能和应用 2.理论计算出实验内容1多谐振荡器的输出方波的周期T 3.理论计算实验内容3 中2)输出脉冲宽度t W。 4.搞清图6—5中R1、C1微分电路的作用。V i为连续脉冲,对应地分析、画出V2的波形。 五.思考题 1.用两片555定时器设计一个间歇单音发生电路,要求发出单音频率约为1KHZ,发音时间约为0.5S,间歇时间约为0.5S。 2.图6—4电路中指出电容C充电途径、放电途径。写出振荡周期T和占空比表达式。理论计算出实验内容2、3两种情况下的占空比。 3.图6—5中,设微分电路的输入连续脉冲周期为T i,R1、C1的参数应如何选择? 4.实验内容3中,如果不采用R1、C1微分电路,即V i直接接至定时器的2脚,是否还能得到原来脉冲宽度t w的输出脉冲。 六.实验仪器与器材 1.电子技术实验箱MS-ⅢA型1台 2.直流电源(+5V)DS-2B-12型1台 3.示波器5020B型1台 4.万用表MF-47型1只 5.555定时器1只

实验三++555定时器的应用仿真实验

电子技术仿真实验报告实验题目: 3 555定时器的应用仿真实验 班级: 姓名: 学号: 实验日期: 实验成绩:

实验三 555定时器的应用仿真实验 一、实验目的: 1、熟悉555定时器的工作原理。 2、掌握555定时器的典型应用。 3、掌握基于multisim 10.0的555定时器应用仿真。 二、实验原理: 555定时器是一种常见的集数字与模拟功能于一体的集成电路。通常只要外接少量的外围元件就可以很方便地构成施密特触发器、单稳态触发器和多谐振荡器等多种电路。其中: (1) 构成施密特触发器,用于TTL 系统的接口,整形电路或脉冲鉴幅等; (2)构成多谐振荡器,组成信号产生电路; (3)构成单稳态触发器,用于定时延时整形及一些定时开关中。 555应用电路采用这3种方式中的1种或多种组合起来可以组成各种实用的电子电路。 U1 LM555CM GND 1DIS 7OUT 3 RST 4VCC 8THR 6CON 5 TRI 2 GND ——1脚,接地;TRI ——2脚,触发输入;OUT ——3脚,输出;RES ——4脚,复 位(低电平有效);CON ——5脚,控制电压(不用时一般通过一个0.01F 的电容接地);THR ——6脚,阈值输入;DIS ——7脚,放电端;VCC ——8脚,+电源

1、 由555定时器构成多谐振荡器 (1) 接通电源时,设电容的初始电压0=c V ,此时TR V \TH V 均小于1/3Vcc ,放电截止, 输出端电压为高电平,Vcc 通过1R 和2R 对C 充电,Vc 按照指数规律逐步上升。 (2) 当Vc 上升到2/3Vcc 时,放电管导通,输出端电压为低电平,电容C 通过2R 放电,Vc 按照指数规律逐步下降。 (3) 当Vc 下降到1/3Vcc 时,放电管截止,输出端电压由低电平翻转为高电平,电容C 又开始充电。当电容C 充到Vc=2/3Vcc 时,又开始放电,如此周而复始,在输出端即可产生矩形波信号。 矩形波信号的周期取决于电容器充、放电回路的时间常数,输出矩形脉冲信号的周期 C R R T )2(7.021+≈ 2、 施密特触发器是脉冲波形整形和变换电路中经常使用的一种电路。其具有两个稳定 状态,两个稳定状态的维持和相互转换取决于输入电压的高低和,属于电平触发,具有两个不同的触发电平,存在回差电压。由555定时器构成的施密特触发器将555定时器的THR 和TRI 两个输入端连在一起作为信号输入端即可得到施密特触发器。 (1) 当Vi<1/3Vcc 时,输出Vo 为高电平。随着Vi 的上升,只要Vi<2/3Vcc ,输出 信号将维持原状态不变,设此状态为第一稳定状态。 (2) 当Vi 上升到Vi ≥2/3Vcc 时,输出Vo 为低电平。电路由第一稳定状态翻转为第 二稳定状态,电路的正向阈值电压为+T V =2/3Vcc 。随着Vi 上升后又下降的情况,只要Vi 〉1/3Vcc ,电路将维持在第二稳定状态不变。 (3) 当Vi 下降到Vi ≤1/3Vcc 时,电路又翻转到第一稳态,电路的负向阈值电压为 -T V =1/3Vcc 。 三、实验内容: 1、555定时器构成多谐振荡器仿真实验

数字电路实验报告555定时器及应用

姓名:xxxxxxxxxxxxxxx学号:xxxxxxxxxx . 学院:计算机与电子信息学院专业:计算机类. 班级:xxxxxxxxxxxxxxxxxx时间:2019年10月18 日. 指导教师:xxxxxxxx . 实验名称:555定时器及应用. 一、实验目的 1、熟悉掌握555定时器的基本工作原理及功能; 2、掌握555定时器构成多谐震荡器的工作原理和使用方法; 3、熟悉数字系统的分析和应用。 二、实验原理 1、555定时器原理简介 555定时器是共仪器、仪表、自动化装置、各种民用电器的定时器、时间延时器等电子控制电路用的时间功能电路,也可以做自激多谐振荡器、脉冲调制电路、脉冲相位调谐电路、脉冲丢失指示器、报警器以及单稳态、双稳态等各种电路,应用范围十分广泛。 (1)555定时器的特点 ①外部连接几个阻容元件,可以方便的构成施密特触发器、多谐振荡器和单稳态 触发器等脉冲产生与整形回路。 ②具有一定的输出功率,因此可直接驱动微电机、指示灯和扬声器等。该器件有 双极型和COMS型两类产品,双极型产品型号最后三位为555,COMS型产品 型号最后四位为7555,它们的功能及外部引线排列完全相同。 ③电源电压范围宽(3~18V),双极型的电源电压为5~15V,COMS型的电源电 压为3~18V,能够提供与TTL及COMS型的数字电路兼容的逻辑电平。 (2)555定时器的电路结构及功能 图6-1是555定时器的电路结构图和管脚排列图,它的八个引脚的名称及作用如下: 1脚:芯片的地端2脚:芯片的触发输入端TR’(也叫低触发端)3脚:芯片的输出端4脚:芯片的复位端RD’ 5脚:芯片的控制电压输入Vco 6脚:芯片的阈值输入端TH(也叫高触发端)7脚:芯片的放电端DISC 8脚:芯片的电源Vcc

555定时器的典型应用电路

令狐采学创作 555定时器的典型应用电路 令狐采学 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C 是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因ui=H,所以uo=L。当加入触发信号时,ui=L,所以uo=H,7脚内部的放电管关断,电源经电阻R向电容C充电,uC按指数规律上升。当uC上升到2 VCC/3时,相当输入是高电平,555定时器的输出uo=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2VCC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用tW表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为uc(0)=0V,无穷大值uc(∞)=VCC,τ=RC,设暂稳态的时间为t w,当t= tw时,uc(tw)=2 VCC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于 2 VCC/3,低电平必须小于 VCC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电 管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是RA、RB和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 VCC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2VCC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。 图22-2-4 多谐振荡器电路图图22-2-5 多谐振荡器的波形 震荡周期的确定: 根据uc(t)的波形图可以确定振荡周期,T=T1+T2 先求T1,T1对应充电,时间常数τ1=(RA+RB)C,初始值为uc(0)= VCC/3,无穷大值u c(∞)=VCC,当t= T1时,uc(T1)=2 VCC/3,代入过渡过程公式,可得 T1=ln2(RA+RB)C≈0.7(RA+RB)C 求T2,T2对应放电,时间常数τ2=RBC,初始值为uc(0)=2 VCC/3,无穷大值uc(∞) =0

555定时器实验报告

一、实验目的 二、实验原理 555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555 定时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图2.9.2 所示。它内部包括两个电压比较器,三个等值串联电阻,一个 RS 触发器,一个放电管T 及功率输出级。它提供两个基准电压VCC /3 和 2VCC /3 555 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制RS 触发器和放电管的状态。在电源与地之间加上电压,当 5 脚悬空时,则电压比较器 C1 的同相输入端的电压为2VCC /3,C2 的反相输入端的电压为VCC /3。若触发输入端 TR 的电压小于VCC /3,则比较器 C2 的输出为0,可使RS 触发器置1,使输出端OUT=1。如果阈值输入端 TH 的电压大于2VCC/3,同时 TR 端的电压大于VCC /3,则C1 的输出为 0,C2 的输出为1,可将RS 触发器置 0,使输出为 0 电平。 它的各个引脚功能如下: 1脚:外接电源负端VSS或接地,一般情况下接地。

8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 ~ 16V,CMOS 型时基电路VCC的范围为3 ~ 18V。一般用5V。 3脚:输出端Vo 2脚:低触发端 6脚:TH高触发端 4脚:是直接清零端。当端接低电平,则时基电路不工作,此时不论、TH处于何电平,时基电路输出为“0”,该端不用时应接高电平。 5脚:VC为控制电压端。若此端外接电压,则可改变内部两个比较器的基准电压,当该端不用时,应将该端串入一只0.01μF电容接地,以防引入干扰。 7脚:放电端。该端与放电管集电极相连,用做定时器时电容的放电。 在1脚接地,5脚未外接电压,两个比较器A1、A2基准电压分别为的情况下,555时基电路的功能表如表6—1示。 三、实验内容 四、思考题

555定时器及基本应用论文

毕业论文 论文题目 555定时器及其基本应用 系别物电系 专业物理教育 班级 10级物理教育班 学号 131009008 姓名蒲永峰 指导教师袁乐民 二O一二年十二月十日

555定时器及基本应用 摘要:555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为 7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在5~16V工作,最大负载电流可达200mA,7555可在3~18V工作,最大负载电流可达4mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 关键词:555定时器,施密特触发器,多谐振荡器,单稳态触发器 引言:随着电子技术的发展,尤其是消费类电子的日益普及,555定时器的使用量也在飞速增长。在购买和使用555定时器时,人们对555定时器的性能要求也逐渐提高。555定时器最重要的两个性能为电池的容量和电池的内阻,电池容量与电池内阻存在密切的关系。一般而言, 电池的容量越大, 内阻就越小。电池内阻的大小及其变化可反应电池内部的变化。电池内阻大,电池放电电压平台低,电池输出功率小,电池充电时电压高,高倍率快速充电时,电池会产生大量的热,使充电效率降低,降低电池性能。可见电池内阻的大小是衡量电池性能好坏的重要指标, 准确测量电池内阻具有重要意义。目前,测量电池内阻的方法主要有加载降压法、短路电流法、电桥法、交流电流法、双量程测量法、电位差计法等。这些方法各有利弊, 普遍问题是测量步骤较繁琐, 有些测量方法存在着不可忽视的测量误差, 甚至某些测量方法(因电池放电时间过长等)对电池的寿命有一定影响。本文将以论证的方式介绍一种较容易、准确测量电池内阻和电池容量的方法。 一、 555定时器简介 555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现 多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作 为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。555 定 时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图 2.9.2 所示。它内

最新555定时器及基本应用汇总

555定时器及基本应 用

毕业论文 论文题目 555定时器及其基本应用 系别物电系 专业物理教育 班级 08级物理教育班 学号 130809066 姓名李小沙 指导教师袁乐民 二O一一年五月一日

555定时器及基本应用 摘要:555定时器是一种模拟和数字功能相结合的中规模集成器件。一般用双极性工艺制作的称为555,用CMOS工艺制作的称为 7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在5~16V工作,最大负载电流可达200mA,7555可在3~18V工作,最大负载电流可达4mA,因而其输出可与TTL、CMOS或者模拟电路电平兼容。555定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。 关键词:555定时器,施密特触发器,多谐振荡器,单稳态触发器引言:随着电子技术的发展,尤其是消费类电子的日益普及,555定时器的使用量也在飞速增长。在购买和使用555定时器时,人们对555定时器的性能要求也逐渐提高。555定时器最重要的两个性能为电池的容量和电池的内阻,电池容量与电池内阻存在密切的关系。一般而言, 电池的容量越大, 内阻就越小。电池内阻的大小及其变化可反应电池内部的变化。电池内阻大,电池放电电压平台低,电池输出功率小,电池充电时电压高,高倍率快速充电时,电池会产生大量的热,使充电效率降低,降低电池性能。可见电池内阻的大小是衡量电池性能好坏的重要指标, 准确测量电池内阻具有重要意义。目前,测量电池内阻的方法主要有加载降压法、短路电流法、电桥法、交流电流法、双量程测量法、电位差计法等。这些方法各有利弊, 普遍问题是测量步骤较繁琐, 有些测量方法存在着不可忽视的测量误差, 甚至某些测量方法(因电池放电时间过长等)对电池的寿命有一定影响。本文将以论证的方式介绍一种较容易、准确测量电池内阻和电池容量的方法。 一、 555定时器简介

555定时器多谐波电路Multisim仿真

数字电子技术仿真实验报告 实验名称:555定时器 学生姓名:刘佳璇学号:20152523 指导教师:金丹 院系:电气工程学院班级:201502D 2017 年11 月29 日

555定时器 一、实验目的 1、学会使用 MULTISIM 软件进行数字电子实验仿真。 2、学习了解555定时器的工作原理。 二、实验内容 多谐振荡器 三、实验原理 555定时器的内部电路图及引脚排列见下图,功能表见下表。

555定时器的功能主要由两个比较器决定。两个比较器的输出电压控制RS 触发器和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端的电压为3/2CC V ,C2的反相输入端的电压为VCC 若触发输入端TR 的电压小于3/CC V ,则比较器C2的输出0,可使RS 触发器置1,使输出端OUT=1。如果阈值输入端TH 的电压大于3/2CC V ,同时TR 端的电压大于3/CC V ,则C1的输出为0,C2的输出为1,可将RS 触发器置0,使输出为0电平。

多谐振荡器又称为无稳态触发器,它没有稳定的输出状态,只有两个暂稳态。在电路处于某一暂稳态后,经过一段时间可以自行触发翻转到另一暂稳态。 两个暂稳态自行相互转换而输出一系列矩形波。多谐振荡器可用作方波发生器。电路如图。 四、 实验设计与仿真 构建仿真电路如图所示,其中Ω=k R 21,Ω=k R 12,F C μ1.0=。接通V 5电源,用示波器观察c u 和o u 的波形。

波形如下图: 仿真结果与实验结果一致。 五、实验小结

这次的仿真实验是 555 定时器(多谐振荡器)电路,实验连线较简单,但是原理并不简单,通过实验我更加深刻的理解了555定时器的工作原理。

555定时器电路数电实验报告

实验报告 课程名称:数字电子技术实验姓名: 学号: 专业: 开课学期: 指导教师:

实验课安全知识须知 1.须知1:规范着装。为保证实验操作过程安全、避免实验过程中意外发生,学生禁止穿拖 鞋进入实验室,女生尽量避免穿裙子参加实验。 2.须知2:实验前必须熟悉实验设备参数、掌握设备的技术性能以及操作规程。 3.须知3:实验时人体不可接触带电线路,接线或拆线都必须在切断电源的情况下进行。 4.须知4:学生独立完成接线或改接线路后必须经指导教师检查和允许,并使组内其他同学 引起注意后方可接通电源。实验中如设备发生故障,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。 5.须知5:接通电源前应先检查功率表及电流表的电流量程是否符合要求,有否短路回路存 在,以免损坏仪表或电源。 特别提醒:实验过程中违反以上任一须知,需再次进行预习后方可再来参加实验;课程中违反三次及以上,直接重修。 实验报告撰写要求 1.要求1:预习报告部分列出该次实验使用组件名称或者设备额定参数;绘制实验线路图, 并注明仪表量程、电阻器阻值、电源端编号等。绘制数据记录表格,并注明相关的实验环境参数与要求。 2.要求2:分析报告部分一方面参考思考题要求,对实验数据进行分析和整理,说明实验结 果与理论是否符合;另一方面根据实测数据和在实验中观察和发现的问题,经过自己研究或分析讨论后写出的心得体会。 3.要求3:在数据处理中,曲线的绘制必须用坐标纸画出曲线,曲线要用曲线尺或曲线板连 成光滑曲线,不在曲线上的点仍按实际数据标出其具体坐标。 4.要求4:本课程实验结束后,将各次的实验报告按要求装订,并在首页写上序号(实验课 上签到表对应的序号)。请班长按照序号排序,并在课程结束后按要求上交实验报告。 温馨提示:实验报告撰写过程中如遇预留空白不足,请在该页背面空白接续。

器件实验报告八—555集成定时器及其应用

555集成定时器及其应用实验报告 一、实验内容与目的 1.单稳态触发器功能的测试,对于不同的外界元件参数,测定输出信号幅度和暂稳时间。 2.多谐振荡器功能的测试与验证,给定一个外界元件,测量输出波形的频率、占空比,并且计算理论值,算出频率的相对误差。 实验仪器: 自制硬件基础电路实验箱,双踪示波器,数字万用表,集成定时器NE555 2片;电阻100kΩ、10kΩ各2只;51kΩ、5.1kΩ、4.7kΩ各1只;电容30μF、10μF、0.1μF、2200pF各1只;电位器100kΩ1只; 元器件:LM555。 二、实验预习内容: 本实验旨在了解555定时器的内部结构和工作原理:单稳态触发器、多谐振荡器的工作原理。 实验资料: (1)构成单稳态触发器 电路如下图所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo =0,T导通,C放电,此时电路处于稳定状态。当2加入VI<1/3Vcc时,RS触发器置1,输出Vo=1,使T 截止。电容C开始充电,按指数规律上升,当电容C 充电到2/3Vcc时,A1翻转,使输出Vo=0。此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。其中输出Vo脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。 (2) 多谐振荡器 电路如下图所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为:

周期T=0.7 C(R1+2R2) 频率f=1/T=1.44/(R1+2R2)C, 占空比D=( R1+R2 )/( R1+2R2)。 555电路要求R1与R2 均应大于或等于1kΩ ,使R1+R2 应小于或等于3.3MΩ。 三、实验过程与数据分析 1.单稳态触发器逻辑功能的测试。 连接电路如下:

555试验报告

555 集成定时器的应用 一、实验目的 1. 熟悉555 定时器电路的工作原理。 2. 熟悉555 时基电路逻辑功能的测试方法。掌握用555 定时器电路构成单稳态触 发器,多谐振荡器,施密特触发器的方法和原理。 3. 了解定时器555 的实际应用。(做一个闪烁指示灯门铃) 二、实验仪器与器材 1 、数字逻辑实验箱1 台 2 、万用表1 只 3 、双踪示波器1 台 4 、元器件:NE555、放光二极管、电阻、电容、扬声器、导线若干 三、预习要求 1 .对照功能表熟悉555 定时器各管脚及其功能。 2 阅读本实验的实验原理以及教材中有关单稳态触发器、多谐振荡器、施密特振荡器的内容。 3 .根据原理图和给出的电路参数,画好单稳态触发器、多谐振荡器、施密特振荡器的电路图,估算实验结果。 4 .了解55 5 定时器的一般应用电路。 四、实验原理 555 定时器是模拟—数字混合式集成电路,利用它可以方便地构成脉冲产生、整形电路和定时、延时电路。具有功能强,使用灵活、方便等优点,在数字设备、工业控制、家用电器、电子玩具等许多领域都得到了广泛的应用。 集成定时器的产品主要有双极型和CMOS 型两类,按集成电路内部定时器的个数又可分为单定时器和双定时器;双极型单定时器电路的型号为555 ,双定时器电路的型号为556 ,其电源电压的范围为5~18V ;CMOS 单定时器电路的型号为7555 ,双定时器电路的型号为7556 ,其电源电压的范围为2~18V 。CMOS 型定时器的最大负载电流要比双极型的小,它们的功能和外引脚排列完全相同。 (一)、555 定时器的电路结构及其功能 图4- 1为555 定时器的内部逻辑电路和外引脚图,从结构上看,555 电路由2 个比较器、1 个基本RS 触发器、1 个反相缓冲器、1 个集电极开路的放电晶体管和3 个5kΩ电阻组成分压器组成。

电子技术实验报告8—555定时器及其应用

学生实验报告 系别电子信息学院课程名称电子技术实验 班级10通信A班实验名称实验八 555定时器及其应用 姓名葛楚雄实验时间2012年5月30日 学号20指导教师文毅 报告内容 一、实验目的和任务 1.熟悉555型集成时基电路的电路结构、工作原理及其特点。 2.掌握555型集成时基电路的基本应用。 二、实验原理介绍 555集成时基电路称为集成定时器,是一种数字、模拟混合型的中规模集成电路,其应用十分广泛。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器,因而广泛用于信号的产生、变换、控制与检测。它的内部电压标准使用了三个5K的电阻,故取名555电路。其电路类型有双极型和CMOS型两大类,两者的工作原理和结构相似。几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,两者的逻辑功能和引脚排列完全相同,易于互换。555和7555是单定时器,556和7556是双定时器。双极型的电压是+5V~+15V,最大负载电流可达200mA,CMOS型的电源电压是+3V~+18V,最大负载电流在4mA以下。 1、555电路的工作原理 555电路的内部电路方框图如图20-1所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关Td,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使低电平比较器Vr1反相输入

端和高电平比较器Vr2的同相输入端的参考电平为2/3VCC和1/3VCC。Vr1和Vr2的输出端控制RS触发器状态和放电管开关状态。当输入信号输入并超过2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于1/3VCC时,触发器置位,555的3脚输出高电平,同时充电,开关管截止。 R是异步置零端,当其为0时,555输出低电平。平时该端开路或接VCC。Vro是控制电压端(5脚),D 平时输出2/3VCC作为比较器Vr1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。Td为放电管,当Td导通时,将给接于脚7的电容器提供低阻放电电路。 2、555定时器的典型应用 (1)构成单稳态触发器 上图20-2为由555定时器和外接定时元件R、C构成的单稳态触发器。D为钳位二极管,稳态时555电路输入端处于电源电平,内部放电开关管T导通,输出端Vo输出低电平,当有一个外部负脉冲触发信号加到Vi端。并使2端电位瞬时低于1/3VCC,单稳态电路即开始一个稳态过程,电容C开始充电,Vc按指数规律增长。当Vc充电到2/3VCC时,输出Vo从高电平返回低电平,放电开关管Td重新导通,电容C上的电荷很快经放电开关管放电,暂态结束,恢复稳定,为下个触发脉冲的来到作好准备。波形图见图20-3。

555定时器的典型应用

555定时器的典型应用及OrCAD/PSpice仿真 时间:2009-12-05 01:00来源:本站整理作者:admin 点击:129次 555定时器的典型应用及OrCAD/PSpice仿真 滕政胜,黄铭(1.百色学院科研处广西百色;2.云南大学信息学院云南昆明) 引言 555定时器是一种将模拟功能与数字(逻辑)功能紧密结合在一起的中小规模单 片集成电路。它功能多样,应用广泛,只要外部配上几个阻容元器件即可构成单稳态触发器、施密特触发器、多谐振荡器等电路,是脉冲波形产生与变换的重要元器件,广泛应用于信号的产生与变换、控制与检测、家用电器以及电子玩具等领域。 OrCAD/PSpice作为国际上著名的电子设计自动化软件之一,具有仿真速度快、精度高等优点,不仅可以用于电路分析和优化设计,与印制版设计软件配合使用,还可实现电子设计自动化,被公认是通用电路模拟程序中最优秀的软件之一。例如:基于该软件,Essakhi等人提出了一种微波整流天线的时域模型;Du等人提出了一种从三维时域场分析提取S参数的方法;Zhang等人仿真了E类功率放大器的特性,并进行了实验证实;Sakuta等人分析了低相位噪声振荡器的特性,并计算了有载Q值;Hayahara等人设计了△-∑A/D转换器,并对其信噪比进行了仿真;Brecl等人提出了一维、二维薄膜模型,并模拟了其接触电阻。这些表明,软件OrCAD/PSpice是现代电子电路设计的有利工具。 本文以OrCAD/PSpice 10.5为工具,对555定时器构成的三种典型电路进行仿真分析,得出了一些有价值的结论。 1555定时器组成框图及工作机理 555定时器的图形符号及管脚图如图1所示,其中管脚1是公共端,管脚2为触发端,管脚3为输出端,管脚4为复位端,管脚5是控制电压输入端,管脚6 为阈值端,管脚7是内部三极管的放电端,管脚8是电源端。

555定时器综合实验报告

课程名称:数字电子技术基础项目名称:灯泡延时电路 项目组成员及分工及成绩评定

目录 1 课程设计目的 (2) 2 课程设计题目及要求 (2) 3 课程设计报告内容 (2) 3.1 按键式延时照明灯方案 (2) 3.2 电路元器件介绍 (3) 3.3 电路功能介绍 (4) 3.3.1 电路制作流程 (4) 3.4 实操连接电路和仿真电路的实现 (5) 3.4.1 电路实物图 (5) 3.4.2 手画电路原理图 (6) 3.4.3 仿真结果 (6) 3.5 电路调试过程 (7) 4总结 (8)

1课程设计目的 (1)掌握进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 (2)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 (3)提高学生的创新能力。 (4)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2课程设计题目及要求 设计步骤 1.对单稳态电路的设计和元器件参数计算、选择。 2.购买相关器件,采用面包板搭建电路。 3.画出总体电路图。 4.结合仿真结果和电路图安装自己设计的电路,检查线路的准确性。 5.调试电路,将电路用multisim对电路进行仿真。 6.提交符合要求的电路和实验设计报告。 要求 1.输出接LED电路, 2.按键不按LED不亮,当按键按下时LED亮30秒,之后熄灭。 3课程设计报告内容 3.1按键式延时照明灯方案 设计的电路图如下所示

2021年555定时器的典型应用电路

*欧阳光明*创编 2021.03.07 555定时器的典型应用电路 欧阳光明(2021.03.07) 单稳态触发器 555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。 在未加入触发信号时,因ui=H,所以uo=L。当加入触发信号时,ui=L,所以uo=H,7脚内部的放电管关断,电源经电阻R向电容C充电,uC按指数规律上升。当uC上升到2VCC/ 3时,相当输入是高电平,555定时器的输出uo=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2VCC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用tW 表示。 图22-2-1 单稳态触发器电路图 图22-2-2 单稳态触发器的波形图 暂稳态时间的求取: 暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为uc(0)=0V,无穷大值uc(∞)=VCC,τ=RC,设暂稳态的时间为tw,当t= t w时,uc(tw)=2 VCC/3时。代入过渡过程公式[1-p205]

几点需要注意的问题: 这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 VCC/3,低电平必须小于 VCC/3,否则触发无效。 二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。 R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。 图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5] 多谐振荡器 555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。 与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是RA、RB和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 VCC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2VCC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。 图22-2-4 多谐振荡器电路图图22-2-5 多谐振荡器的波形 震荡周期的确定: 根据uc(t)的波形图可以确定振荡周期,T=T1+T2 先求T1,T1对应充电,时间常数τ1=(RA+RB)C,初始值为uc(0)= VCC/3,无穷大值uc(∞) =VCC,当t= T1时,uc(T1)=2 VCC/3,代入过渡过程公式,可得 T1=ln2(RA+RB)C≈0.7(RA+RB)C 求T2,T2对应放电,时间常数τ2=RBC,初始值为uc(0)=2 VCC/3,无穷大值uc(∞) =0V,当t= T2时,uc(T2)= VCC/3,代入过渡过程公式,可得T2=ln2RBC≈0.7RBC 振荡周期 T= T1+T2=≈0.693(RA+2RB)C

相关主题