搜档网
当前位置:搜档网 › DFT电子结构计算李震宇

DFT电子结构计算李震宇

DFT电子结构计算李震宇
DFT电子结构计算李震宇

CASTEP计算理论总结+实例分析

CASTEP 计算理论总结 XBAPRS CASTEP 特点是适合于计算周期性结构,对于非周期性结构一般要将特定的部分作为周期性结构,建 立单位晶胞后方可进行计算。CASTEP 计算步骤可以概括为三步:首先建立周期性的目标物质的晶体;其 次对建立的结构进行优化,这包括体系电子能量的最小化和几何结构稳定化。最后是计算要求的性质, 如电子密度分布(Electron density distribution),能带结构(Band structure)、状态密度分布(Density of states)、声子能谱(Phonon spectrum)、声子状态密度分布(DOS of phonon),轨道群分布(Orbital populations)以及光学性质(Optical properties)等。本文主要将就各个步骤中的计算原理进行阐述, 并结合作者对计算实践经验,在文章最后给出了几个计算事例,以备参考。 CASTEP 计算总体上是基于DFT ,但实现运算具体理论有: 离子实与价电子之间相互作用采用赝势来表示; 超晶胞的周期性边界条件; 平面波基组描述体系电子波函数; 广泛采用快速fast Fourier transform (FFT) 对体系哈密顿量进行数值化计算; 体系电子自恰能量最小化采用迭带计算的方式; 采用最普遍使用的交换-相关泛函实现DFT 的计算,泛函含概了精确形式和屏蔽形式。 一, CASTEP 中周期性结构计算优点 与MS 中其他计算包不同,非周期性结构在CASTEP 中不能进行计算。将晶面或非周期性结构置于一个有 限长度空间方盒中,按照周期性结构来处理,周期性空间方盒形状没有限制。之所以采用周期性结构原 因在于:依据Bloch 定理,周期性结构中每个电子波函数可以表示为一个波函数与晶体周期部分乘积的形 式。他们可以用以晶体倒易点阵矢量为波矢一系列分离平面波函数来展开。这样每个电子波函数就是平 面波和,但最主要的是可以极大简化Kohn-Sham 方程。这样动能是对角化的,与各种势函数可以表示为 相应Fourier 形式。 ```2[()()()]``,,k G V G G V G G V G G C C ion H xc i i k G GG i k G δε∑++-+-+-=++ 采用周期性结构的另一个优点是可以方便计算出原子位移引起的整体能量的变化,在CASTEP 中引入外力 或压强进行计算是很方便的,可以有效实施几何结构优化和分子动力学的模拟。平面波基组可以直接达 到有效的收敛。 计算采用超晶胞结构的一个缺点是对于某些有单点限缺陷结构建立模型时,体系中的单个缺陷将以 无限缺陷阵列形式出现,因此在建立人为缺陷时,它们之间的相互距离应该足够的远,避免缺陷之间相 互作用影响计算结果。在计算表面结构时,切片模型应当足够的薄,减小切片间的人为相互作用。 CASTEP 中采用的交换-相关泛函有局域密度近似(LDA )(LDA )、广义梯度近似(GGA )和非定域交换-相关 泛函。CASTEP 中提供的唯一定域泛函是CA-PZ ,Perdew and Zunger 将Ceperley and Alder 数值化结果进行 了参数拟和。交换-相关泛函的定域表示形式是目前较为准确的一种描述。 Name Description Reference PW91 Perdew-Wang generalized-gradient approximation, PW91 Perdew and Wang PBE Perdew-Burke-Ernzerhof functional, PBE Perdew et al. RPBE Revised Perdew-Burke-Ernzerhof functional, RPBE Hammer et al.

Mn3Al块体合金下的电子结构计算论文.

Mn3Al块体合金下的电子结构计算论文2019-02-15 摘要:自旋电子学器件在航天、军事等高科技领域,甚至在智能家电、通讯等民用领域都有广泛的利用,因此它也引起了科学家们越来越多的关注。我们将对D03型Mn3Al块体合金的电子结构和磁性利用理论模拟计算方法进行研究。根据理论计算发现Mn3Al合金不仅具有100%的自旋极化率而且还有半金属特性的电子结构。关于合金磁性计算研究表明它是完全反铁磁性材料。Mn3Al 合金是一种半金属完全反铁磁材料,所以研究Mn3Al合金对自旋电子学器件的设计具有重要意义。 关键词:Mn3Al合金;密度泛函理论;电子结构;磁性 自旋电子学器件具有不同于传统半导体器件的优势使它成为21世纪重要的研究方向之一。传统的电子学器件通常是利用电子的电荷特性,而自旋电子学器件是通过电子的自旋和电荷来进行运输的。相对于传统电子学器件来说,自旋电子学器件不仅具有更低的耗能、非易失性、更强大的数据储存能力,而且还具有更快速的信息处理能力和集成度高的.优质特点。除此之外,它在磁记录读出磁头、磁传感器、磁性随机存储器等领域有着广泛的应用前景。尽管自旋电子学器件能够更好地满足科学发展和人类的需要,但是它在实际材料的需求上有着较高的要求。 自旋电子学器件的制作的关键就在于如何能够将不同特征的电子有效的注入到半导体材料中,以此来达到实现自主运输的目的。正如我们所知的,现在很多的材料做成的自旋电子学器件都只能在低温的环境下运行,这带来了很多的不便。所以研究能在高居里温度下运行的自旋电子学器件的材料就显得尤为重要了。研究表明自旋电子学器件的性能和自旋极化率有着密切的联系,如果材料具有高的自旋极化率,也就是说在费米能级附近分别具有自旋向上和自旋向下的电子数目越不平衡,那么自旋电子学器件的性能就越好。近年来,由于半金属材料的优点,使得它成为了大家研究的热点之一。1983年,deGroot及他的团队采用第一性原理计算方法在理论上首次发现half-Heusler合金NiMnSb具有半金属性,越来越多的Heusler合金被研究证实其半金属性并被归为半金属铁磁体。Heusler合金具有独特的磁学性质、形状记忆效应、半金属性、拓扑绝缘等性能,而这些优点就使得这种合金在自旋电子器件的研究中具有重要意义。虽然Mn3Al块体合金具有多种结构,其中最重要的一种结构是 D03型。利用密度泛函理论计算的方法,本文研究了D03型Mn3Al块体合金的电子结构及磁性。 1研究方法 本文采用的第一性原理计算,此次研究所有的计算工作都是在高性能计算机上运行ViennaAb-initoSimulationPackage(VASP)程序完成。计算过程中,我们采用广义梯度近似(GGA)方法,选取缀加投影波(PAW)来描述离子

单晶硅的晶体结构建模与能带计算讲义-(1)

单晶硅的晶体结构建模与能带计算讲义-(1)

单晶硅(其它典型半导体)的晶体结构建模与能带计算 注:本教程以Si为例进行教学,学生可计算Materials Studio库文件中的各类半导体。 一、实验目的 1、了解单晶硅的结构对称性与布里渊区结构特征; 2、了解材料的能带结构的意义和应用; 3、掌握Materials Studio建立单晶硅晶体结构的过程; 4、掌握Materials Studio计算单晶硅能带结构的方法。 二、实验原理概述 1、能带理论简介 能带理论是20世纪初期开始,在量子力学的方法确立以后,逐渐发展起来的一种研究固体内部电子状态和运动的近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,了解材料的能带结构是研究各种材料的物理性能的基础。 能带理论的基本出发点是认为固体中的电子不再是完全被束缚在某个原子周围,而是可以在整个固体中运动的,称之为共有化电子。但电子在运动过程中并也不像自由电子那样,完全不受任何力的作用,电子在运动过程中受到晶格原

子势场和其它电子的相互作用。晶体中电子所能具有的能量范围,在物理学中往往形象化地用一条条水平横线表示电子的各个能量值。能量愈大,线的位置愈高。孤立原子的电子能级是分立和狭窄的。当原子相互靠近时,其电子波函数相互重叠。由于不同原子的电子之间,不同电子与原子核之间的相互作用,原先孤立原子的单一电子能级会分裂为不同能量的能级。能级的分裂随着原子间距的减小而增加。如图1所示,如果N 个原子相互靠近,单一电子能级会分裂为N个新能级,当这样的能级很多,达到晶体包含的原子数目时,一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为能带。各种晶体能带数目及其宽度等都不相同。相邻两能带间的能量范围称为“带隙”或“禁带”。晶体中电子不能具有这种能量。完全被电子占据的能带称“满带”,满带中的电子不会导电。完全未被占据的称“空带”。部分被占据的称“导带”,导带中的电子能够导电。价电子所占据能带称“价带”。 能带理论最突出的成就是解释了固体材料的导电性能。材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导带时,电子就可以在带间任意移动而导电。图2是不同导电性材料的典型能带结构示意图。导体材料,常见的是金属,因为其导带与价带之间的非常小,在室温下,电子很容易获得能量而跳跃至导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导带,所以无法导电;一般半导体材料的能隙约为1至2电子伏特,介于导体和绝缘体之间。半导体很容易因其中有杂质或受外界影响(如光照,升温

CdO电子结构的第一性原理计算

收稿日期:2008205205; 修订日期:2008206230 作者简介:宋永东(19582  ),陕西户县人,副教授.主要从事电子技术与半导体理论的科研和教学工作. CdO 电子结构的第一性原理计算 宋永东1,黄 同2,吕淑媛3 (1.延安大学物理与电子信息学院,陕西延安716000;2.延安大学西安创新学院,陕西西安710100;3.西安邮电 学院电信系,陕西西安710021) 摘要:基于密度泛函理论(Density Functional Theory )框架下的第一性原理平面波超软赝势方法,计算了岩盐、氯化铯以及纤锌矿构型CdO 的体相结构、电子结构和能量等属性。利用精确计算的能带结构和态密度,从理论上分析了CdO 材料基态属性及其化学和电学特性,理论结果与实验结果相符合,这为CdO 光电材料的设计与大规模应用提供了理论依据。同时,计算结果也为精确监测和控制这一类氧化物材料的生长过程提供了可能性。关键词:CdO ;电子结构;第一性原理;相变 中图分类号:TN201 文献标识码:A 文章编号:100028365(2008)0821106204 Firs t 2Pri ncip le Calc ula ti o n of Ele c t r o nic S t r uc t ur e of CdO SONG Yong 2dong 1,HUANG Tong 2,L V Shu 2yu an 3 (1.College of Physics &Electronic Information ,Yan πan U niversity ,Yan πan 716000,China ;2.Xi πan G reation Collgeg of Yan πan U niversity ,Xi πan 710100,China ;3.Department of T elecommunication ,Xi πan Institute of Post and T elecommunication ,Xi πan 710072,China) Abs t rac t :The phase structure ,electronic structure and energy of CdO in rocksalt ,ce sium chloride and wurtzite are calculated utilizing first 2principle ultra 2soft p seudo 2potential approach of the plane wave based upon the Density Functional Theory (DFT ).The ground state ,electronic and chemical propertie s are analyzed in terms of the precise calculated band structure and density of state ,the theoretical re sults agree well with the experimental value ,and can provide theorical asis for the de sign and application of optoelectronics materials of CdO.Meanwhile ,the calculated re sults can provide the po ssibility for more precise monitoring and control during the growth of CdO materials. Ke y w ords :CdO ;Electronic structure ;First 2principle s ;Phase transformation 透明导电薄膜(TCOS )由于其低的电阻率、高的透光率而成为具有优异光电特性的电子材料之一,现已在太阳能电池[1]、液晶显示器[2]、气体传感器[3]、紫外半导体激光器等领域得到应用。氧化镉(CdO )作为一类宽禁带化合物半导体材料,由于在导电和可见光透过方面具有优异的性能,现已在新型透明导电薄膜方面受到人们的重视,被认为是一种有潜力的光电材料[4~7],可用于太阳能电池、电致变色器件、液晶显示器、热反射镜、平板显示装置、抗静电涂层及光电子装置等领域。与其它透明导电薄膜材料相比,CdO 薄膜具有很多优点,如生长温度低,可在室温下获得结晶取向好的高迁移率薄膜;在未掺杂情况下,由于薄膜中存在大量的间隙Cd 原子和氧空位作为浅施主,因此CdO 薄膜有很高的载流子浓度,使得CdO 在未掺杂 的情况下就有很高的电子浓度和电学性能;同时CdO 薄膜的禁带宽度(E g =2.26eV ,对应的吸收波长在550nm )在太阳可见光辐射区,可以作为Si 、Cd Te 、CuL nSe 2(CIS )等太阳能电池的窗口材料,对应不同的 制备方法,禁带宽度有一定的变化。近年来,基于密度泛函理论的第一性原理计算已用来研究这类材料的光学性质。本文计算了各种构型CdO 电子结构,并与相关文献进行了比较。1 理论模型和计算方法1.1 理论模型 氧化镉是n 型半导体化合物,室温下其稳定的结晶态为立方NaCl 型结构,空间群为Fm 23m ,晶胞参数a =4.674!。另外,CdO 还存在闪锌矿、氯化铯以及纤锌矿型3种亚稳态结构。第一性原理计算表明,大约在89GPa 压力下,立方NaCl 结构的CdO 晶体转变为CsCI 结构,晶胞体积减少约6%,其各种构型的晶体结构如图1所示。

材料结构与性能模拟计算理论与方法简介

材料结构与性能模拟计算理论与方法简介 [使用电脑对材料模拟计算的优缺点] 优点:(一)不受实验条件的限制、(二)简化研究的原因 缺点:必须使用足够精确的物理定律 因此,目前电脑模拟的材料设计走向两个趋势: (一)采取微观尺度(因为物质由原子组成)、 (二)使用量子力学(才能正确描述电子行为以及由其所决定的机械、传输、光学、磁学等性质) 也就是说,原子之间的作用力以及材料所表现的物性,我们都希望能(不借助实验结果)透过第一原理方法来达到。 [密度泛函理论简介] 自从20世纪60年代密度泛函理论(DFT,Density Functional Theory)建立并在局域密度近似(LDA)下导出著名的Kohn-Sham(KS)方程以来,DFT一直是凝聚态物理领域计算电子结构及其特性最有力的工具。近几年来DFT同分子动力学方法相结合,在材料设计、合成、模拟计算和评价诸多方面有明显的进展,成为计算材料科学的重要基础和核心技术。特别在量子化学计算领域,根据INSPEC数据库的记录显示,1987年以前主要用Hartree-Fock(HF)方法,1990~1994年选择DFT方法的论文数已同HF方法并驾齐驱,而1995年以来,用DFT的工作继续以指数律增加,现在已经大大超过用HF方法研究的工作。W. Kohn因提出DFT获得1998年诺贝尔化学奖,表明DFT在计算量子化学领域的核心作用和应用的广泛性。 DFT适应于大量不同类型的应用,因为电子基态能量与原子核位置之间的关系可以用来确定分子或晶体的结构,而当原子不处在它的平衡位置时,DFT可以给出作用在原子核位置上的力。因此,DFT可以解决原子分子物理中的许多问题,如电离势的计算,振动谱研究,化学反应问题,生物分子的结构,催化活性位置的特性等等。在凝聚态物理中,如材料电子结构和几何结构,固体和液态金属中的相变等。现在,这些方法都可以发展成为用量子力学方法计算力的精确的分子动力学方法。DFT的另一个优点是,它提供了第一性原理或从头算的计算框架。在这个框架下可以发展各式各样的能带计算方法,如LDA,GGA,meta-GGA,hybrid等方法。

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

能带理论--能带结构中部分概念的理解小结

本文是关于能带结构概念部分学习的小结,不保证理解准确,欢迎高中低手们批评指教,共同提高。 能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。 1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只

要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 2. 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valenc e band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 3. 费米能级(Fermi level)是绝对零度下电子的最高能级。根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。

结构设计原理习题-练习

《结构设计原理》复习题 一、填空 1.按加工方式不同,钢筋分为()、()、()、()四种。2.()与()通常称为圬工结构。 3.梁内钢筋主要有()、()、()、()等。 4.随着柱的长细比不同,其破坏型式有()、()两种。 5.根据张拉预应力筋与浇筑混凝土构件之间的先后顺序,预应力混凝土分为()、()两类。 6.钢筋与混凝土之间的粘结力主要有以下三项组成()、()、()。7.按照配筋多少的不同,梁可分为()、()、()三种。 8.钢筋混凝土受弯构件主要有()和()两种形式。 9.梁内钢筋主要有()、()、()、()等。 10.()、()、()称为结构的可靠性。 11.钢筋的冷加工方法有()、()、()三种。 12.结构的极限状态,根据结构的功能要求分为()、()两类。 13.T形截面梁的计算,按()的不同分为两种类型。 14.在预应力混凝土中,对预应力有如下的要求()、()、()。15.钢筋混凝土梁一般有()、()、()三种不同的剪切破坏形式。16.预应力钢筋可分为()、()、()三种。 二、判断题:(正确的打√,错误的打×。) 1.混凝土在长期荷载作用下,其变形随时间延长而增大的现象称为徐变。()2.抗裂性计算的基础是第Ⅱ阶段。()3.超筋梁的破坏属于脆性破坏,而少筋梁的破坏属于塑性破坏。()4.增大粘结力、采用合理的构造和高质量的施工、采用预应力技术可以减小裂缝宽度。()5.当剪跨比在[1, 3]时,截面发生斜压破坏。. ()6.预应力损失是可以避免的。()7.整个结构或结构的一部分,超过某一特定状态时,就不能满足结构功能的要求,这种特殊状态称为结构的极限状态。()8.箍筋的作用主要是与纵筋组成钢筋骨架,防止纵筋受力后压屈向外凸出。() 9.采用预应力技术可杜绝裂缝的发生或有效减少裂缝开展宽度。()10.为了保证正截面的抗弯刚度,纵筋的始弯点必须位于按正截面的抗弯计算该纵筋的强度全部被发挥的截面以内,并使抵抗弯矩位于设计弯矩图的里面。()11.偏心距增大系数与偏心距及构件的长细比有关。()12.钢筋混凝土梁的刚度是沿梁长变化的,无裂缝区段刚度小,有裂缝区段刚度大。()13.钢筋按其应力应变曲线分为有明显流幅的钢筋和没有明显流幅的钢筋。()14.因为钢筋的受拉性能好,所以我们只在受拉区配置一定数量的钢筋而在受压区不配置钢筋。()15.当轴向力的偏心较小时,全截面受压,称为小偏心受压。() 越大越好。()16.有效预应力 pe

《结构设计原理》述课

《结构设计原理》述课 一、前言 (一)课程基本信息 1.课程名称:结构设计原理 2.课程类别:专业平台课 3.学时:两学期总计84学时,2周课程设计 4.适用专业:交通工程 (二)课程性质 1.课程性质 结构是土木工程中最基本的元素,《结构设计原理》课程围绕着工程中常用的钢筋混凝土结构、预应力混凝土结构、圬工结构的设计计算进行理论和实践性的教学。 《结构设计原理》是土木工程专业的一门重要的专业必修课程,是学生运用已学的《工程制图》、《理论力学》、《材料力学》、《结构力学》、《工程材料》等知识,初步解决结构原理及结构设计问题的一门课程。其特点是:兼具理论性和实用性且承前启后,为学好专业课打好基础的课程,也是学生感到比较难学的一门课程。所以《结构设计原理》及其系列课程一直是土木工程专业的主干课,从开设的《结构设计原理》、《结构设计原理》课程设计,到毕业设计都渗透结构设计的理论,课程贯穿交通工程专业教学的所有环节。 本课程主要介绍钢筋混凝土结构、预应力混凝土结构和圬工结构的各种基本构件受力特性、设计原理、计算方法和构造设计。 2.本课程的作用 本课程主要培养学生掌握钢筋混凝土基本构件和结构的设计计算方法和与施工及工程质量有关的结构的基本知识,培养学生具有识读桥梁结构图纸的识读能力、基本构件的设计能力、使用和理解各种结构设计规范能力、解决工程结构实际问题的能力、综合分析问题的能力、学习能力和与人合作等能力,从而为继续学习后续专业课程奠定扎实的基础,以进一步培养学生树立独立思考、吃苦耐劳、勤奋工作的意识以及诚实、守信的优秀品质,为今后从事施工生产一线的工作奠定良好的基础。 本课程以“材料力学”、“理论力学”和“工程材料”的学习为基础共同打造学生的专业核心技能。

CeCuGa3电子结构的第一性原理计算研究

CeCuGa3电子结构的第一性原理计算研究 【摘要】我们采用基于密度泛函理论的第一性原理方法计算研究了CeCuGa3材料的电子结构。我们计算确定了其基态磁结构,解释了其形成的原因。 【关键词】稀土金属Ce化合物磁结构费米面电子结构 1 引言 稀土金属Ce化合物由于具有重费米子行为,不同类型的磁有序等独特的物理性质而引起了科学研究的极大兴趣。其中晶体结构为BaAl4的CeCuxGa4-x化合物最为代表。最早报道CeCuGa3在3.5K温度下,其基态为铁磁态[1]。另外Mentink 等人报道直到温度低到0.4K,CeCuGa3基态为顺磁态[2]。而Martin等人通过对多晶CeCuGa3样品的研究,发现材料显示近藤晶格行为并且基态为反铁磁态[3]。最近,Joshi等人再次通过实验对单晶CeCuGa3样品进行了晶体结构和磁学性质的研究,发现材料为4K以下的铁磁态[4]。面对以上对于样品CeCuGa3相互矛盾的磁基态的报道,本文就采用基于密度泛函理论的vasp软件包对该材料的电子结构和磁学性质进行了计算并讨论了其磁基态性质。 2 模型构建和计算方法 CeCuGa3晶体属于四方晶系结构,实验报道空间群为I4/mmm,No.139,如图1所示。 晶格常数a=b=4.273,c=10.44,α=β=γ=90°。本文计算采用基于密度泛函理论(density functional theory,DFT)的V ASP(Vienna ab-initio simulation package)软件包进行计算。计算步骤可以概括为三步:(1)对晶胞模型内部原子位置进行结构优化;(2)对材料进行磁构型计算,确定材料磁性基态。(3)用广义梯度近似法(generalized gradient approximation,GGA)对优化后的理论模型进行单电子能量计算,对单电子能量计算结果进行总态密度(total density of states,TDOS)和分波态密度(partial density of states,PDOS)分析。计算中平面波截断能取250eV,布里渊区积分采用5×5×5的Monkorst-Pack方案,内部原子作用力弛豫到低于0.01eV/,体系总能量收敛于1×10-4eV/atom。 3 结果与讨论 3.1 体系优化 在理论模型计算中,我们采用了文献[4]中的晶格常数即a=b= 4.273,c=10.44,α=β=γ=90°,然后进行原子内部坐标的弛豫。在表1中我们列出了不等价原子坐标的弛豫结果。

结构工程师如何正确处理经验与理论计算

结构工程师如何处理经验与理论计算 ——《结构设计笔记》周献详 本文由娄广龙整理 据说毛泽东曾跟赵朴初开玩笑说:“佛经里有些语言很奇怪,佛说第一波罗蜜,即非第一波罗蜜,是名第一波罗蜜。佛说赵朴初,即非赵朴初,是名赵朴初。看来你们佛教还真有些辩证法的味道。”“佛说”、“即非”、“是名”就是《全刚经》的主题,整部《金刚经》反复讲述的就是这一主题,在《金刚经》的最后,佛说了一首偈子:“一切有为法,如梦幻泡影,如露亦如电,应作如是观。”结构计算结果、规范给出的限值不至于是“如梦幻泡影,如露亦电”,然而,根据目前的技术水平,虽然计算手段已经很先进,可以精确到小数点后几十位,但结构计算结果只是名义上的结果,与实际情况在绝大多数情况下不一致,结构计算结果的名义效应是客观存在的。“如果事物的表现形式和事物的本质直接合而为一,一切科学就成为多余的了。”(《马克思恩格斯全集》,第38卷,第13页)。本章分析理论与实际之间的差异性,其目的不仅仅在于阐述差异性本身,而在于讨论对这类差异所持的态度。作者主张对这类差异应持以下态度: (1)我们要尊重计算结果,并学会千方百计地利用现有的理 论成果进行合理的计算。因为现今的计算理论是人类长期的工程建设经验、理论分析成果和试验结论的综合反映,是人类智慧的结晶。黑格尔说过:“当一种哲学被推翻的时候,其中的原则并没有失去,失去的只是这种原则的绝对性和至上性”。我们所反对的只是将理论

计算结果和规范条文视为一条不可逾越鸿沟的这种绝对性和至上性,而在大多数情况下,按照理论计算结果和规范条文的要求进行设计,至少在目前仍然是一种正确而明智的选择。 (2)我们要学会分析计算结果的可靠性和准确性,尤其要充分理解计算结果只是相对真理性。不要以为计算结果即是真理,不能有丝毫的放松和变通余地,如果是这样的话,结构的安全性隐患就是一个普遍的问题了,因为结构实际情况与计算假定之间或多或少总存在这样那样的差别。结构体系能够历经风、雨、地震等各种自然的作用,以及人为使用荷载的各种变化的考验,至少说明结构体系是具有一定抵抗意外作用能力的,绝不至于像宋玉东家之子那样“增之一分则太长,减之一分则太短;著粉则太白,施朱则太赤”(宋玉,《登徒子好色赋》)娇惯和精细。 (3)我们要重视概念设计。亚里士多德说:“一切皆混,唯有理性独净不混。”([古希腊]亚里士多德,《形而上学》,商务印书馆,1991年版,第21员)既然理论计算目前还不完善,那么建立在人们理性基础上的概念分析和判断就不可或缺,尤其是在一体化计算程序非常普及的今天更应强调概念设计的重要性。概念设计不是凭空产生的,容柏生在一次讲座中指出,概念设计的主要依据和来源有:①深刻理解各种结构的工作原理和力学性质;②熟悉各类结构的设计原则;③掌握各种计算机程序的适用范围、力学模型、处理原则和开关使用等; ④丰富的工程经验,包括积累的直接经验和间接吸收的间接经验。通过概念设计可以做到:①保证正确的设计方向,即方向要对头;②符

密度泛含理论第八章 全电子(AE)能带理论方法

第八章 全电子(AE)能带理论方法 LMTO和LAPW 全电子方法与赝势方法的主要差别在于 将价电子和芯电子同等处理,原子和固 体能量的自洽迭代,电子密度都是全电 子的,原则上属于最精确的计算方法。 1

2 §1。LMTO 方法 ? 线性化丸盒轨道(L inearized M uffin-T in O rbitals )方法。 Ref.: O.K.Andersen: Phys.Rev. B12, 3060(1975) O.K.Andersen 虽然LMTO 方法已经发展到第三代(FPLMTO )和第四代(GW or sX-LDA)-FPLMTO 但其方法的物理图像和主要框架仍然是来的LMTO 方法。

Muffin-tin potential 1.MT势(Muffin-tin potential,丸盒势,松饼势) a) 一般不交叠,最大为接触球,势是球对称的。 b) 不同原子有不同的MT半径。R MT=R A,R B。 A B A B A V0 ΔV A ΔV B 2R B 2R A 3

4 1.MT 势(Muffin-tin potential ) c) 球对称势的深度ΔV t (ΔV A , ΔV B )可以不同,与原子有关。d) 球外的MT 势为V 0,是共同的。具体计算时可调整为0。 ?? ?>≤=s r or V s r r V r V '0 ') '()'(0s 是MT 球半径。2. 原子球近似(ASA ) LMTO 方法常常作原子球近似(A tomic S phere A pproximation) 以便简化计算。但应注意: 原胞中原子球的总体积=原胞体积 因此,原子球近似所取的原子球是相互交叠的。也称Wigner-Seitz 球。 单原子原胞 (7.5.1)

混凝土结构设计原理 课件及试题10

第十章混凝土结构按《公路钢筋混凝土及预应力混凝土桥涵设计规 范》的设计计算 本章的意义和内容: 本章讲述了桥涵工程混凝土结构的材料、计算原理、基本构件(受弯构件、轴心受力构件、偏心受力构件、受扭构件、预应力混凝土构件)的承载能力计算和构件裂缝宽度、挠度验算以及构造要求。通过本章的学习,使学生了解混凝土按《公路钢筋混凝土及预应力混凝土桥涵设计规范》进行构件设计计算的方法、这种方法与房屋工程中混凝土构件的设计计算方法有何相同和不同之处,为进行桥涵工程混凝土结构设计计算奠定基础。并掌握以下重点、难点。 1.桥涵工程混凝土结构设计也采用以概率理论为基础的极限状态设计方法,但是由于涵桥结构所处环境、荷载性能以及结构的特点与房屋结构有较大的差异,因此《公路钢筋混凝土及预应力混凝土桥涵设计规范》规定的结构目标可靠指标比房屋结构的大;桥涵工程的材料强度设计值比房屋结构的小。 2.涵桥工程受弯构件不但要进行持久状态下的设计计算,而且还要进行短暂状态下的计算,受弯构件纵向受力钢筋的最小配筋率与房屋建筑有所不同。 3.土木工程中一般受弯构件斜截面抗剪承载力计算基于同一基本理论,但涵桥工程受弯构件斜截面抗剪承载力计算方法与房屋建筑工程不同。涵桥工程受弯构件斜截面抗剪承载力计算是采用单一公式(房屋建筑是两套公式),该公式适用矩形、T形、I字形截面构件,并且考虑了构件截面受压翼缘的抗剪作用,也考虑了受弯纵向受力钢筋的抗剪作用 4.由于桥梁结构受弯构件截面形式、剪力图的特点,桥涵工程受弯构件斜截面抗剪承载能力计算时,首先按斜截面始端的截面尺寸和规定的剪力值进行计算,然后确定斜截面末端的位置,再根据斜截面末端截面尺寸和规定的剪力取值对斜截面末端进行抗剪承载能力验算。 5.桥涵工程偏心受压构件正截面承载能力计算时,混凝土强度采用棱柱体抗压强度,而且不考虑附加偏心距的影响。 6.桥涵工程混凝土构件的裂缝宽度、受弯刚度计算公式的建立方法、计算方法与房屋建筑工程不同,为了减少受弯构件的挠度,经常需要设置预拱度,预拱度的大小为永久荷载与一半可变荷载频遇值引起的挠度。 在预应力混凝土构件的设计当中,桥涵工程中预应力混凝土构件的预应力损失的排序、预应力损失的组合与房屋建筑工程不同。 一、概念题 (一)填空题 1.《桥规》规定,钢筋混凝土构件的混凝土标号不应低于,当采用HRB400、KL400级钢筋时不应低于;预应力混凝土构件的混凝土标号不应低于; 2.《桥规》规定,钢筋混凝土构件中的普通钢筋应选用、、及。 3.桥涵工程结构设计采用以概率论为基础的方法,极限状态分为和。桥涵工程设计基准期为。 4.《桥规》规定,在进行承载能力极限状态和正常使用极限状态设计时,应考虑、和三种设计状态。 5.和房屋建筑工程相比,桥涵结构的目标可靠度指标值相对。

电子结构计算方法概述

第二章电子结构计算方法概述 物体所表现的宏观特性都由物体内部的微观结构决定,块状材料在力学、热学、电学、磁学和光学等方面的许多基本性质,如振动谱、电导率、热导率、磁有序、光学介电函数、超导等都由电子结构决定1。因此,定量、精确地计算材料的电子结构在解释实验现象、预测材料性能、指导材料设计等方面都具有非常重要的意义和作用,也是一个富有挑战性的课题。 2.1 第一性原理计算方法概述 2.1.1 基本概念 与其它理论计算方法类似,电子结构的计算方法大体上也可划分为两类:半经验(或经验)计算方法与第一性原理(First-Principles)计算方法(也有“从头算(ab initio)”这个叫法)。前者是指在总结归纳某些实验现象与结果的基础上建立起相应的理论模型、计算公式与参数,然后推广应用到研究其它现象和性质的理论方法;后者则指 、电子电量e、普朗仅需采用5个基本物理常数,即电子的静止质量m 克(Plank)常数h、光速c和玻尔兹曼(Boltzmann)常数k B,而不需要其它任何或经验或拟合的可调参数,就可以应用量子力学原理(Schr?dinger方程)计算出体系的总能量、电子结构等的理论方法2。在计算过程中,它只需知道构成体系的各个元素与所需要模拟的环境(如几何结构),因此有着半经验方法不可比拟的优势。

量子力学是20世纪最伟大的发现之一,它构成了整个现代物理学(甚至现代化学)的基石,其矩阵力学形式最先由海森堡(W. K. Heisenberg)于1925年创立。但量子力学最流行的表述形式却是薛定谔(Schr?dinger)于次年建立的与矩阵力学形式等价的波动力学形式,它的核心是粒子的波函数及其运动方程——薛定谔方程。对一个给定的系统,我们可能得到的所有信息都包含在系统的波函数当中。因此,第一性原理计算方法的基本思路就是将多个原子构成的体系理解为由电子和原子核组成的多粒子系统,然后求解这个多粒子系统的薛定谔方程组,获得描述体系状态的波函数Φ以及对应的本征能量——有了这两项结果,从理论上讲就可以推导出系统的所有性质2。 原则上,任何材料的结构和性能都能依照上述基本思路、通过第一性原理计算得到;但实际上,除个别极简单的情况(如氢分子)外,物体中电子和核的数目通常达到1024 /cm3的数量级,再加上如此多的粒子之间难以描述的相互作用,使得需要求解的薛定谔方程不但数目众多,而且形式复杂,即使利用最发达的计算机也无法求解。这正如量子力学的奠基者之一——狄拉克(Dirac)在1929年所说:“量子力学的普遍理论业已完成……作为大部分物理学和全部化学之基础的物理定律业已完全知晓,而困难仅在于将这些定律确切应用时将导致方程式过于复杂而难于求解。”3因此Kohn认为,当系统的电子数目大于103时,薛定谔方程式的直接求解将是个不科学的课题,人们必须针对材料的特点作合理的简化和近似3。

相关主题