搜档网
当前位置:搜档网 › 解析几种典型电场的电场线、场强、电势的分布

解析几种典型电场的电场线、场强、电势的分布

解析几种典型电场的电场线、场强、电势的分布
解析几种典型电场的电场线、场强、电势的分布

解析几种典型电场的电场线、场强、电势的分布

一、场强分布图

点电荷的电场线 等量异种点电荷电场线 等量同种正电荷电场线

二、列表比较

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 点电荷与带电平 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立的 正点电荷 电场 线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立的 负点电荷 电场 线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。

电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量 电场大部分是曲线,起于正电荷,终止于无穷远;有两条

电场强度和电势

电场强度和电势 编稿:董炳伦审稿:李井军责编:郭金娟 目标认知 学习目标 1.理解静电场的存在,静电场的性质和研究静电场的方法。 2.理解场强的定义及它所描写的电场力的性质,并能结合电场线认识一些具体静电场的分布;能够熟练地运用电场强度计算电场力。 3.理解并能熟练地运用点电荷的场强和场强的叠加原理,弄清正、负两种电荷所产生电场的异同,以此为根据认识电荷系统激发的场。 4.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。 5.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点 1.用场强和电势以及电场线和等势面描写认识静电场分布。 2.熟练地进行电场力、电场力功的计算。 3.学会认识静电场的描写静电场的方法、手段。 学习难点 1.电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题复杂性。 2.用场强和电势以及它们的叠加原理认识电荷系统的静电场等。 知识要点梳理 知识点一:电场强度和电场线 要点诠释: 1.静电场及其特点 (1)电荷间的相互作用力是靠周围的电场产生的。 (2)电场是一种特殊物质,并非分子、原子组成,但客观存在。 (3)电场的基本性质是:对放入其中的电荷(不管是静止的还是运动的)有力的作用,电场具有能量。 2.静电场的性质 (1)电场强度的物理意义是描述电场的力性质的物理量,数值上等于单位电荷量的电荷在电场中受到的电场力,单位是N / C。 (2)电场力的二个性质:

①矢量性:场强是矢量,其大小按定义式计算即可,其方向规定为正电荷在该点的受力方向。 ②唯一性:电场中某一点处的电场强度E的大小和方向是唯一的,其大小和方向取决于场源电荷及空间位置。 电场中某点的电场强度E是唯一的,是由电场本身的特性(形成电场的电荷及空间位置) 决定的,虽然,但场强E绝不是试探电荷所受的电场力,也不是单位正试探电荷所受的电场力,因为电场强度不是电场力,电场中某点的电场强度,既与试探电荷的电荷量q 无关,也与试探电荷的有无无关。因为即使无试探电荷存在,该点的电场强度依然是原有的值。 3.总电荷的电场强度 大小:,Q为场源点电荷,r为考察点与场源电荷的距离。 方向:正点电荷的场中某点的场强方向是沿着场源电荷Q与该点连线背离场源电荷;负的场源电荷在某点产生的场强方向则是指向场源电荷。 4.场强叠加原理 若在某一空间中有多个电荷,则空间中某点的场强等于所有电荷在该点产生的电场强度的矢量和。 说明: (1)点电荷的场强和场强的叠加原理是计算任何电荷系统产生场的理论基础,尽管对复杂的电荷系统计算是不易做到的。 (2)场强的叠加原理必须注意到它的矢量叠加的特点,必须用平行四边形法则计算。 5.关于电场线以及对它的理解 (1)电场线的意义及规定 电场线是形象地描述电场而引入的假想曲线,规定电场线上每点的场强方向沿该点的切线方向,也就是正电荷在该点受电场力产生的加速度的方向(负电荷受力方向相反)。 (2)电场线的疏密和场强的关系的常见情况 按照电场线的画法的规定,场强大的地方电场线密,场强小的地方电场线疏。在图中,E A>E B。 但若只给一条直电场线,如图所示,A、B两点的场强大小无法由疏密程度来确定,对

常见的电场电场线分布规律

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 、几种常见电场线分布: 二、 等量异种电荷电场分析 1、 场强: ① 在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增大,中点 0 的电场强度最小。电场强度方向由正电荷指向负电荷; ② 两点电荷的连线的中垂线上,中点 0的场强最大,两侧场强依次减小。各 点电场强度方向相同。 2、 电势: ① 由正电荷到负电荷电势逐渐降低; ② 连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面; ③ 若规定无限远处电势为 0,则两点电荷连线的中垂线上各点电势即为 0。 3、 电势能:(设带电粒子由正电荷一端移向负电荷一端) ① 带电粒子带正电:电场力做正功,电势降低,电势能减少; ② 带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、 等量同种电荷电场分析 1、 场强: ① 两点电荷的连线上, 由点电荷起,电场强度越来越小, 到终点O 的电场强度 为0,再到另一点电荷,电场强度又越来越大; ② 两点电荷连线的中垂线上, 由中点O 向两侧,电场强度越来越大,到达某一 点后电场强度又越来越小; ③ 两点电荷(正)连线的中垂线上, 电场强度方向由中点 O 指向外侧,即平行 于中垂线。 2、 电势: O 点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高 O 点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。 ③ 其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。 连线的中垂线上, O 电电势最大,即 O 点两侧电势依次降低。 连线的中垂线上, O 点电势最小,即 O 点两侧电势依次升高 ①两正点电荷连线上, ②两负点电荷连线上,

几种典型电场线分布示意图及场强电势特点

匀强电场 等量异种点电荷的电场 等量同种点电荷的电场 - - - - 点电荷与带电平+ 孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不 同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立 的 负点 电荷 电场线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 等量 同种 负点 电荷 电场线 大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。 电势 每点电势为负值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。 电势 由连线的一端到另一端先升高再降低,中点电势最高不为零。

中 垂线上场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。电势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。 电势每点电势为正值。 连 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中 点;由连线的一端到另一端,先减小再增大。 电势由连线的一端到另一端先降低再升高,中点电势最低不为零。 中 垂 线 上 场强 以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂 线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。 电势 中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。 电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。 连 线 上 场强 以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由 正电荷指向负电荷;由连线的一端到另一端,先减小再增大。 电势由正电荷到负电荷逐渐降低,中点电势为零。 中 垂 线 上 场强 以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂 直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。 电势 中垂面是一个等势面,电势为零 例如图所示,三个同心圆是同一个点电荷周围的三个等势面,已知这三个圆的半径成等差数列。A、B、C分别是这三个等势面上的点,且这三点在同一条电场线上。A、C两点的电势依次为φA=10V和φC=2V,则B点的电势是 A.一定等于6V B.一定低于6V C.一定高于6V D.无法确定 解:由U=Ed,在d相同时,E越大,电压U也越大。因此U AB> U BC,选B 要牢记以下6种常见的电场的电场线和等势面: 注意电场线、等势面的特点和电场线与等势面间的关系: ①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。 ②电场线互不相交,等势面也互不相交。 ③电场线和等势面在相交处互相垂直。 ④电场线的方向是电势降低的方向,而且是降低最快的方向。 +

物理选修—几种常见电场线特点

几种常见电场线的分布及其特点 1.点电荷的电场:正点电荷的电场线从正点电荷出发延伸到无限远;负点电荷的电场线从无限远出发延伸到负点电荷。 正点电荷的电场负点电荷的电场 ①点电荷的电场中,没有场强相等的点。(或大小不等或方向不同) ②若以点电荷为球心作一个球面,电场线处处与球面垂直。在同一球面上的各点场强大小相等方向不同。 ③若以点电荷为原点作一条射线,则该射线上的各点场强方向相同大小不等,离点电荷越远场强越小。 2.等量同种点电荷的电场(正): ①两点电荷连线中点O处的场强为0,向两侧逐渐增大,方向指向中点。 ②两点电荷连线中点O沿中垂面(线)到无限远,电场线先变密后变疏,即电场强度先变大后变小,方向背离中点。 ③等量同种负点电荷的电场与等量同种正点电荷的电场分布相同,但方向相反。 等量同种正点电荷的电场 3.等量异种点电荷的电场: ①两点电荷连线上的各点电场强度方向从正点电荷指向负点电荷,沿电场线方向先变小后变大,中点处电场强度最小。 ②两点电荷连线的中垂面(线)上,电场强度的方向均相同,且总与中垂面(线)垂直指向负点电荷一侧,从中点到无穷远处电场强度不断减小,中点电场强度最大。 等量异种点电荷的电场 4.平行金属板的电场(匀强电场): ①两平行金属板形成的电场是匀强电场。 电场中各点大小相等方向相同, 其电场线是间隔相等的平行线 匀强电场 5.点电荷与金属板的电场 ①在金属板附近电场方向均垂直于金属板。 点电荷与金属板的电场 6.常见一般电场: ①可假象在B端有一个正电荷,在A端有一个负电荷。 ②E A >E C >E B ③同一电荷在A受到的电场力大于在B受到的电场力。 ④若粒子运动轨迹如沿图中虚线所示,可断定粒子 所受电场力斜向左上(曲线运动中轨迹凹侧为受力方向)。常见一般电场若仅受电场力则粒子带增加(根据力与运动方 E A >E B >E O =0 E D >E C >E O =0 E D >E E >0

电场强度和电势的关系

电势差与电场强度的关系 非匀强电场的定性分析 【典例1】某电场中等势面分布如图所示,图中虚线表示等势面,过a、b两点的等势面电势分别为40 V和10 V,则a、b连线的中点c 处的电势应为( ) A.一定等于25 V B.大于25 V C.小于25 V D.可能等于25 V 【通型通法】 1.题型特征:非匀强电场中电势差与电场强度的定性分析。 2.思维导引: 【解析】选C。因为电场线与等势面垂直,根据等势面的形状可知,电场线从左向右由密变疏,即从a到c,电场强度逐渐减弱,而且电场线方向从a→b。ac段电场线比bc段电场线密,ac段场强较大,根据公式U=Ed可知,a、c间电势差U ac大于c、b间电势差U cb,即φa-φc>φc-φb,得到: φc<= V=25 V。 如图所示的同心圆是电场中的一簇等势线,一个电子只在电场力作用

下沿着直线由A→C运动的速度越来越小,B为线段AC的中点,则下列说法正确的是( ) A.电子沿AC方向运动时受到的电场力越来越小 B.电子沿AC方向运动时它具有的电势能越来越大 C.电势差U AB=U BC D.电势φA<φB<φC 【解析】选B。该电场为负点电荷产生的电场,电子沿AC方向运动时受到的电场力越来越大,选项A错误;根据电子只在电场力作用下沿直线由A→C运动时的速度越来越小,它具有的电势能越来越大,选项B正确;由于电场为非匀强电场,由U=Ed可以定性判断电势差U ABφB>φC,选项D错误。 匀强电场的定量计算 如图所示的匀强电场中,有A、B、C三点,AB=5cm, BC=12cm, 其中AB沿电场方向,BC和电场方向成60°角。一个电荷量为 q=4×10-8C的正电荷从A移到B,电场力做功为W1=1.2×10-7J。 求: (1)匀强电场的电场强度E的大小。 (2)电荷从B到C,电荷的电势能改变多少? 【解析】(1)由W1= qE·AB得,该电场的电场强度大小为: E==N/C=60 N/C (2)电荷从B到C,电场力做功为:

浅谈电场强度与电势的关系

浅谈电场强度与电势的关系 贠锦鹏 摘要:运用电势梯度法和矢量代数法两种方法证明了电场强度与电势的关系,归纳出已知电场 强度求电势和已知电势求电场强度的方法. 关键词:电场强度; 电势;关系 引言 电场强度和电势是物理知识中的重要内容,是理解、掌握电磁学知识的基础。在国内比较经典的几种电磁学教材中,对电场强度和电势关系的推导由于对等电势面法线方向规定的不一致,证明方法也有明显的差异[]21- ,这使得在具体教学中学生对推导过程的理解产生困难。为此,我们运用电电势梯度法和矢量代数法两种方法给出了电场强度和电势关系的推导过程,这对实际教学有指导意义。 1.电场强度与电势的关系 1.1 电势梯度法 设在电场中,取两个十分临近的等势面1和2(如图1所示),其电势为V 和V+dV (dV >0)。设1p 为等势面1上的一点,过1p 点 作等势面1的法线n ,规定其指向电势增加方向,它 与等势面2交于2p 点,场强E 与n 的方向相反。再由1p 点向等势面2任作一条直线交于3p 点。 从1p 向3p 引一位移矢量l d ,根据电势差的定 义,并考虑到两个等势面非常接近,因此:≈E 常矢 量,则有:dl E l d E dV V V θcos )(=?=+- 即:dl E dV θcos =-,令θcos E E l =为场强在l d 方 向上的投影,则有:dl dV E l -= (图1) 电场中某点的场强沿任意l d 方向的投影等于沿该方向电势函数的空间变化率(电势函数的方向导数)的负值。 两个特殊方向: (1)当πθ=时,l d 沿n 方向,与E 方向相反,dl dV 有最大值,则该点电场强 度的大小为: dn dV E E n = = (2)当2/πθ=时,l d 沿τ 方向,与E 方向相垂直, dl dV 有最小值,则该点电 场强度的大小零,即: 0=x E 定义电势梯度(gradient )矢量: n dn dV V gradV = ?=

几种典型电场线分布示意图及场强电势特点

几种典型电场线分布示意图及场强电势特点

匀强 等量异种点电等量同种点 - - 点电荷与+ 孤立点电荷 几种典型电场线分布示意图及场强电势特点表 重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤立 的 正点 电荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。 孤立 电场直线,起于无穷远,终止于负电荷。

的负点电荷线 场强 离场源电荷越远,场强越小;与场源电荷等距的各点 组成的球面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点 组成的球面是等势面,每点的电势为负。 等势 面 以场源电荷为球心的一簇簇不等间距的球面,离场源 电荷越近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条 电场线是直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都是背离中点;由连线的一端 到另一端,先减小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最 高不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大 小相等,方向相反,都沿着中垂线指向中点;由中 点至无穷远处,先增大再减小至零,必有一个位置 场强最大。

电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等量同种正点电荷电场 线 大部分是曲线,起于正电荷,终止于无穷远;有两条 电场线是直线。 电势每点电势为正值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强 大小相等,方向相反,都是指向中点;由连线的 一端到另一端,先减小再增大。 电 势 由连线的一端到另一端先降低再升高,中点电势 最低不为零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强 大小相等,方向相反,都沿着中垂线指向无穷远 处;由中点至无穷远处,先增大再减小至零,必 有一个位置场强最大。 电 势 中点电势最高,由中点至无穷远处逐渐降低至零。 等量异种点电荷电场 线 大部分是曲线,起于正电荷,终止于负电荷;有三条 电场线是直线。 电势中垂面有正电荷的一边每一点电势为正,有负电荷的

(完整版)两电荷电场强度电势图像

一、两个等量异种点电荷电场 1.电场特征 (1)两个等量异种点电荷电场电场线的特征是:电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线.如图16所示. 图16 (2)在两电荷连线上,连线的中点电场强度最小但是不等于零;连线上关于中点对称的任意两点场强大小相等,方向相同,都是由正电荷指向负电荷; 图17 由连线的一端到另一端,电场强度先减小再增大.以两电荷连线为x轴,关于x=0对称分布的两个等量异种点电荷的E-x图象是关于E轴(纵轴)对称的U形图线,如图17所示. (3)在两电荷连线的中垂线上,电场强度以中点处最大;中垂线上关于中点对称的任意两点处场强大小相等,方向相同,都是与中垂线垂直,由正电荷指向负电荷;由中点至无穷远处,

图18 电场强度逐渐减小.以两电荷连线中垂线为y轴,关于y=0对称分布的两个等量异种点电荷在中垂线上的E-y图 象是关于E轴(纵轴)对称的形图线,如图18所示. 2.电势特征 (1)沿电场线,由正电荷到负电荷电势逐渐降低,其等势面如图19所示.若取无穷远处电势为零,在两电荷连线上的中点处电势为零.

图19 (2)中垂面是一个等势面,由于中垂面可以延伸到无限远处,所以若取无穷远处电势为零,则在中垂面上电势为零. (3)若将两电荷连线的中点作为坐标原点,两电荷连线作为x轴,则两个等量异种点电荷的电势φ随x变化的图象如图20所示. 图20 二、两个等量同种点电荷电场 1.电场特征 (1)电场线大部分是曲线,起于正电荷,终止于无穷远;只有两条电场线是直线.(如图22所示) 图22 (2)在两电荷连线上的中点电场强度最小为零;连线上关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,电场强度先减小到零再增大. (3)若以两电荷连线中点作为坐标原点,沿两电荷连线作为x轴建立直角坐标系,则关于坐标原点对称分布的两个等量同种点电荷在连线方向上的E-x图象是关于坐标原点对称的图线,两个等量正点电荷的E-x图象如图23所示的曲线.

几种典型电场线分布示意图及场强电势特点

匀强电 等量异种点电荷的电等量同种点电荷- - - 点电荷与带电 + 孤立点电荷周围的 几种典型电场线分布示意图及场强电势特点表重点 一、场强分布图 二、列表比较 下面均以无穷远处为零电势点,场强为零。 孤 立 的 正 点电 荷 电场线 直线,起于正电荷,终止于无穷远。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球 面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越低;与场源电荷等距的各点组成的球 面是等势面,每点的电势为正。 等势面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越 近,等势面越密。 孤立 的 电场 线 直线,起于无穷远,终止于负电荷。 场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球

负点电荷 面上场强大小相等,方向不同。 电势 离场源电荷越远,电势越高;与场源电荷等距的各点组成的球 面是等势面,每点的电势为负。 等势 面 以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越 近,等势面越密。 等量同种负点电荷电场 线 大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是 直线。 电势每点电势为负值。 连 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大小相等, 方向相反,都是背离中点;由连线的一端到另一端,先减 小再增大。 电 势 由连线的一端到另一端先升高再降低,中点电势最高不为 零。 中 垂 线 上 场 强 以中点最小为零;关于中点对称的任意两点场强大小相等, 方向相反,都沿着中垂线指向中点;由中点至无穷远处, 先增大再减小至零,必有一个位置场强最大。 电 势 中点电势最低,由中点至无穷远处逐渐升高至零。 等电场大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是

常见电场电场线分布规律

常见电场电场线分布规律

————————————————————————————————作者:————————————————————————————————日期:

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 一、几种常见电场线分布: 二、等量异种电荷电场分析 1、场强: ①在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增大,中点O 的电场强度最小。电场强度方向由正电荷指向负电荷; ②两点电荷的连线的中垂线上,中点O的场强最大,两侧场强依次减小。各 点电场强度方向相同。 2、电势: ①由正电荷到负电荷电势逐渐降低; ②连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面; ③若规定无限远处电势为0,则两点电荷连线的中垂线上各点电势即为0。 3、电势能:(设带电粒子由正电荷一端移向负电荷一端) ①带电粒子带正电:电场力做正功,电势降低,电势能减少; ②带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、等量同种电荷电场分析 1、场强: ①两点电荷的连线上,由点电荷起,电场强度越来越小,到终点O的电场强 度为0,再到另一点电荷,电场强度又越来越大; ②两点电荷连线的中垂线上,由中点O向两侧,电场强度越来越大,到达某 一点后电场强度又越来越小; ③两点电荷(正)连线的中垂线上,电场强度方向由中点O指向外侧,即平 行于中垂线。 2、电势: ①两正点电荷连线上,O点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高。连线的中垂线上,O电电势最大,即O点两侧电势依次降低。 ②两负点电荷连线上,O点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。连线的中垂线上,O点电势最小,即O点两侧电势依次升高。 ③其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。

常见的电场电场线分布规律

常见的电场电场线分布 规律 SANY GROUP system office room 【SANYUA16H-

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 一、几种常见电场线分布: 二、等量异种电荷电场分析 1、场强: ①在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增 大,中点O的电场强度最小。电场强度方向由正电荷指向负电 荷; ②两点电荷的连线的中垂线上,中点O的场强最大,两侧场强依 次减小。各点电场强度方向相同。 2、电势: ①由正电荷到负电荷电势逐渐降低; ②连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面; ③若规定无限远处电势为0,则两点电荷连线的中垂线上各点电势即为0。 3、电势能:(设带电粒子由正电荷一端移向负电荷一端) ①带电粒子带正电:电场力做正功,电势降低,电势能减少; ②带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、等量同种电荷电场分析 1、场强: ①两点电荷的连线上,由点电荷起,电场强度越来越小,到终点O 的电场强度为0,再到另一点电荷,电场强度又越来越大; ②两点电荷连线的中垂线上,由中点O向两侧,电场强度越来越 大,到达某一点后电场强度又越来越小; ③两点电荷(正)连线的中垂线上,电场强度方向由中点O指向外 侧,即平行于中垂线。 2、电势: ①两正点电荷连线上,O点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高。连线的中垂线上,O电电势最大,即O点两侧电势依次降低。 ②两负点电荷连线上,O点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。 连线的中垂线上,O点电势最小,即O点两侧电势依次升高。 ③其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。 3、电势能: ①由电势判断:若带电粒子为正电荷,则电势越高,电势能越大;若带电粒子为负电荷,则电势越高,电势能越小。 ②由功能关系判断:若电场力做负功,则电势能增加;若电势能做正功,则电势能减少。 3、匀强电场 1、特点:

相关主题