搜档网
当前位置:搜档网 › Enhanced direct electron transfer of glucose oxidase based ona protic ionic liquid modified

Enhanced direct electron transfer of glucose oxidase based ona protic ionic liquid modified

Enhanced direct electron transfer of glucose oxidase based ona protic ionic liquid modified
Enhanced direct electron transfer of glucose oxidase based ona protic ionic liquid modified

ORIGINAL PAPER

Enhanced direct electron transfer of glucose oxidase based on a protic ionic liquid modified electrode and its biosensing application

Liu Liu &Yu Cheng &Fangrong Sun &Jianping Yang &Ying Wu

Received:7January 2011/Revised:12March 2011/Accepted:15March 2011/Published online:28June 2011#Springer-Verlag 2011

Abstract A novel glucose oxidase (GOD)biosensor was fabricated with a protic ionic liquid (PIL)N -ethylimidazolium trifluoromethanesulfonate ([EIm][TfO])as the modifier of a carbon electrode.Due to the excellent conductivity and the conformational changes of the microenvironment around the GOD,the electrochemical and biocatalytic properties of GOD immobilized on the PIL-based electrode were dramat-ically enhanced.A couple of well-defined redox peaks could be observed,with a formal potential of ?0.476V .The GOD biosensor presented good catalytic activity to the oxidation of glucose in oxygen-saturated phosphate buffer solutions.The cathodic peak currents of GOD decreased along with glucose concentrations.A linear response in the range 0.005–2.8mM was obtained with a detection limit of 2.5μM.The sensitivity and the apparent Michaelis –Menten constant (K m )were estimated to be 14.96μA mM ?1and 1.53μM,respectively.In addition,the biosensor remained stable over 30days,indicating its good chemical and mechanical stability.The glucose content of several serum samples was determined by using the newly developed biosensor,and the results were in good agreement with those obtained by hospital measurements.All results suggested

that PILs were a good media for supporting biocatalytic processes on the bioelectrode.

Keywords Glucose oxidase .Protic ionic liquid .Glucose .Biosensor .Direct electron transfer

Introduction

Biosensors are attractive in analytical applications due to their unique specificity.It is well-known that glucose biosensors have successfully used glucose oxidase (GOD)to monitor glucose on account of its catalysis of the electron transfer from glucose to oxygen resulting in the production of gluconic acid and hydrogen peroxide [1–5].GOD,therefore,is an ideal model enzyme in the fields of bioelectrochemical and biosensor research.GOD comprises two identical polypeptide chains;each contains a flavin adenine dinucleotide (FAD)redox center.However,it is rather difficult for GOD to exhibit any voltammetric response on conventional solid electrodes because the active redox center of GOD,FAD is deeply embedded in a protective protein shell.Therefore,it is desirable to develop novel and convenient methods to improve the direct electron transfer (DET)between GOD and electrode.Recently,a variety of attempts have been made to improve the electron transfer between the active redox center and the electrode and to obtain the biosensor with good performance.For example,Oztekin et al.based on the immobilization of GOD on the PPMH (poly 1,10-phenanthroline monohydrate)-modified GC electrode,the direct electrochemistry of GOD was carried out and a glucose biosensor with improved performance was constructed [6].A one-step enzyme immobilization process with silica sol –gel/polyvinyl alcohol

L.Liu :Y .Cheng :F.Sun :Y .Wu (*)College of Chemistry,Chemical

Engineering and Materials Science,Soochow University,Suzhou 215123,People ’s Republic of China e-mail:yingwu@https://www.sodocs.net/doc/bc15597445.html,

J.Yang (*)

Department of Anesthesiology of First Affiliated Hospital of Soochow University,Suzhou 215006,People ’s Republic of China e-mail:szyangjp@https://www.sodocs.net/doc/bc15597445.html,

J Solid State Electrochem (2012)16:1003–1009DOI 10.1007/s10008-011-1382-z

hybrid film was described by Zuo et al.[7]to achieve direct electrochemistry of GOD on screen-printed electrode.Gao and Zheng[8]studied the direct electron transfer of adsorbed GOD at carbon nanotube/gold nanoparticle/amine-terminated ionic liquid nanocomposite.Direct electrochemistry of the GOD immobilized on a composite matrix based on chitosan and NdPO4nanoparticles underlying on GC electrode[9].In most cases,the direct electrochemistry of GOD was carried out based on the synergic effect of the polymer film[10], nanoscale materials(carbon nanotubes[11,12],gold nano-particles[13],metal oxide nanoparticles[14]),and other biocompatible materials[15,16].

Ionic liquids(ILs)are molten salts with the melting point close to or below room temperature.They are generally formed by a large organic cation and an organic or inorganic anion.ILs have many unique chemical and physical properties,such as high chemical and thermal stability,good ionic conductivity,negligible vapor pressure and wide electrochemical windows. Recently,due to their high electrochemical stability and ionic conductivity,ILs have been intensively adopted in the field of electrochemistry and electroanalysis[17–19]. Studies have demonstrated that ILs can be entrapped in conventional matrices,such as chitosan[20,21],cellulose [22],carbon materials[16,23,24],and sol–gel-based silica matrices[25]to construct the biosensor.The resulted composites created a unique kind of material for the immobilization of enzymes.It has been shown that the incorporation of ILs can increase sensitivity and facilitate the DET reaction between proteins and electrode surface [18].In this respect,attention has been paid mostly to aprotic ILs,especially imidazolium salts[18–20,26,27]. However,limited work has been devoted to protic ILs. Protic ILs(PILs),consisting of combinations of Br?nsted acids and bases,demonstrate high proton conductivity, and excellent ability to form hydrogen bonds[28,29]. Persson and Bornscheuer assumed that the hydrogen bond and the electrostatic interaction between the IL and the enzyme resulted in a high kinetic barrier for unfolding of the enzyme,therefore preventing the rigid structure of the enzyme can be protected from being destroyed[30]. Accordingly,the stability and sensitivity of biosensors were improved effectively by the incorporating of PILs into conventional matrices.

Here,a PIL,N-ethylimidazolium trifluoromethane-sulfonate([EIm][TfO]),was chosen as an effective modifier for the fabrication of a novel carbon ionic liquid electrode (CILE).The direct electrochemistry and electrocatalytic behavior of GOD on the CILE was investigated.The protic IL[EIm][TfO]was used to retain the bioactivity of GOD and facilitate the direct electron transfer between the GOD and the electrode.The immobilized GOD exhibited excellent electrocatalytic activity for the oxidation of glucose.Experimental

Reagents

Glucose oxidase(EC 1.1.3.4,147U/mg)and Nafion

solution were purchased from Sigma.Glucose,paraffin oil

(mixture of C10–C18n-alkane)and high purity graphite powder(SP,2–10μm in diameter)were obtained from

Sinopharm Chemical Reagent Co.Ltd.A stock solution of

glucose was prepared and allowed to mutarotate at room

temperature overnight before use.[EIm][TfO]was synthe-

sized and purified as reported previously[28,31].All other

chemicals were of analytical grade and were used without

further purification.Double-distilled water was used

throughout the work.

Apparatus

Electrochemical characterizations were carried out on a

CHI660C electrochemical workstation(Shanghai Chenhua

Co.,China)under a phosphate buffer(0.1M,pH7.0).A

conventional three-electrode system was adopted,with

Nafion/GOD/CILE as the working electrode,a Pt wire as

the counter and a saturated calomel electrode(SCE)as the

reference.Prior to the experiment,the buffer solution was

purged thoroughly with high purity nitrogen for at least

20min,and a nitrogen atmosphere was then kept over the

solution in the cell.Cyclic voltammetry(CV)experiments

were performed between?0.1and?0.8V with a scan rate

of0.1V/s.Chronoamperometric measurements were

performed by switching the potential from0V(precondition

for20s)to?0.5V.The surface morphologies of the prepared

electrodes were characterized on an S-4700scanning electron

microanalyzer(Hitachi,Japan)with an acceleration voltage of

15kV.Fresh human serum samples were analyzed by a

glucose oxidase method on an AU5421chemistry analyzer

(Olympus,Japan)in a local hospital.All experiments were

performed at room temperature.

Electrode preparation

Mixtures of paraffin and[EIm][TfO]in various volume

ratio(v/v)were ultrasonically dispersed for5min,then

15μl of the mixture(as a binder)and50mg of graphite

powder were carefully mixed in an agate mortar.A portion

of homogeneous paste was packed firmly into a glass tube

(3-mm diameter)and the electrical contact was established

via a copper steel handle.The resulting electrode was

recorded as CILE.A fresh surface was obtained by

polishing the electrode on a piece of weighing paper and

rinsed with double-distilled water just before use.GOD/

CILE was prepared by simply dropping5μl15mg/mL

GOD on the surface of CILE and dried at4°C for6h.

Finally,3μl of 2%Nafion solution was cast on the electrode surface to prevent the loss of the enzyme molecules and to improve the anti-interferent ability of the biosensor.The Nafion/GOD/CILE was stored at 4°C when not in use.

Results and discussion

Optimization of the PIL –paraffin composite ratio The attractive behavior of the protic ionic liquid ([EIm][TfO])would be advantageous to fabricate PIL-carbon paste biosensors.However,the high background current limits its largely use as a binder,so it is important to find an optimal concentration of [EIm][TfO][32].In the process of making the CILE,the amount of graphite was 50mg and the usage of binder was 15μl;[EIm][TfO]and paraffin were mixed with different ratios.Figure 1a shows the effect of the PIL content upon CVs in a 5-mM potassium ferricyanide solution.With increasing the ratio from 0/15to 4/11,the current peaks increased as well,and the reversibility was greatly improved.However,a dramatic increase in background current was observed when the ratio exceeds 2/13.On Nafion/GOD/CILEs made with these CILE,similar behaviors were discovered (0.1M PBS buffer,pH=7.0)(Fig.1b ).The cyclic voltammograms of GOD were also affected by the different loading of ionic liquid.From the results in Fig.1a,b ,the ratio of 2/13was chosen for the subsequent work.Morphologies of CILE and GOD/CILE

Since [EIm][TfO]is a hydrophilic compound with high viscosity,it could fill into the layer of graphite powder as a bridge to the isolated carbon flake.The SEM image (Fig.2a )of CILE showed a uniform and smooth surface [33,34].After CILE was further coated with GOD molecules,the aggregation of the immobilized GOD molecules was highly dispersed and showed a uniform

snowflake structure (Fig.2b ).So the PIL was favorable to the immobilization of enzyme molecules.Direct electron transfer of GOD on the CILE

The cyclic voltammograms of Nafion/GOD/CILE in N 2-saturated 0.1M PBS (pH=7.0)were shown in Fig.3.A pair of well-defined and nearly symmetric redox peaks could be observed as for the direct electron transfer of GOD (Fig.3c ).The anodic peak potential (E pa )and cathodic peak potential (E pc )were located at ?0.437and ?0.515V ,respectively,at scan rate of 100mV s ?1.The formal potential (E 0′=?0.476V)is near the standard electrode potential of ?0.46V (vs.SCE)for FAD/FADH 2at pH 7.0(25°C)[14],suggesting that most GOD molecules retain their native structure after immobilization on the CILE [13].A 1:1ratio of cathodic to anodic current intensity indicates that the electrochemical reaction is almost reversible.However,under the same conditions,but in the absence of GOD,bare CILE does not show any perceivable response (Fig.3a ,dot curve).When only GOD was immobilized on the CPE (carbon paste electrode)in the absence of the PIL,the cyclic voltammogram showed a small response of GOD (Fig.3b ,dash curve),which was much smaller than that of Nafion/GOD/CILE.Thus,the PIL [EIm][TfO]played an important role in facilitating the direct electron transfer between GOD and CILE.

The cyclic voltammograms of Nafion/GOD/CILE at various scan rates were investigated (Fig.4a ).With the increasing scan rate,the anodic peak potential and the cathodic peak potential of GOD was barely shifted.The peak currents (I p )are proportional to the scan rate (ν)in the range from 40to 260mV/s (linear regression equations:I pc (microamperes)=4.911+0.0522ν(millivolts per second),R =0.998;I pa (μA)=?1.295–0.0408ν(millivolts per second),R =0.999),as shown in Fig.4b ,which indicates a surface-controlled electrode process for GOD redox chemistry.The electron transfer rate constant (k s )can be calculated according to the model of Laviron [35].Taking a charge transfer coefficient αof 0.56and a scan rate of 100

mV/s,

Fig.1The CVs of a CILE in 5mM potassium ferricyanide and b Nafion/GOD/CILE in N 2-saturated PBS (0.1M,pH 7.0)with different ratios of PIL and paraffin:0/15(a ),1/14(b ),2/13(c ),3/12(d ),4/11(e ).Scan rate is 100mV/s

ΔE p =78mV ,and then the rate constant k s was ca.3.98s ?1.It is much larger than that of 1.30s ?1for Nafion/GOD –GNPs/GC electrode [13],3.0s ?1for GOD/SWCNT-CHI/GC [12]and 2.12s ?1for GOD-IL-GNP-ILSWNT/GCE [8].Accord-ing to the equation I p =n 2F 2νA Γ*/4RT =nFQ ν/4RT [36],from the integration of reduction peaks of Nafion/GOD/CILE at scan rates less than 260mV/s,the average surface coverage (Γ*)of GOD is calculated to be 3.077×10?10mol cm ?2from the slope of the I p –νcurve.This value is even larger than the value reported (1.27×10?10mol cm ?2)for GOD-IL-GNP-ILSWNT/GCE [8].These results suggested that PIL [EIm][TfO]could improve the electron transfer rate and provide a large area for enzyme immobilization.

Cyclic voltammograms of Nafion/GOD/CILE show a strong dependence on solution pH,as shown in Fig.5a .Obviously,with increasing pH from 4.92to 8.00,the peak potentials shifted towards the negative direction;the peak currents increase to a maximum at around pH=7and then decrease.E 0′has a linear relationship with pH (the linear regression equation is E 0′=?0.174–0.0456pH,R =0.998)(Fig.5b ),the slope is nearly close to the theoretical value (?58.6mV/pH)[13].It proves that two protons and two electrons participate in the electrochemical reaction of the GOD immobilized on CILE.The redox reaction process

between GOD and electrode can be summarized as following:

GOD àFAD t2e àt2H t !GOD àFADH 2

e1T

Enzymatic activity of immobilized GOD

Cyclic voltammetric experiments demonstrated that the immobilized GOD still retained its electrocatalytic activity,as show in Fig.6.In the oxygen-free 0.1M PBS,a couple of well-defined redox peaks could be observed (Fig.6,curve a),which could be attributed to the direct electron transfer between the GOD and electrode.When PBS was saturated with O 2,a significantly increased reduction peak current was observed together with the decrease of oxidation peak current (Fig.6,curve b),which demonstrates that Nafion/GOD/CILE catalyzes the oxygen reduction (see Eqs.1and 2).Chronoamperometry was employed to further characterize the electrocatalytic activity of the immobilized GOD.The plot of chronoamperometric measurements is inseted in Fig.6.Due to the biosensor that catalyzes the oxygen reduction,the current density is greatly enhanced in the oxygen-saturated PBS (insert curve b),which is in

good

Fig.2SEM images of CILE (a )and GOD/CILE (b

)

Fig.3The CVs of a bare CILE (dotted line ),b Nafion/GOD/CPE (dashed line ),and c Nafion/GOD/CILE (solid line )in N 2-saturated 0.1M PBS (pH 7.0),scan rate at 100

mV/s

Fig.4a The CVs of Nafion/GOD/CILE in N 2-saturated 0.1M PBS (pH 7.0)at various scan rates.The scan rate is 40,60,100,160,and 260mV/s (from a to e ).Inset plot b relationship between scan rate and the cathodic and anodic peak current

agreement with the CV measurements.The results indicated that GOD in the film retained its bioactivity [37].GOD àFADH 2tO 2!GOD àFAD tH 2O 2

e2T

Adding glucose to the oxygen-saturated 0.1M PBS,the decrease of the reduction current was obtained (Fig.7a ).The higher glucose concentration caused more of the reduction current to decrease.The biocatalytical process for the oxidation of glucose in the presence of GOD can be summarized as in Eq.3:GOD àFAD tglucose tO 2

!GOD àFADH 2tgluconolactone

e3T

The enzyme-catalyzed reaction that occurred resulted in the decrease of the oxidized form of GOD on the electrode

surface.So the reduction currents of GOD were decreased.The decrease of reduction current is linear against the concentrations of glucose ranging from 0.005to 2.8mM.The calibration curve corresponds to the equation of calibration I pc (microamperes)=2.255+14.96C (millimolar)with a correlation coefficient (R )of 0.996(Fig.7b ).The sensitivity was found to be 14.96μA mM ?1(with an electrode area of 7.06mm 2).This value is much greater than that of 1.77μA mM ?1for an aprotic IL modified GOD biosensor [20].The detection limit was estimated at 2.5μM with a signal-to-noise ratio of 3.The apparent Michaelis –Menten constant (K m )is an important parameter to reveal enzyme –substrate reaction kinetics,K m for this enzyme-based electrode was estimated to be 1.53mM,which was much smaller than previously reported [38–41],indicating that the immobilized GOD possesses higher enzymatic activity and the Nafion/GOD/CILE exhibits a higher affinity toward glucose.The suitable microenvironment due to effect of PIL [EIm][TfO]might contribute to the improvement of the affinity and good performances of the biosensor.For further comparison,the analytical perfor-mance and some electrochemical constants of the proposed sensor and some other glucose biosensors based on the direct electron transfer of GOD were listed in Table 1.Stability and reproducibility of Nafion/GOD/CILE The long-term stability of Nafion/GOD/CILE was evaluat-ed by examing the cyclic voltammetric peak currents of GOD on CILE.After continuously scanning for 300cycles,there was only a 5.3%decrease of the anodic peak current,indicating the immobilized GOD has good stability.The storage stability of Nafion/GOD/CILE was also estimated.After the electrode was kept at 4°C in 0.1M PBS (pH

7.0)

Fig.6The CVs and chronoamperometrics (CAs)(inset )of Nafion/GOD/CILE in 0.1M pH 7.0PBS,with a oxygen-free solution,b oxygen-saturated solution,c after addition of 0.8mM glucose in b solution.Scan rate:100mV s ?

1

Fig.5a The CVs of Nafion/GOD/CILE in 1/15M PBS at pH 4.92(a ),5.91(b ),6.98(c ),and 8.00(d ),scan rate is 100mV/s.Inset graph b is the plot of the formal potential E 0′vs.

pH

Fig.7a The CVs of Nafion/GOD/CILE in oxygen-saturated 0.1M PBS (pH 7.0)with different glucose concentrations C/mM (from a to h ):0,0.4,0.8,1.2,1.6,2.0,2.4,2.8.The scan rate is 100mV/s.Inset plot b is the relationship between electrocatalytic current decrease ΔI and glucose concentration

for 30days,95%of its initial current response for glucose was retained.The reproducibility of Nafion/GOD/CILE was examined at a glucose concentration of 0.8mM.The RSD (relative standard deviation)is 2.5%for six successive measurements.The presence of PIL is very effective for the retention of the enzyme activity.The effects of interference are also tested in the presence of different concentrations of uric acid and ascorbic acid,no significant change of reduction peak current can be observed,which shows the good selectivity of enzyme electrode.

Preliminary application of the Nafion/GOD/CILE To illustrate feasibility of the Nafion/GOD/CILE in practical analysis,fresh human serum samples were first analyzed by the glucose oxidase method in a local hospital.As a standard method for clinical glucose sample detection,the operating procedures are as follows:glucose present in the serum is oxidized by the glucose oxidase to gluconic acid with the liberation of hydrogen peroxide,which is converted to water and oxygen by the enzyme peroxidase (POD).An oxygen acceptor,4-aminophenazone,takes up the oxygen and together with phenol forms a pink colored chromogen which can be measured at 515nm.The same serum samples were tested with the developed biosensor.There was no pretreatment other than the dilution of the samples (500-fold dilution).The detection results are in

good agreement with each other,as shown in Table 2.The recoveries were determined with the standard addition method in serum samples with the biosensor.The average recoveries were ranged between 95%and 105%for three https://www.sodocs.net/doc/bc15597445.html,pared to the clinical detection method,the present method based on the biosensor has many advantages such as simple,convenient,lower cost,and reliability.

Conclusions

In summary,a protic ionic liquid,[EIm][TfO],was used to make an ionic liquid modified carbon paste electrode (CILE).GOD was then successfully immobilized on the surface of the electrode.The electrochemical behavior of GOD at the PIL modified electrode was carefully investi-gated in 0.1M PBS (pH 7.0).Compared with its response at CPE,the direct electrochemistry of GOD at the PIL-based electrode was improved dramatically.The further experimental results confirmed that the immobilized GOD exhibited a high electrocatalytic activity towards glucose.The PIL matrix provided a unique microenvironment around the enzyme,in which a high enzyme activity was retained,resulting in high sensitivity and excellent stability of the enzyme.The good properties of the modified electrode implied that PILs could be applied to provide a promising strategy for the development of biosensors.

Table 1Comparison of different modified biosensors based on the direct electron transfer of GOD Electrode

k s

Sensitivity

Detection limit K m

References GOx/PPMH/GC

1.32cms ?10.05mM 0.64mM [6]GOx/NdPO 4NPs/CHIT/GC 5.0s ?1 1.92μA mM ?1

0.08mM

2.5mM [9]Nafion/GOD –GNPs/GC 1.3s ?1 6.5μA mM ?1cm ?2

3.4×10?2mM

4.6mM [13]GOx-mesoFe/C-Nafion/Pt 0.49s ?127μA mM ?1cm ?20.08mM 6.6mM [15]GOD/CdS/PGE

7.0μA mM ?10.05mM

5.1mM [38]CS-GOD-CdS/ACNTs-Pt nano 3.8s ?1 4.5μA M ?1

4.68×10?2mM 11.86mM [41]

Nafion/GOD/CILE

3.98s ?1

14.96μA mM ?1

2.5×10?3mM

1.53mM

This paper

k s electron transfer rate constant,K m apparent Michaelis –Menten constant,DHP dihexadecylphosphate,GE graphite electrode,mesoFe/C magnetic mesoporous carbon material,GNPs gold nanoparticles,CS ,CHIT chitosan,PPMH 1,10-phenanthroline monohydrate,ACNTs aligned carbon nanotubes,PGE pyrolytic graphite electrode

Sample no.

By hospital (mM)This

method (mM)

RSD (%)

Added (mM)Found (mM)Recovery (%)110.711.3 3.910.400.3997.52 6.7 6.5 6.570.400.41102.537.37.5 2.430.400.42105.04 5.5

5.9

5.59

0.40

0.38

95.0

Table 2Determination of glu-cose in human serum samples

Acknowledgments This work was supported by the National Natural Science Foundation of China(no.30872442).We would like to thank Prof.Feng Yan supplying the PIL[EIm][TfO]for this research.

References

1.Wang J(2008)Chem Rev108:814

2.Heller A,Feldman B(2008)Chem Rev108:2482

3.Shobha Jeykumari DR,Narayanan SS(2008)Biosens Bioelectron

23:1404

4.Ding SN,Shan D,Xue HG,Cosnier S(2010)Bioelectrochemistry

79:218

5.McMahon CP,Killoran SJ,O’Neill RD(2005)J Electroanal

Chem580:193

6.Oztekin Y,Ramanaviciene A,Yazicigil Z,Solak AO,Ramanavicius

A(2011)Biosens Bioelectron26:2541

7.Zuo SH,Teng YJ,Yuan HH,Lan MB(2008)Sens Actuators B

133:555

8.Gao R,Zheng J(2009)Electrochem Commun11:608

9.Sheng Q,Luo K,Li L,Zheng J(2009)Bioelectrochemistry74:246

10.Wang D,Chen L(2009)Electrochim Acta54:4316

11.Liu Q,Lu X,Li J,Yao X,Li J(2007)Biosens Bioelectron22:3203

12.Zhou Y,Yang H,Chen H(2008)Talanta76:419

13.Zhao S,Zhang K,Bai Y,Yang W,Sun C(2006)Bioelectrochemistry

69:158

14.Li Y,Gao Y,Zhou Y,Liu Y,Liu J(2010)J Electroanal Chem642:1

15.Yu JJ,Tu JX,Zhao FQ,Zeng BZ(2010)J Solid State Electrochem

14:1595

16.Shangguan X,Zhang H,Zheng J(2008)Electrochem Commun

10:1140

17.Safavi A,Maleki N,Farjami F,Farjami E(2009)J Electroanal

Chem626:75

18.Xi F,Liu L,Wu Q,Lin X(2008)Biosens Bioelectron24:2919.Szot K,Lesniewski A,Niedziolka J,Jonsson M,Rizzi C,Gaillon

L,Marken F,Rogalski J,Opallo M(2008)J Electroanal Chem 623:170

20.Li J,Zhao F,Wang G,Gui Z,Xiao F,Zeng B(2009)

Electroanalysis21:150

21.Lu XB,Zhang Q,Zhang L,Li JH(2006)Electrochem Commun8:874

22.Turner MB,Spear SK,Holbrey JD,Rogers RD(2004)Bio-

macromolecules5:1379

23.Sun W,Li X,Wang Y,Zhao R,Jiao K(2009)Electrochim Acta

54:4141

24.Zhao F,Wu XE,Wang MK,Liu Y,Gao LX,Dong SJ(2004)Anal

Chem76:4960

25.Liu Y,Wang M,Li J,He P,Liu HT,Li JH(2005)Chem Commun

13:1778

26.Zhang Y,Zheng JB(2007)Electrochim Acta52:4082

27.Xiang C,Zou Y,Sun LX,Xu F(2008)Electrochem Commun10:38

28.Yan F,Yu S,Zhang X,Qiu L,Chu F,You J,Lu J(2009)Chem

Mater21:1480

29.Lin B,Cheng S,Qiu L,Yan F,Shang S,Lu J(2010)Chem Mater

22:1807

30.Persson M,Bornscheuer UT(2003)J Mol Catal B Enzym22:21

31.Fernicola A,Panero S,Scrosati B,Tamada M,Ohno H(2007)

Chemphyschem8:1103

32.Musameh MM,Kachoosangi RT,Xiao L,Russell A,Compton

RG(2008)Biosens Bioelectron24:87

33.Ding C,Zhao F,Ren R,Lin J(2009)Talanta78:1148

34.Sun W,Jiang Q,Wang Y,Jiao K(2009)Sens Actuators B136:419

https://www.sodocs.net/doc/bc15597445.html,viron E(1979)J Electroanal Chem101:19

https://www.sodocs.net/doc/bc15597445.html,viron E(1979)J Electroanal Chem100:263

37.Liu S,Ju H(2003)Biosens Bioelectron19:177

38.Huang Y,Zhang W,Xiao H,Li G(2005)Biosens Bioelectron21:817

39.Deng C,Li M,Xie Q,Liu M,Yang Q,Xiang C,Yao S(2007)

Sens Actuators B122:148

40.Zhang S,Wang N,Yu H,Niu Y,Sun C(2005)Bioelectrochemistry

67:15

41.Yang J,Zhang R,Xu Y,He P,Fang Y(2008)Electrochem

Commun10:1889

安全监测管理数据平台

安全监测管理数据平台 第一部分系统简介 一、系统介绍 远程监控系统组态平台可将数据、图像、声音共一个平台集中监控,C/S+B/S 结构,可同时采用RS485技术及LONWORKS技术等多种技术,该组态平台软件可用于机房集中监控、变电站远程监控、楼宇控制、动力环境集中监控、安全防范监控、智能小区监控管理、智能大厦监控管理、工业控制、远程数据图像声音监控,已在海关、电力、保险、银行、政府机关、工厂、电信及移动等各行业大量使用。 整个监控系统均为模块化结构,组建十分灵活,扩展十分方便。可实现机房设备运行管理的无人值守,极大的提高了资源利用率和设备运行管理水平。二、系统主要特点 ◆系统采用分布集中监控方式,适合多层多级部门建立分布集中管理模式。 ◆报警方式包括屏幕报警、电话语音报警、modem语音报警、短信息及电子邮件. ◆强大的报警处理功能。可区分多级的报警级别,报警事件发生时系统自动按事件级别排 队报警,显示,处理,并将画面切换报警画面。 ◆系统支持各式各样的UPS、空调、电量仪、门禁、消防监控主机等设备直接监控,对新 设备新通讯协议的监控不需编程。 ◆界面:令操作人员一目了然。参数实时动态显示,界面完全汉化,场地布局,设备照片 或图片直接显示屏幕上,场景逼真,鼠标控制,操作简单。

第二部分服务器操作说明 一、启动运行服务端 A、运行“安装目录:\“:集中监控系统\服务端”目录下的“SERVER.EXE”. B、“开始”-》“程序”-》“集中监控系统”-》“监控服务器”。 C、桌面上点击“集中监控系统服务端”。 以上三种方式均可运行监控系统服务端程序,运行后界面如下: 用户名:登录系统的用户名称。系统默认:admin。 密码:此用户的密码,系统默认为空密码。 二、系统菜单说明 1)日常操作 启动:启动数据采集。 停止:停止数据采集。 退出:退出本系统。 2)系统配置 时间调度设置报警时间段及拨打报警电话、发送报警短信及报警EMAIL的时间调度。

一、项目概述-项目概述

招标内容与技术规范及要求 一、项目概述 医院现有病案记录为纸质材料,查询利用很不方便,而且占据了大量的存放空间,还存在病案损坏泄露的安全风险。目前医院已经建设了电子病历,为临床医疗提供了良好的支持,体现了信息化建设的成果。为了更方便医生调阅原来的纸制历史病历,因此有必要将医院纸制病历数字化,病案数字化管理系统的建设不但可以实现病案的数字化,更为重要的是为临床医生的信息共享利用提供方便,而且通过制作各种统计报表,为医院领导、各临床科室提供决策分析,体现现代化医院的规模和水准,推进数字化医院建设,还能提高病案管理的科学性和工作效率,使得珍贵的病案资源得以充分地为社会服务。 在对现有纸质病历的数字化过程中,为了切实保证病人的隐私保护,必须对其进行规范化管理,尤其是干部保健病人的资料根据国家规定属于严格保密范围,因此在诸如病案数字化加工、出入库管理、检索利用等环节都应该符合要求,同时对相关人员做好严格的保密制度,签订保密协议,避免在加工过程中产生任何泄密问题,这将是本项目成功的一个重要因素。 二、项目要求 (一)技术要求 1.能够完成院方至少700万页的历史病案数字化工作,以实际翻拍加工数量结 合首页录入量结算项目款项。 2.兼容性:数字化病案图像浏览等软件兼容好,能方便医院后期的信息整合和 调用等。必需充分了解我院现有病案数字化项目现状,整合为统一应用,统一成一个界面调用所有数字化相关数据,并提供厂商承诺函,如查实未能达到院方要求的承诺被视为虚假应标,院方将追究其责任,并终止合作。 3.系统能够支持详细信息,可录入病案号,姓名,性别,年龄,出院日期,入 院日期以及出院科室信息。 4.对原始纸质病案应用数码技术分页数字化加工制作,形成数码图像。 5.图像高清,数字化病案的图像尺寸为2048×1536(310万像素)及以上,必 须同时提供彩色图像和黑白图像二份图片。 6.原始纸质病案可以使用条形码技术装箱保存,定位管理,便于对原始纸质病 案的快速查找。

信息系统项目可行性研究报告(范本)

1、 项目提出的背景和依据 信息系统项目可行性研究报告(建议书) 编制要求 (带*号的内容建议书不作要求) 第一章 项目概述 1 、 项目名称 2 、 项目建设单位及负责人、项目负责人 3 、 编制单位 4 、 编制依据 5 、 项目建设目标、规模、内容、建设期 6 、 项目总投资及资金来源 7 、 经济与社会效益* 8 、 相对项目建议书批复的调整情况* 9 、 主要结论与建议 第二章 项目建设单位概况 1、项目建设单位与职能 业务功能、业务流程、业务量、信息量等分析与预测 * 2、 项目实施机构与职责 第三章 项目建设的必要性 2、

3、信息系统装备和应用现状及存在主要问题和差距 4、项目建设的意义和必要性第四章总体建设方案 1、建设原则和策略 2、总体目标与分期目标 3、总体建设任务与分期建设内容 4、总体设计方案第五章本期项目建设方案 1、本期项目建设目标、规模与内容 2、标准规范建设内容 3、信息资源规划和数据库建设方案 4、应用支撑平台和应用系统建设方案 5、数据处理和存储系统建设方案 6、终端系统建设方案 7、网络系统建设方案 &安全系统建设方案 9、备份系统建设方案 10、运行维护系统建设方案 11、其它系统建设方案

12、主要软硬件选型原则和详细软硬件配置清单 13、机房及配套工程建设方案 14、建设方案相对项目建议书批复变更调整情况的说明*第六章项目招标方案* 1 招标范围* 、 2 招标方式* 、 3 招标组织形式* 、 第七章环保、消防、职业安全和卫生 1 环境影响分析* 、 2 环保措施及方案* 、 3 消防措施* 、 4 职业安全和卫生措施* 、 第八章节能分析* 1 用能标准及节能设计规范* 、 2 项目能源消耗种类和数量分析 、 3 项目所在地能源供应状况分析 、 4 能耗指标* 、 5 节能措施和节能效果分析等内容* 、 第九章项目组织机构和人员培训

项目可行性分析报告(模板)

项目可行性分析报告 第一部分:项目总论 一、项目概况 二、可行性研究结论 三、主要技术经济指标表 四、项目存在问题与建议 第二部分项目背景 一、项目提出背景 二、项目发展概况 三、项目投资的必要性 第三部分项目投资所在城市的基本概况 一、城市基本发展情况 二、城市地理位置、交通、 三、城市气候与生态环境 四、城市的人文环境 五、城市经济状况 六、城市的人口结构及人均经济状况 七、城市整体发展规划及功能布局 八、城市对项目的影响与建议措施 第四部分市场分析 一、整体房地产市场发展状况分析 二、项目区域市场分析 第五部分地块分析 一、地块概况 二、地块分析 三、土地价格 四、土地升值潜力初步评估 五、项目取得用地的法律及政策性风险分析

六、地块SWOT分析 七、项目评价 第六部分项目定位 一、项目目标设置 二、项目整体定位策略 三、项目定位建议 第七部分项目整体规划分析 一、项目规划设计可行性分析 二、项目规划设计的主题及概念 第八部分项目开发建设进度安排与销售节点 一、项目分期开发设置 二、工程计划 三、销售节点 第九部分投资估算与资金筹措 一、成本预测 二、税务分析 三、资金筹措 四、资金投放使用计划 第十部分销售收入测定 一、销售收入测算 二、销售利润测算 第十一部分财务与敏感性分析 一、项目盈利能力分析 二、项目盈亏平衡分析 三、项目敏感性分析 第十二部分综合评价 一、经济评价(定性) 二、社会评价(定性) 三、环境评价 四、市场预测

五、存在问题与建议 六、总体结论及建议 第十三部分竞拍和投标方式取得土地需要增加和完善的内容 一、主要指标测算 二、竞争对手分析 三、制定策略 第十四部分附件 第一部分:项目总论 一、项目概况

注射用生长抑素

注射用生长抑素 【药品名称】 通用名称:注射用生长抑素 英文名称:Recombinant Human Interferon α2b Vaginal Effervescent Tablets 【成份】 主要成份为生长抑素,为人工合成的环状十四肽 【适应症】 本品主要用于:严重急性食道静脉曲张出血;严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎;胰腺外科手术后并发症的预防和治疗;胰、胆和肠瘘的辅助治疗;糖尿病酮症酸中毒的辅助治疗。 【用法用量】 静脉给药(静脉注射或静脉滴注)。 通过慢速冲击注射(3~5分钟)0.25mg或以每小时0.25mg的速度连续静脉滴注给药(一般是每小时每公斤体重用药量为0.0035mg)。 临使用前,每支冻干剂用1ml生理盐水溶液溶解。 对于连续静脉滴注给药,须用本品3mg配备够使用12小时的药液(溶剂可为生理盐水或5%葡萄糖注射液),输液量调节在每小时0.25mg。 1 严重急性上消化道出血包括食道静脉曲张出血的治疗:首先缓慢静脉推注0.25mg(用1ml生理盐水配制)作为负荷 【不良反应】 少数病例用药后出现恶心、眩晕、面部潮红。当注射速度超过每分钟0.05mg时,病人会发生恶心和呕吐现象。

【禁忌】 对本品过敏者禁用。 【注意事项】 1 由于本品抑制胰岛素及胰高血糖素的分泌,在治疗初期会导致血糖水平短暂的下降; 2 胰岛素依赖型糖尿病患者使用本品后,每隔3-4小时应测试1次血糖浓度,同时给药中,尽可能避免使用葡萄糖。必要的情况下应同时使用胰岛素。 3 在连续给药过程中,应不间断地注入,换药间隔最好不超过3分钟。有可能时,可通过输液泵给药。 4 本品必须在医生指导下使用。 【特殊人群用药】 儿童注意事项: 儿童使用本品的安全性资料尚未建立。 妊娠与哺乳期注意事项: 避免孕妇使用本品,除非无其它安全替代措施。 老人注意事项: 老年患者使用本品的安全性资料尚未建立。 【药物相互作用】 本品可延长环已烯巴比妥导致的睡眠时间,而且加剧戊烯四唑的作用,所以不应与这类药物或产生同样作用的药物同时使用。 由于生长抑素与其他药物的相互作用未建立,所以建议应单独给药。 【药理作用】 生长抑素是人工合成的环状十四氨基酸肽,其与天然生长抑素在化学结构和作用机理上完全

建设项目概况及工程分析

四川剑南春(集团)有限责任公司 年产10万吨粉葛燃料乙醇建设项目 环境影响报告书简本 1 项目基本情况 近年来国际汽油价格持续走高,世界各国都加紧了替代能源的开发和使用。燃料乙醇属生物质燃料,是首先研制成功并应用到生活中的可再生能源之一。燃料乙醇在国际上形成了在汽油中添加一定的燃料乙醇、用燃料乙醇取代部分汽油的趋势。用燃料乙醇取代部分原油,减少原油消费,可帮助解决我国原油短缺问题。特别是2008年四川省发生“5.12”汶川特大地震,影响面广、损失严重。四川省进行灾后重建和生产自救对能源的需求显得十分迫切。因此,作为替代化石能源的一种发展方向,由四川剑南春(集团)有限责任公司拟在四川省德阳市实施的“年产10万吨粉葛燃料乙醇建设项目”建设是十分必要的。 按照国家发改委、财政部《关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知》(发改工业[2006]2842号)的要求“因地制宜,非粮为主。重点支持以薯类、甜高粱及纤维资源等非粮原料产业发展”;以及国家发展改革委《关于印发可再生能源中长期发展规划的通知》(发改能源[2007]2174号)“在2010年前,重点在广西、重庆、四川等地,建设若干个以薯类作物为原料的燃料乙醇试点项目”。项目选择非粮作物—粉葛作为生产燃料乙醇的原料,满足上述要求。项目建设主体为10万t/a燃料乙醇生产装置,建设内容不含粉葛原料供应及种植基地建设。 在四川省德阳市建设以全粉葛为原料的燃料乙醇项目,有利于解决国家和四川省原油短缺问题,有利于四川省“5.12”地震灾后重建、促进地方经济发展和农民增收。项目拟建厂址位于四川省德阳市绵竹市孝德镇苦葛村,占地约为187亩,项目总投资约46990万元。 2 项目与国家产业政策的符合性 2.1 燃料乙醇生产装置与国家相关产业政策的符合性 1998年1月1日实施的《中华人民共和国节约能源法》明确提出“国家鼓励开发利用新能源和可再生能源”。 2006年1月1日起实施的《中华人民共和国可再生能源法》其中第四章第十六条指出:“国家鼓励清洁、高效地开发利用生物质燃料,鼓励发展能源作物,鼓励生产和利用生物液

软件项目可行性研究报告【精品】

软件项目可行性研究报告 软件开发项目的实现在技术、经济和社会条件方面的可行性。下面整理了关于软件项目可行性研究报告。欢迎大家参考! 一、概述 简述项目提出的背景、技术开发状况、现有产业规模;项目产品的主要用途、性能;投资必要性和预期经济效益;本企业实施该项目的优势。 二、技术可行性分析 1、项目的技术路线、工艺的合理性和成熟性,关键技术的先进性和效果论述。 2、产品技术性能水平与国内外同类产品的.比较。 3、项目承担单位在实施本项目中的优势。 三、项目成熟程度 1、成果的技术鉴定文件或产品性能检测报告、产品鉴定证书。 2、产品质量的稳定性,以及在价格、性能等方面被用户认可的情况等。 3、核心技术的知识产权情况。对引进技术的消化、吸收、创新和后续开发能力。 四、市场需求情况和风险分析 1、国内市场需求规模和产品的发展前景、在国内市场的竞争优势和市场占有率。 2、国际市场状况及该产品未来增长趋势、在国际市场的竞争能力、产品替代进口或出口的可能性。 3、风险因素分析及对策。 五、投资估算及资金筹措 1、项目投资估算 2、资金筹措方案 3、投资使用计划 六、经济和社会效益分析

1、未来五年生产成本、销售收入估算。 2、财务分析:以动态分析为主,提供财务内部收益率、贷款偿还期、投资回收期、投资利润率和利税率、财务净现值等指标。 3、不确定性分析:主要进行盈亏平衡分析和敏感性分析,对项目的抗风险能力作出判断。 4、财务分析结论 5、社会效益分析 七、综合实力和产业基础 1、企业员工构成(包括分工构成和学历构成) 2、企业高层管理人员或项目负责人的教育背景、科技意识、市场开拓能力和经营管理水平。 3、企业从事研究开发的人员力量、资金投入,以及企业内部管理体系等情况。 4、企业从事该产品生产的条件、产业基础(包括项目实施所需的基础设施及原材料的、供应渠道等)。 八、项目实施进度计划 九、其它 1、环境保护措施 2、劳动保护和安全 3、必要的证明材料 (1) 特殊行业许可证(如食品、农药、医药、化肥产品生产许可证及批文);通信产品入许可证;公共安全产品生产许可证;压力容器生产许可证等。 (2) 可提供项目立项证明、高新技术企业证书、产品质量认证、环保证明;产品订货意向、合同等补充材料。 十、结论 软件可行性研究报告框架

常用国外数据库及检索介绍

常用国外数据库详细介绍(按国家分类) 一、美国 (1) Wiley InterScience(英文文献期刊) 主页:https://www.sodocs.net/doc/bc15597445.html,/ 简介:Wiley InterScience是John Wiely & Sons 公司创建的动态在线内容服务,1997年开始在网上开通。通过InterScience,Wiley公司以许可协议形式向用户提供在线访问全文内容的服务。Wiley InterScience收录了360多种科学、工程技术、医疗领域及相关专业期刊、30多种大型专业参考书、13种实验室手册的全文和500多个题目的Wiley学术图书的全文。其中被SCI收录的核心期刊近200种。期刊具体学科划分为:Business, Finance & Management (商业、金融和管理)、Chemistry (化学)、Computer Science (计算机科学)、Earth Science (地球科学)、Education (教育学)、Engineering (工程学)、Law (法律)、Life and Medical Sciences (生命科学与医学)、Mathematics and Statistics (数学统计学)、Physics (物理)、Psychology (心理学)。 (2)美国IEEE (英文文献期刊) 主页:https://www.sodocs.net/doc/bc15597445.html,/ 简介:IEEE(Institute of Electrical & Electronics Engineers)是电子信息领域最著名的跨国性学术团体,其会员分布在世界150多个国家和地区。据IEEE统计,IEEE会员总数2001年比2000年增加3.1%,达到377342人,其中学生会员为65669人,增长12.6%。 随着人们的信息越来越多地来自Internet,IEEE需要为会员提供更加完善和全面的电子信息产品和服务。IEEE应成为IEEE会员获得信息的首选之地。IEEE必须识别正确的信息,并提供对它们的访问方法。实现这个目标的重要一步是通过IEEE Xplore与IEEE/IEE Electronic Library (IEL)连接。IEL包括了1988年以来IEEE和IEE的所有期刊杂志和会议录,以及IEEE的标准,可以通过题目、关键词和摘要进行查阅。 (3)美国EBSCO(英文文献期刊) 主页:https://www.sodocs.net/doc/bc15597445.html, 简介:EBSCO公司从1986年开始出版电子出版物,共收集了4000多种索引和文摘型期刊和2000多种全文电子期刊。该公司含有Business Source Premier (商业资源电子文献库)、Academic Search Elite(学术期刊全文数据库)等多个数据库。 Business Source Premier收录了三千多种索引、文摘型期刊和报纸,其中近三千种全文刊。数据库涉及国际商务、经济学、经济管理、金融、会计、劳动人事、银行等的主题范围,适合经济学、工商管理、金融银行、劳动人事管理等专业人员使用。数据库中有较著名"华尔街日报"(The Walls Street Journal)、"哈佛商业评论"(Harvard Business Review)、"每周商务"(Business Week)、"财富"(Fortune)、"经济学家智囊团国家报告" (EIU Country Reports)、American Banker、Forbes、The Economist等报刊。该数据库从1990年开始提供全文,题录和文摘则可回溯检索到1984年,数据库每日更新。 学术期刊集成全文数据库(Academic Search Premier,简称ASP):包括有关生物科学、工商经济、资讯科技、通讯传播、工程、教育、艺术、文学、医药学等领域的七千多种期刊,其中近四千种全文刊。 EBSCO内含有两个免费数据库:

VOC在线监测管理系统

VOC在线监测管理系统 背景介绍 1、项目背景 随着经济的快速发展,污染源的种类日益增多,特别是化工区、工业集中区及周边环境,污染方式与生态破坏类型日趋复杂,环境污染负荷逐渐增加,环境污染事故时有发生。同时,随着公众环境意识逐渐增强,各类环境污染投诉纠纷日益频繁,因此对环境监测的种类、要求越来越高。 在“十二五”期间,政府着力打造以空气环境监测,水质监测,污染源监测为主体的国家环境监测网络,形成了我国环境监测的基本框架。“十三五”规划建议中已经明确“以提高环境质量为核心”,从目前环保部力推的“气,水,土三大战役”的初步效果来看,下一步对于环境质量的改善则是对于现有治理设施和治理手段的检验。而对于三个领域治理效果的检验,依赖于全面有效的环境监测网络。 国务院印发的《生态环境监测网络建设方案的通知》提出建设主要目标:到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络。 根据调研大部分企业具备简单治理技术,即将生产车间内生产工艺所产生的VOCs污染物通过管道集气罩收集后通过活性炭吸附装置处理以后进行排放,但园区内存在着有组织排放超标和无组织排放的问题,为督促企业改进生产工艺和治理装置,减少无组织排放,建议园区部署网格化区域监控系统。 系统部署可提高各工业工园区污染源准确定位能力,同时快速直观的分析出污染源周边的相关信息,通过整合各类地理信息资源和环境保护业务资源,建立统一的环境信息资源数据库,将空间数据与动态监测数据、动态监管数据、政策法规数据等业务数据进行无缝衔接。为管理者提供直观、高效、便捷的管理手段,提高环保业务管理能力,综合管理与分析的决策能力。同时根据业务应用的不同,对数据进行横向的层次划分,通过应用人员层次的不同,对数据进行纵向的层次划分,明晰信息的脉络,方便数据的管理。 2、建设依据 2.1相关政策、规划和工作意见 《国务院关于印发国家环境保护“十二五”规划的通知》(国发〔2011〕42号)

思他宁(注射用生长抑素)

思他宁(注射用生长抑素) 【药品名称】 商品名称:思他宁 通用名称:注射用生长抑素 英文名称:Somatostatin for Injection 【成份】 本品主要成份及其化学名称为:生长抑素醋酸盐 分子式:C76H104N18O19 S2 分子量:1638。 【适应症】 严重急性食道静脉曲张出血。严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎。胰、胆和肠瘘的辅助治疗。胰腺术后并发症的预防和治疗。糖尿病酮症酸中毒的辅助治疗。 【用法用量】 药物冻干粉须在使用前用生理盐水溶解。思他宁采用静脉给药,通过慢速冲击注射(3至5分钟)250微克或以每小时250微克的速度连续滴注(约相当于每公斤体重,每小时3.5微克)给药。对于连续滴注给药,须用1支3毫克的思他宁配制足够使用12小时的药液,溶剂既可以是生理盐水,也可以是5%的葡萄糖溶液,输液量应调节为每小时250微克,并建议使用输液注射器。对严重急性上消化道出血(包括食道静脉曲张出血) 的治疗:建议首先缓慢静脉注射250微克思他宁,作为负荷剂量,而后立即进行每小时250微克的静脉点滴给药。当两次输液给药间隔大于3至5分钟时,应重新静脉注射250微克思他宁,以确保给药的连续性。当大出血被止住后(一般在12至24小时内),治疗应继续48 至72小

时,以防止再次出血。对于上述病例,通常的治疗时间是120小时。对胰瘘、胆瘘、肠瘘的辅助治疗:应采用每小时250微克的速度静脉连续点滴给药,直到瘘管闭合(2至20天),这种治疗可作为全胃肠外营养的辅助措施。当瘘管闭合后,思他宁静脉点滴应继续进行1至3天,而后逐渐停药,以防反跳作用。对胰腺外科手术后并发症的预防和治疗:手术开始时,作为辅助治疗,以每小时250微克速度点滴思他宁;手术后,持续点滴给药5天。对糖尿病酮症酸中毒的辅助治疗:对酮症酸中毒的患者,以每小时100至500微克的速度静脉点滴思他宁同时配合胰岛素治疗,3小时内可缓解酮症酸中毒,4小时内可使血糖恢复正常。 【不良反应】 少数病例用药后产生恶心、眩晕、脸红等反应。当滴注思他宁的速度高于每分钟50微克时,病人会发生恶心和呕吐现象。 【禁忌】 已证实对于思他宁药物过敏的病人,不得使用此药。避免孕妇使用本品,除非无其它安全替代措施。 【注意事项】 1 由于本品抑制胰岛素及胰高血糖素的分泌,在治疗初期会引起短暂的血糖水平下降。特别是胰岛素依赖型糖尿病患者,使用本品后每隔3-4小时应测试一次血糖浓度。同时,给药期间应避免给予胰岛素所要求的葡萄糖。在必要情况下,应同时使用胰岛素; 2 本品必须在医生指导下使用。 【特殊人群用药】 妊娠与哺乳期注意事项: 避免孕妇使用本品,除非无其它安全替代措施。

项目情况简介

项目情况简介: 一:《织金县江西煤矿》采矿权项目: (一):情况简介: 织金县化起镇江西煤矿位于织金县城东50km,隶属贵州省织金县化起镇管辖,面积2.4993Km2,平面范围由9个直角坐标拐点圈定,准采标高+1490~+1100m,矿山北西部有织金至化起公路由通过,交通方便。矿区范围地质勘探达到勘探程度,地质总储量1544.48万吨(其中准采标高范围内地质储量1239.92万吨,+1100m标高以下地质储量304.56万吨),全区可采煤层4层。总厚度平均5.6m,设计生产规模30万吨/年, 矿区为典型的低中山构造溶蚀—剥蚀地貌。区内最高点为北西部山顶(海拔标高为+1553.6m),最低点位于勘探区南东部小河洞落水洞(海拔标高+1365m),区内相对高差50~188m。区内地表水系属乌江流域鸭池河水系,区内主要发育季节性河流及冲沟。 《织金县江西煤矿》采矿权项目为资源整合矿井项目,企业性质为合伙制企业。现有一设计能力3万吨/年的矿井正在生产,江西煤矿新井设计规模30万吨/年,该矿井预计2010年6月份建成投产。 在矿区北部原永胜煤矿为上世纪90年开采的小煤窑(年产量在3万吨以下),在2005年以前已停采。2006年下半年,国家对小煤矿进行整顿,将江西煤矿和永胜煤矿进行整合,整合后的矿区范围为上述拐点坐标范围,开采量提升为30万吨/年。在建设新的矿井前,现有矿井继续生产,目前正在生产中。

(二):矿区地质构造情况: 矿区大地构造位属于扬子准地台贵阳复杂构造变形区西段。区内位于牛场向斜北西翼,以发育北东向的断裂构造和南北向断裂构造为特征,断裂以发育北东向正断层和逆断层为主,其次为南北向正断层。断层对区内煤层均有不同程度有切错。根据区内地质构造特征和遵照《煤、泥炭地质勘探规范》要求,确定区内总体构造复杂程度为中等复杂类型 (一)褶皱 矿区位于牛场向斜北西翼。地层总体倾向130~210o,倾角8~31o。 (二)断层 矿区断裂构造有3条北东向断层和一条南北向断层。除南北向断层规模较大外,其它断层规模较小。断层具体情况如表: (三):煤层情况及特性: 根据钻孔控制情况,区内发育不稳定或较稳定的可采煤层有M6、M15、M16、M18、M20、M21、M27、M29、M32九层。其中M6、M15、M20、M27、M32五层煤局部可采;M18、M21、M16、M29大部可采,为区内主要可采煤层。各可采煤层瓦斯平均含量10.31~

专利项目可行性研究报告(提纲)(1)

项目可行性研究报告 (提纲) 一、概述 1.申请项目的概述。应包括项目中专利的基本情况、项目的主要内容、技术水平,主要用途及 应用范围(限400字以内。)。 2.简述项目的社会经济意义、目前的进展情况、申请专利实施资金的必要性。 3.简述本企业实施项目的优势和风险。 4.项目计划目标 二、申报企业情况 包括企业基本情况、项目负责人及实施人员情况、企业转化能力、企业财务经济状况、企业管理情况、企业发展思路等。 三、技术可行性分析 1.详细说明本项目的基本原理及关键技术内容及项目涉及专利的情况。 2.国内外同类产品的专利检索情况(产品核心技术的专利情况),本项目产品技术性能水平与其的比较。 3.本企业及技术依托单位或合作单位的研究开发实力。 四、项目成熟程度 1.产品的专利侵权分析。 2.成果的技术鉴定文件或产品性能检测报告、产品鉴定证书。 3.产品质量稳定性和成品率情况等。 五、市场需求情况 1.国内市场状况及产品的发展前景,在国内市场的竞争能力和市场占有率。 2.国际市场状况及产品的发展前景,在国际市场的竞争能力,产品替代进口或出口的可能性。 六、投资估算及资金筹措 1.项目投资估算 2.资金筹措方案 3.投资使用计划

七、项目实施进度计划 八、经济和社会效益分析 1.生产成本估算、销售收入估算。 2.财务分析,以动态分析为主,提供财务内部收益率、贷款偿还期、投资回收期、投资利润率和利税率、财务净现值等指标。 3.不确定性分析,主要进行盈亏平衡分析和敏感性分析,对项目的抗风险能力作出判断。 4.财务分析结论。 5.社会效益分析。 九、结论 十、其它 1.项目实施所需的基础设施及原辅材料(包括燃料)的来源、供应渠道等情况。 2.环境保护措施。 3.劳动保护和安全。 4.必要的证明材料: (1)特殊行业许可证(如食品、医药、农药、化肥产品生产许可证及批文);通信产品入网许可证;公共安全产品生产许可证;压力容器生产许可证等。 (2)可提供项目立项证明、高新技术企业证书、产品质量认证、环保证明;产品订货意向、合同等补充材料。

生长抑素

注射用生长抑素 【适应症】 1.严重急性食道静脉曲张出血; 2.严重急性胃或十二指肠溃疡出血,或并发急性糜烂性胃炎或出血性胃炎;3.胰腺外科手术后并发症的预防和治疗; 4.胰、胆和肠瘘的辅助治疗; 5.糖尿病酮症酸中毒的辅助治疗。 【用法与用量】 静脉给药。 通过慢速冲击注射(3~5分钟)0.25mg或以每小时0.25mg的速度连续滴注给药(一般每小时每公斤体重用药量为0.0035mg)。 临使用前,每支冻干剂用1ml生理盐水溶解。 对于连续滴注给药,须用本品3mg配备够使用12小时的药液(溶剂可为生理盐水或5%的葡萄糖注射液),输液量调节在每小时0.25mg。 1.严重急性上消化道出血包括食道静脉曲张出血的治疗:首先缓慢静脉推注0.25mg(用1ml生理盐水配制)作为负荷量,而后立即进行以每小时0.25mg的速度持续静脉滴注给药。当两次输液给药间隔大于3-5分钟的情况下,应重新静脉注射本品0.25mg,以确保给药的连续性。当出血停止后(一般在12-24小时内),继续用药48-72小时,以防再次出血。通常常的治疗时间是120小时。 2.胰瘘、胆瘘和肠瘘的辅助治疗:以每小时0.25mg的速度静脉连续滴注,直到瘘管闭合(2~20天),这种治疗可以用作全胃肠外营养的辅助措施。当瘘管闭合后,应继续用药1~3天,而后逐渐停药,以防反跳作用。 3.胰腺外科手术后并发症的治疗:在手术开始时,以每小时0.25mg的速度静脉滴注,术后持续静滴5天。 4.糖尿病酮症酸中毒的辅助治疗:以每小时0.1~0.5mg的速度静脉滴注,作为胰岛素治疗(10单位冲击后每小时1~4.8单位静滴)的辅助措施,在4小时内可以使血糖恢复正常,在3小时之内缓解酮症酸中毒。 【不良反应】 少数病例用药后出现恶心、眩晕、面部潮红。当注射速度超过每分钟0.05mg时,病人会发生恶心和呕吐现象。 【禁忌症】对本品过敏者禁用。 【注意事项】 (1)由于本品抑制胰岛素及胰高血糖素的分泌,在治疗初期会导致血糖水平短暂的下降;

项目概述及现状分析

第一章项目概述及现状分析 蟠桃居住区地处徐州市经济开发区中部,北临开发区主干道杨山路,东靠经六路、西至经五路。总规划用地面积约270亩(18ha)。该项目是开发区管委会贯彻中央建设社会主义新农村第一批试点项目,是开发区重点工程,安民工程。 居住区的服务定位是集中安置拆迁村民及企业产业工人,二者在工作,生活习惯上并不相同,设计中既要保证二者有一定联系,又要区别对待,因此蟠桃居住区不同与以往的居住区规划。其规划设计应充分利用现有的有利条件,通过合理的设想,完善的规划理念进行统一规划、实施。如何能适应当代的农民生活需要,体现其地方特点,是设计中首要考虑的。本设计以现代农村居住水准为目标,积极采用新方法和新观念,在兼顾居住环境质量和综合经济效益的同时,以“地方性居住环境”为主题力求创造舒适优美、方便的居住环境,促进该地区住宅建设和新型住宅产业的形成和发展。 第二章设计依据 一、徐州市经济开发区管委会发出的设计邀标文件。 二、徐州市经济开发区管委会提供的“蟠桃居住区地形图”及居住区相关资料; 三、国家有关城市规划、建筑设计法规、标准、规范等。 第三章设计理念 如何体现出社会主义新农村的特点,使之既具有现代化的特点又有其自身的底蕴是设计中面临的最大矛盾。蟠桃居住区整个用地达18公顷,势必要有一套完善的系统。 人作为自然的产物,处于天地之间,社会之中,对于自然具有依赖性和亲和

力,随着人们对自然的渴望,都希望营造一个幽美典雅的环境。因此,设计中以生态环境优先为原则,充分体现对人的关怀,坚持以人为本,大处着眼,整体设计。在规划的同时,辅以景观设计,最大限度的体现居住区本身的底蕴,设计中尽量保留居住区原有的积极元素,如居住区主要干道及商业街道路均由原有主干道发展而来,既节约了建设投资又有利于分期建设。 在设计中,规划布局不拘泥于传统模式,以现代的手法体现传统民居的内涵,力求神似。通过用现代建筑及空间形式,巧于因借的设计手法,很好地诠释了一个有着自己文化韵味居住区。 第四章总体规划 一、总平面布局: 如何合理利用原有条件:社会主义新农村不是彻底抛弃原有的,而是在其基础上发展创新。从原有主道路出发设计既可以保留居住区积极元素,又对居住区分期建设有利。 由于生活工作习惯的不同,为了避免造成不必要的干扰,设计中把企业产业工人和拆迁安置居民分开安置,并在各自内部以组团形式存在,形成居住区--居住组团的结构.采取这种结构形式的优点是:最大限度的延续了原有村子中邻里之间的关系,而不同性质的企业产业工人也可以相对集中安置.有利于各自管理。各组团空间的开敞性和通透性方面体现着传统韵味,最大限度与自然亲和。组团间通过步行景观通道串联各个内庭,形成景观轴线和广场空间。组团封闭式管理,大区开放。 将原有部分居住区内部干道演变成商业步行街,并通过一条东西向绿化步行带连通了企业产业工人公寓和拆迁安置居民小区,使之即分离又有着一定的联系。公建则安置在满足其服务半径的位置。公建适当集中安置,形成商业步行街。辐射至绿化景观带上,为居住区中心聚集了足够的人气。

项目可行性研究报告范本

项目可行性研究报告范本 第一章项目总论 第二章项目背景和发展概况 第三章市场分析与建设规模 第四章建设条件与厂址选择 第五章工厂技术方案 第六章环境保护与劳动安全 第七章企业组织和劳动定员 第八章项目实施进度安排 第九章投资估算与资金筹措 第十章财务效益、经济与社会效益评价 第十一章可行性研究结论与建议 第一章项目总论 总论作为可行性研究报告的首章,要综合叙述研究报告中各章节的主要问题和研究结论,并对项目的可行与否提出最终建议,为可行性研究的审批提供方便。总论章可根据项目的具体条件,参照下列内容编写。 §1.1 项目背景

§ 1.1.1 项目名称 企业或工程的全称,应和项目建议书所列的名称一致。 § 1.1.2 项目承办单位 承办单位系指负责项目筹建工作的单位(或称建设单位),应注明单位的全称和总负责 人。 §1.1.3 项目主管部门 注明项目所属的主管部门。或所属集团、公司的名称。中外合资 项目应注明投资各方所属部门。集团或公司的名称、地址及法人代表的姓名、国籍。 § 1.1.4 项目拟建地区、地点 § 1.1.5 承担可行性研究工作的单位和法人代表 如由若干单位协作承担项目可行性研究工作,应注明各单位的名称及其负责的工程名称、总负责单位和负责人。如与国外咨询机构合作进行可行性研究的项目,则应将承担研究工作的中外各方

的单位名称、法人代表以及所承担的工程、分工和协作关系等,分别说明。 §1.1.6 研究工作依据 在可行性研究中作为依据的法规、文件、资料、要列出名称、来源、发布日期。并将其中必要的部分全文附后,作为可行性研究报告的附件,这些法规、文件、资料大致可分为四个部分: (1)项目主管部门对项目的建设要求所下达的指令性文件;对项目承办单位或可行性研究单位的请示报告的批复文件。 (2)可行性研究开始前已经形成的工作成果及文件。 (3)国家和拟建地区的工业建设政策、法令和法规。 (4)根据项目需要进行调查和收集的设计基础资料。 §1.1.7 研究工作概况

项目概述

目录 第一章.项目概述 (2) 第二章.项目整体性规划 (4) 第三章.需求分析及项目建设方案 (6) 第四章.市政基础设施保障 (8) 第五章.资源利用和能源消耗 (10) 第六章.土地性质及出让方式 (11) 第七章.环境和生态影响分析 (14) 第八章.经济影响分析 (15) 第九章.结论 (16)

第一章.项目概述 中国芜湖水韵生态养老综合示范区选址于南陵县的杨村湖,距市区约50 多公里。青山绿水、风景怡人、空气清新,是个养老养生的好去处。在芜湖市委、市政府的大力支持下,安徽京之盾集团对芜湖市经济社会发展中养老趋势进行了调研分析,为改善和提升芜湖养老机构的服务层次和质量,在参考了香港、台湾养老机构发展思路的基础上,计划在南陵县的杨澄湖建设具有国际水准的生态养老综合示范区——中国芜湖水韵生态养老综合示范区。 该养老综合示范区是一个集退休养老、养生健康、农业观光旅游于一体的综合性生态养老项目,该示范区的建成将填补芜湖市乃至整个华东地区在大型养老社区方面的空白。 芜湖水韵生态养老综合示范区,是打造生态芜湖、幸福芜湖战略规划中的重要举措。芜湖市国民经济快速发展,2010 年GDP 与财政收入分别为1108.6 亿元和200.7 亿元,在安徽省仅次于合肥,双双名列第二,GDP 增幅则以18.2的成绩位居该省之首。经济的快速发展必然带动社会文化生活需求的全面提升,养老需求便是其中不可或缺的重要组成部分。据2010 年统计数据,“芜湖60 岁以上老人约35.12万,约占全市总人口的15.2左右,并以每年3.2的速度继续增长”。如何给日益增多的芜湖老年人口提供一个环境优美、配套齐备、服务体系完善的养老场所,是实现“幸福芜湖”的重要环节之一,也是“芜湖水韵生态养老综合示范区”项目的出发点和立足点。第二章.项目整体性规划 2.1 拟建项目情况 2.1.1 项目概况项目控制规划用

项目可行性研究报告提纲

项目可行性研究报告提纲 一、概述 1.申请项目的概述。应包括项目中专利的基本情况、项目的主要内容、技术水平,主要用途及应用范围。 2.简述项目的社会经济意义、目前的进展情况、申请专利实施资金的必要性。 3.简述本企业实施项目的优势和风险。 4.项目计划目标 二、申报企业情况 包括企业基本情况、企业人员及开发能力论述、企业财务经济状况、企业管理情况、企业发展思路等。 三、技术可行性分析 1.详细说明本项目的基本原理及关键技术内容及项目涉及专利的情况。 2.产品技术性能水平与国内外同类产品的比较。最好附性能指标,可以与同类产品比较。 3.本企业及技术依托单位或合作单位的研究开发实力。 四、项目成熟程度 1.成果的技术鉴定文件或产品性能检测报告、产品鉴定证书。 2.产品质量稳定性和成品率情况等。

3.对于引进技术项目,需提供消化、吸收、创新和有关知识产权的文件。 五、市场需求情况 1.国内市场状况及产品的发展前景,在国内市场的竞争能力和市场占有率。 2.国际市场状况及产品的发展前景,在国际市场的竞争能力,产品替代进口或出口的可能性。 六、投资估算及资金筹措 1.项目投资估算 2.资金筹措方案 3.投资使用计划 七、经济效益分析 1.生产成本估算、销售收入估算。 2.财务分析,以动态分析为主,提供财务内部收益率、贷款偿还期、投资回收期、投资利润率和利税率、财务净现值等指标。 3.不确定性分析,主要进行盈亏平衡分析和敏感性分析,对项目的抗风险能力做出判断。 4.财务分析结论。 八.社会效益发析 社会效益是指本产品、本技术给使用单位带来的经济效益,以及在环保、节能、就业、安全等方面的综合效益。

1项目背景及概况

1 项目背景及概况 1.1 项目背景 1.2 项目申报单位基本情况 1.3 前期研究与进展 1.4 项目概况 1.4.1 建设理由 1.4.2 建设条件 1.4.3 工程方案 1.4.4 投资估算、资金筹措及工期安排 1.4.5 经济评价 2 发展规划、产业政策及行业准入2.1 发展规划分析 2.1.1 区域经济发展政策和规划 2.1.2 主要经济社会指标预测 2.1.3 本项目在区域路网中的地位和作用 2.2 产业政策和行业准入分析 2.2.1 产业政策分析 2.2.2 行业准入分析 2.3 综合评价 3 资源开发及综合利用分析 3.1 资源利用方案

3.1.1 土地资源 3.1.2 建筑材料及运输条件 3.2 资源节约措施 4 节能方案分析 4.1 建设期耗能分析 4.2 运营期节能 4.2.1 项目运营管理耗能分析 4.2.2 项目使用者节能计算 4.2.3 燃油节约量的计算 4.3 对当地能源供应的影响 4.4 主要节能措施 4.4.1 适用的节能规范及标准 4.4.2 主要的节能措施 4.5 节能分析结论 5 建设用地、征地拆迁及移民安置方案5.1 项目选址及用地方案 5.1.1 建设用地概况 5.1.2 建设用地压覆资源分析 5.2 土地利用合理性分析 5.2.1建设用地的指导思想和外部环境 5.2.2 节约用地设计原则

5.2.3 符合国家土地供应政策分析 5.2.4 占用土地合理性分析 5.3 征地拆迁及移民安置规划方案 5.3.1 项目所处区域基本情况 5.3.2 征地拆迁情况及拆迁补偿政策标准 5.3.3移民安置目标 5.3.4 征地工作的开展 5.3.5 拆迁人员就业培训及安置 5.3.6 被征用土地农民的社会保障 6 环境和生态影响评价6.1 环境和生态评价对象及范围 6.1.1 调查评价范围 6.1.2 自然环境条件 6.1.3 社会经济环境现状 6.1.4 空气环境现状 6.2 工程对沿线环境的影响 6.2.1 施工期环境影响 6.2.2 营运期环境影响 6.3 减缓工程环境影响的对策 6.3.1 设计阶段 6.3.2 施工阶段 6.3.3 运营阶段

项目管理复习资料完整版

第一讲: 项目的定义:某一主体(个人或组织)为了完成特定的目标,在一定的资源约束下,有组织地开展由一系列基本活动构成的非重复性的有独特成果的活动。 项目的特征:总体性,一次性,物别性,组织的开放性和临时性。 项目质量:质量是反映实体(产出物和工作过程)满足用户明确的或隐含的需要的能力特性总和。主要为功能的实现程度和寿命长度。 项目成本:项目所消耗的资源的货币体现。 项目时间(周期):项目从开始到结束所经历的时间段。这个时间段也被定义为项目的生命周期,它分为项目启动、计划、实施和收尾四个阶段。 P= f (C,T,S) Performance: 绩效,所完成工作的质量。 Cost: 成本,项目工作的成本,与项目使用的人力资源和自然资源直接相关。 Time: 时间,项目必须满足的进度要求。 Scope:范围,要执行的任务的幅度。 时间、成本和质量是一个项目的3个主要变量,三者是相互制约的。如果其中一个或两个变量发生变化,那么其他的变量也会随之变化。 项目资源需求度:项目在各个阶段对各种资源的需求程度。 项目风险度:项目的成功概率和不确定程度。 项目干系人影响力:项目干系人对项目目标、质量、进度等的影响程度;项目资源需求随着项目周期阶段的推进呈现低-高-低的状态;项目面临风险程度随时间推移下降;项目干系人影响力随时间沿着项目阶段下降。

第二讲: 项目管理的概念:项目管理是通过运用知识、技能、工具和技术等资源,以满足项目干系人对项目的需求和期望为目的,对项目活动所开展的各项管理职能活动的总称。 项目管理的特征:(1)普遍性(2)创新性(3)独特性(4)复杂性(5)目的性 项目生命周期:项目从开始到结束可以划分为若干阶段,这些不同的阶段先后衔接起来便构成了项目的生命周期。 项目生命周期一般划分为四个阶段:1、启动阶段(或定义阶段)2、规划阶段(或计划阶段)3、实施阶段(或执行阶段)4、收尾阶段(或交付阶段) 项目管理过程:为了更好地完成项目实施过程中每个阶段的各项工作和活动,需要开展一系列有关项目计划、决策、组织、沟通、协调和控制等方面的管理活动。 内容:(1)输入:这是一个项目管理具体工作过程从上一个管理具体工作过程所获得

相关主题