搜档网
当前位置:搜档网 › 半导体物理学(第7版)第三章习题和答案

半导体物理学(第7版)第三章习题和答案

半导体物理学(第7版)第三章习题和答案
半导体物理学(第7版)第三章习题和答案

第三章习题和答案

1. 计算能量在E=E c 到2

*n 2

C L 2m 100E E π+= 之间单位体积中的量子态数。 解:

2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。

3

22

233*28100E 21

23

3

*22100E 002

1

233*231000L 8100)(3

222)(22)(1Z V

Z

Z )(Z )(22)(23

22

C

22

C

L E m h E E E m V dE E E m V dE E g V

d dE

E g d E E m V E g c

n c C n

l

m h E C n

l

m E C n

n c n c πππππ=

+-=-==

==-=*+

+

?

?**

)()

(单位体积内的量子态数)

()

(21)(,)"(2)()(,)(,)()(2~.2'2

1

3''

''''2'21'21'21'

2

2222

22C a a l

t t

z y x a

c c z l

a z y t a y x t a x

z t

y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si -=???

? ??+?=+++====+++=*

****系中的态密度在等能面仍为球形等能面

系中在则:令)

(关系为

)(半导体的、证明:[]

3

1

2

3

2212

32'

212

3

2

31'2

'''')()2(4)()(111100)()(24)(4)()(~l

t

n c n

c l t t z m m s

m V

E E h

m E sg E g si V E E h m m m dE dz E g dk

k k g Vk k g d k dE E E =-==∴-???

?????+??==∴?=??=+**

πππ)方向有四个,

锗在(旋转椭球,

个方向,有六个对称的导带底在对于即状态数。

空间所包含的空间的状态数等于在

3. 当E-E F 为1.5k 0T ,4k 0T, 10k 0T 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。

费米能级 费米函数 玻尔兹曼分布函数

1.5k 0T 0.182 0.223 4k 0T 0.018 0.0183 10k 0T

4. 画出-78o C 、室温(27 o C )、500 o C 三个温度下的费米分布函数曲线,并进行比较。

5. 利用表3-2中的m *n ,m *p 数值,计算硅、锗、砷化镓在室温下的N C , N V 以及本征载流子的浓度。

F

E E -T k E E e

E f F

011)(-+=

T

k E E F e

E f 0)(--

=5

1054.4-?5

1054.4-???

???

???==-**

h koTm N h koTm N E p v n

C g

)2(2)2(25232

232

ππ

6. 计算硅在-78 o C ,27 o C ,300 o C 时的本征费米能级,假定它在禁带中间合理吗?

所以假设本征费米能级在禁带中间合理,特别是温度不太高的情况下。

7. ①在室温下,锗的有效态密度N c =1.05?1019cm -3,N V =3.9?1018cm -3,试求锗的载流子有效质量m *n m *p 。计算77K 时的N C 和N V 。 已知300K 时,E g =0.67eV 。77k 时E g =0.76eV 。求这两个温度时锗的本征载流子浓度。②77K 时,锗的电子浓度为1017cm -3 ,假定受主浓度为零,而E c -E D =0.01eV ,求锗中

施主浓度E D 为多少?

[]

eV kT eV kT K T eV

kT eV kT K T eV

m m kT eV kT K T m m kT E E E E m m m m Si Si n p

V C i F p n 022.008

.159

.0ln 43,0497.0573012.008

.159

.0ln 43,026.03000072.008.159.0ln 43,016.0195ln 43259.0,08.1:3222001100-===-===-===+-====*

*

**

时,当时,当时,当的本征费米能级,3

173183'318319

3'3'

'/1008.577109.377/1037.1300

771005.13007730077772cm N N cm N N T T K N K N N N K V V C

C C

C V C ?=??=?=?=??=?=∴=)()()()()()(、时的)(kg

m N T k m kg m N T k m Tm k N Tm k N v

p

c n p v n c 3103

1202

31

03

202

2

3202

320106.229.022101.556.022)2(2)2(21.7-*-***

?==?

?

????=?==??

????=

==

ππππ得)根据(

8. 利用题 7所给的N c 和N V 数值及E g =0.67eV ,求温度为300K 和500K 时,含施主浓度N D =5?1015cm -3

,受主浓度N A =2?109cm -3的锗中电子及空穴浓度为多少?

9.计算施主杂质浓度分别为1016cm 3,,1018 cm -3,1019cm -3的硅在室温下的费米能级,并假定杂质是全部

电离,再用算出的的费米能 级核对一下,上述假定是否在每一种情况下都成立。计算时,取施主能级在导带底下的面的0.05eV 。

3

1718

1717003777276.021

17183

13300

267.021

1819221

/1017.1)1037.110067.001.021(10)21(2121exp 21/1098.1)1008.51037.1(77/107.1)109.31005.1()()3(00000cm e N n koT E e n N e N e

N N n n cm e n K cm e

n e

N N n C o D D N n T k E D T k E E E E D T k E E D D k

i k i koT

Eg

v c i C o

D F C c D F D ?=??+=??+=∴+=+=+==?=???=?=???==??--+----+

-?-?--

时,室温:??????=?==??

????=?≈=??

????+-+-=??

????+-+-=∴=---→???==+--?==?==-

-3

1503

1503

1003

1502

12202

1

2202020200003

1521

''313221

/1084.4/1084.9500/108/105300)2(2)2(20)(0/109.6)(500/100.2)(300.8'

020cm

p cm

n K t cm p cm n K T n N N N N p n N N N N n n N N n n n p n N N p n cm e

N N n K cm e N N n K i D A D A i A D A D i A D i A D V C i T k E V c i T k g e g 时:时:根据电中性条件:时:时:,

ln /105.1/108.2,300,ln .903

103

190+=??????=?==+=N

T k E E cm

n cm

N K T N N T k E E E D i F i C C D c F F 或时离区的解假设杂质全部由强电

没有全部电离全部电离小于质数的百分比)

未电离施主占总电离杂全部电离的上限求出硅中施主在室温下)(不成立不成立成立

317181631716317026.005

.0'

026

.0023

.019026

.0037

.018026

.016.0026

.021

.016105.210,10105.210/105.22

1.0,026.005.02%10()2(2%10%8021

11:10%302

111:10%42.02

1112

1

11:10cm N cm N cm e N N e N N koT E e N N D e N n N e N n N e e N n N D D C D C D D C D D D D D D D E E D D D C D ??=?=?===?=?=+===+===+=

+=

=---+-之下,但没有全电离

在成立,全电离全电离,与也可比较)

(0D F F D D F D D F D F D E E E E cm N E E cm N T k E E E E 26.0~037.0;/10026.016.021.005.0;/102318316'

'=-=??=+-=-=??-

10. 以施主杂质电离90%作为强电离的标准,求掺砷的n 型锗在300K 时,以杂质电离为主的饱和区掺

杂质的浓度范围。

11. 若锗中施主杂质电离能?E D =0.01eV ,施主杂质浓度分别为N D =1014cm -3j 及 1017cm -3。计算①99%电离;②90%电离;③50%电离时温度各为多少?

12. 若硅中施主杂质电离能?E D =0.04eV ,施主杂质浓度分别为1015cm -3, 1018cm -3。计算①99%电离;②

90%电离;③50%电离时温度各为多少?

13. 有一块掺磷的 n 型硅,N D =1015cm -3,分别计算温度为①77K ;②300K ;③500K ;④800K 时导带中电

子浓度(本征载流子浓度数值查图3-7)

14. 计算含有施主杂质浓度为N D =9?1015cm -3,及受主杂质浓度为1.1?1016cm 3,的硅在33K 时的电子和空

穴浓度以及费米能级的位置。

317143

13317026

.00127

.019026.00127

.003

19/1022.3~104.2~5/104.2/1022.32

1005.11.021.0026.00127.0exp

2%10)

exp(2300/1005.1,0127.0.10cm N n A cm n G N A cm e e N N N N T

k E N N D A K cm N eV E A D i s i

e

D s C D C D D C D s C D s ??∴?=?=??==

∴+=?=?==?---,即有效掺杂浓度为的掺杂浓度范围的本征浓度电离的部分,在室温下不能掺杂浓度超过限杂质全部电离的掺杂上

以下,室温的电离能解

上限上限上限3

170

3173

152

3

143

150315310/10/108000)4(/1014.12

4~/104500)3(/10/10/103002.13cm n n cm n K cm n N N n N cm n K cm N n cm N cm n K i

i i D D D i D D i =≈=?≈++=?==≈=<<=时,过度区时,强电离区时,)(

eV n p T k E E eV N p T k E E cm p n n cm N N p cm n Si K T i i F v V F i D A i 336.0105.1102ln 026.0ln 224.0101.1102ln 026.0ln 10125.1102,105.130010

15

0019

15

00350

203150310-=??-=-=-=??-=-=-?==?=-=?==---或:饱和区流子浓度,处于强电离掺杂浓度远大于本征载的本征载流子浓度时,解:

15. 掺有浓度为每立方米为1022硼原子的硅材料,分别计算①300K ;②600K 时费米能级的位置及多子和

少子浓度(本征载流子浓度数值查图3-7)。

eV n p T k E E cm n cm p n p n N n p cm n K T eV N p T k E E eV

n p T k E E cm p n n cm p a cm n K T i i F i A i v

V E i i E i i 025.01011062.1ln 052.0ln /1017.6/1062.1/101600)2(184.0ln

359.01010ln 026.0ln /1025.2/10,/105.1300)1(16

16

00

3

15031602

00003160

01016

003

40

2

03

160310-=??-=-=-?=?==+=?==-=-=--=-=-=-?===?==处于过渡区:时,或杂质全部电离时,

16. 掺有浓度为每立方米为1.5?1023砷原子 和立方米5?1022铟的锗材料,分别计算①300K ;②600K 时

费米能级的位置及多子和少子浓度(本征载流子浓度数值查图3-7)。

浓度接近,处于过度区

本征载流子浓度与掺杂和区度,所以处于强电离饱度远大于本征载流子浓能够全部电离,杂质浓杂质在解:3

1713

17

003917

2602031703

133********:60022.0102101ln 026.0ln 10101104101300102:300105,105.1------?==??==-=??==?=-=?=?=?=cm n K eV n n T k E E cm

n n p cm N N n K cm n K cm N cm N i i i F i A D i A D

eV n n T k E E n n p n N N N N n n p n N p N n i i F i i A D A D i D A 01.010

2106.2ln 072.0ln 106.1106.22

4)(17

17

0017

2

0172

2020000=??==-?==?=+-+-=

=+=+

17. 施主浓度为1013cm 3的n 型硅,计算400K 时本征载流子浓度、多子浓度、少子浓度和费米能级的位

置。

18. 掺磷的n 型硅,已知磷的电离能为0.044eV ,求室温下杂质一半电离时费米能级的位置和浓度。

eV n n T k E E cm n n p n N N n n np N p n cm n K cm N si i i F o i i D D i

D i D 017.010

11062.1ln 035.0ln /1017.61062.14212,0(/101400,/10:.1713

13

03

122

01322

2

313313=???==-?==?=++=???==--?==查表)时,11.18E E e N n F D D

D -+=

解:

19. 求室温下掺锑的n 型硅,使E F =(E C +E D )/2时锑的浓度。已知锑的电离能为0.039eV 。

20. 制造晶体管一般是在高杂质浓度的n 型衬底上外延一层n 型外延层,再在外延层中扩散硼、磷而

成的。

(1)设n 型硅单晶衬底是掺锑的,锑的电离能为0.039eV ,300K 时的E F 位于导带下面0.026eV 处,

3182

10021002

103

181********/1048.9026.00195.0exp 21026.00195.02exp(212)

exp(2120195

.022/1048.93.014

.32

108.2)71.0(220195.02

039

.022222

.19cm F N T k E E T k E E F N N T k E E N T k E E F N E E E E E E E n n cm F N T k E E F N n T

k E E E E E E E E E E E E E C D

F C F C

D D F D C F C D C D D C D F D C C F c D C D C C D C C F C D

C F ?=+??

????-=-+?

?

????-=

∴-+=??????-=-=-+=-=?=???=-=?

?????-=∴<==-=--=+-=-∴+=+)()(求用:发生弱减并解:πππππ

计算锑的浓度和导带中电子浓度。

(2)设n 型外延层杂质均匀分布,杂质浓度为4.6?1015cm -3,计算300K 时E F 的位置及电子和空穴浓

度。

(3)在外延层中扩散硼后,硼的浓度分布随样品深度变化。设扩散层某一深度处硼浓度为5.2?1015cm -3,

计算300K 时E F 的位置及电子和空穴浓度。

(4)如温度升到500K ,计算③中电子和空穴的浓度(本征载流子浓度数值查图3-7)。

eV n p T k E E n p i

i E 0245.0ln 109.11083.80

0140140-=-=-?=?=

21. 试计算掺磷的硅、锗在室温下开始发生弱简并时的杂质浓度为多少?

2

0000314105.11060

03

514210020314151503

415

2

100203

15003

19026.0013

.0000003

1819

2

100,104500)4(276.0ln 026.0ln

/1075.3106)105.1(/106106.4102.53/1089.410

6.4)105.1(/106.4223.0ln

300)2(/1007.4)21()exp(21()

exp(21/1048.93.014

.3108.22)1(2026.01.2010

14

i D A i i

i F i D A i D C C

D

c F D

F D D

F D

D c

F C n p n N p N n cm n K eV n p T k E E cm

p n n cm N N p cm n n p cm N n eV E N N T k E E K cm e n T k E E n N T

k E E N n n cm F N n T k E E =+=+?=-==-=-?=??==?=?-?=-=?=??==?==-=+=?=+=-+=∴-+=

=?=???=

-=

∴==--??+

处于过度区时:)(时杂质全部电离,发生弱减并)(π

22. 利用上题结果,计算掺磷的硅、锗的室温下开始发生弱简并时有多少施主发生电离?导带中电子浓度为多少?

)

(/107.121)2(14.31005.12)

/1081.7)21(1.014

.3108.2221)2(22)

exp(212.

21318026

.00394.02119

3

18026

.0008

.019

026

.0008

.02100021Ge cm e F N Si cm e

e F N N T k E E T

k E E N T k E E F N Ge si D C

D F C D F D C F C

?=??

????+-??=?=+????=??

????+-=

=--+=?

?????----(发生弱减并ππ3

18026

.00394

.01803

18026

.0008.018

0001018.121107.1:101.3211081.7:)

exp(21--+

--

++

?=+?==?=+?=

=-+=

=cm e

n n Ge cm e

n n Si T

k E E N n n D D

D

F D

D

半导体物理学第五章习题答案电子版本

半导体物理学第五章 习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空 穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩 载流子,产生率为,空穴寿命为 。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10 cm 。今用光照射该样品,光被半导体均匀的吸 收,电子-空穴对的产生率是1022 cm -3s-1 ,试计算光照下样 品的电阻率,并求电导中少数在流子的贡献占多大比例? s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度g p L 0 .=+?-τ 光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生 非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几? 5. n 型硅中,掺杂浓度N D =1016 cm -3 , 光注入的非平衡载流子浓度 n=p=1014cm -3 。计算无光照和有光照的电导率。 % 2606 .38 .006.3500106.1109.,.. 32.0119161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡 。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?-- cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设本征 空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理学第五章习题答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空 穴寿命为。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10??cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例 s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度n=p=1014cm -3。计算无光照和有光照的电导率。 6. 画出p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡Θ。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征 空穴的迁移率近似等于的半导体中电子、 注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2)(: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理学(第7版)第三章习题和答案

第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 23 3*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'2 1 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si ? 系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明: 3 1 23 2212 32' 2123 2 31'2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E ?? ? ? )方向有四个, 锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

半导体物理学第七章知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静 止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数 图7-3 半导体功函数和电子亲合能

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理学(刘恩科)第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别 计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度 (提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

半导体物理第七章总结复习_北邮全新

第七章 一、基本概念 1.半导体功函数: 半导体的费米能级E F 与真空中静止电子的能量E 0的能量之差。 金属功函数:金属的费米能级E F 与真空中静止电子的能量E 0的能量之差 2.电子亲和能: 要使半导体导带底的电子逸出体外所需的最小能量。 3. 金属-半导体功函数差o: (E F )s-(E F )m=Wm-Ws 4. 半导体与金属平衡接触平衡电势差: q W W V s m D -= 5.半导体表面空间电荷区 : 由于半导体中自由电荷密度的限制,正电荷分布在表面相当厚的一层表面层内,即空间电荷区。表面空间电荷区=阻挡层=势垒层 6.电子阻挡层:金属功函数大于N 型半导体功函数(Wm>Ws )的MS 接触中,电子从半导体表面逸出到金属,分布在金属表层,金属表面带负电。半导体表面出现电离施主,分布在一定厚度表面层内,半导体表面带正电。电场从半导体指向金属。取半导体内电位为参考,从半导体内到表面,能带向上弯曲,即形成表面势垒,在势垒区,空间电荷主要有带正电的施主离子组成,电子浓度比体内小得多,因此是是一个高阻区域,称为阻挡层。 【电子从功函数小的地方流向功函数大的地方】 7.电子反阻挡层:金属功函数小于N 型半导体功函数(Wm

半导体物理学第八章知识点

第8章 半导体表面与MIS 结构 许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。 §8.1 半导体表面与表面态 在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。 一、理想一维晶体表面模型及其解 达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。在此半无限周期场中,电子波函数满足的薛定谔方程为 )0(20202≤=+-x E V dx d m φφφη (8-1) )0()(2202≥=+-x E x V dx d m φφφη (8-2) 式中V (x)为周期场势能函数,满足V (x +a )=V(x )。 对能量E <V 0的电子,求解方程(8-1)得出这些 电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η -=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为 kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4) 当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。 但是,当k 取复数k =k '+ik ''时(k '和k ''皆为实数),式(8-4)变成 x k x k i k x k x k i k e e x u A e e x u A x '''--''-'+=ππππφ2222212)()()( (8-5) 此解在x→∞或-∞时总有一项趋于无穷大,不符合波函数有限的原则,说明无限周期势场不能有复数解。但是,当A 1和A 2任有一个为零,即考虑半无限时,k 即可取复数。例如令A 2=0,则 x k x k i k e e x u A x ''-'=ππφ2212)()( (8-6) 图8-l 一维半无限晶体的势能函数

半导体物理学第七版完整答案修订版

半导体物理学第七版完 整答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k) 分别为: E C (K )=0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子 自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面 (c )(111)晶面 补充题2 一维晶体的电子能带可写为)2cos 81 cos 8 7()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量* n m ; (5)能带顶部空穴的有效质量*p m 解:(1)由 0)(=dk k dE 得 a n k π = (n=0,?1,?2…) 进一步分析a n k π ) 12(+= ,E (k )有极大值, a n k π 2=时,E (k )有极小值

半导体物理习题第六章第七章答案

第6章 p-n 结 1、一个Ge 突变结的p 区和n 区掺杂浓度分别为N A =1017cm -3和N D =5?1015cm -3,求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ= ,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,0 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即 22 2 2222 2 ()(1) i i i n p p n q q b σσμμμ==++ 将此结果代入原式即得证

半导体物理第七章作业答案

第七章 半导体表面层和MIS 结构 (1)p 型Si 的掺杂浓度分别为N =1015/cm 3,1017/cm 3。求表面刚刚达到强反型时的表面层电荷面密度,空间电荷层厚度和表面最大电场。 N =1015/cm 3时, 1710=N /cm 3时, 2/10)4(A F s M eN V d εε=2/10)4(A F s M B N eV Q εε-=kT eV i kT E E i F F Fi e n e n p ==-0i A i F n N e kT n p e kT V ln ln 0==00εεεεs BM s n BM M Q Q Q E -≈+-=]/[1076.8)4(2102/10cm e N eV Q A F s M B ?-=-=εε??==A eN V d A F s M 32/101076.8)4(εε]/[1032.140 0cm V Q Q Q E s BM s n BM M ?=-≈+-=εεεε)(41.0105.110ln 026.01017 V V F =?=]/[1004.1)4(2122/10cm e N eV Q A F s M B ?-=-=εε??==A eN V d A F s M 32/101004.1)4(εε

(2)氧化层厚度为1μm 的Si MOS 结构的p 型衬底的掺杂浓度分别为N =1015/cm 3,1016/cm 3,比较这两种结构的氧化层电容和耗尽层电容在决定结构总电容中的作用。 N A 大d s 小, C D 大, C i 作用大。 (3)在MOS 结构C V -特性测量的应用中,平带电容有什么作用? 可根据平带电容来确定平带电压 (4)从物理上说明C FB /C i 随氧化层厚度及掺杂浓度的变化趋势。由 图查N =1015/cm 3,d i =1000A 0的Si MOS 结构的C FB /C i 值,由此估算 德拜长度。与直接算得的值进行比较。 d i 大, C FB /C i 更接近1; p 0大, L D 小, C FB /C i 更接近1. 查图得C FB /C i =0.7, 估算L D =1.35?103 A ? 直接计算得L D =1.31?103 A ? (5)试讨论平带电压V FB 及阈值电压V T 中各个项的来源: i BM F FB T i ox i fc ms FB C Q V V V C Q C Q V V -+='--=2; V FB 各项的来源分别为:功函数之差、“附着”于半导体表面的电 荷、和氧化层中的电荷对半导体表面层内能带弯曲产生的影响。 V T 各项的来源分别为:平带电压、理想情况半导体内部的电压降 V s =2V F 、理想情况绝缘层上的电压降V i 。 ] /[1057.1500cm V Q Q Q E s BM s n BM M ?=-≈+-=εεεεD i s s i i C C d d C 11100+=+=εεεεi s D i i s D i i FB d L C L d C εεεεεε+=+=1100020p e kT L s D εε=

eejAAA半导体物理第五章习题答案

第五篇 题解-非平衡载流子 刘诺 编 5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在? 解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。通常所指的非平衡载流子是指非平衡少子。 热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。 5-2、漂移运动和扩散运动有什么不同? 解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布引起的。 5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系? 解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即 T k q D 0= μ 5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同? 答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。 平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。 5-5、证明非平衡载流子的寿命满足()τ t e p t p -?=?0,并说明式中各项的物理意义。 证明: ()[] p p dt t p d τ?=?- =非平衡载流子数而在单位时间内复合的子的减少数单位时间内非平衡载流 时刻撤除光照如果在0=t

半导体物理第五章习题答案

第5章 非平衡载流子 1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100μs ,计算空穴的复合率。 解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此 13 17306 101010010 U cm s ρτ--===?? 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p , 空穴寿命为τ,请 ①写出光照开始阶段额外载流子密度随时间变化所满足的方程; ②求出光照下达到稳定状态时的额外载流子密度。 解:⑴光照下,额外载流子密度?n =?p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即 ()p d p p g dt τ =- ⑵稳定时额外载流子密度不再随时间变化,即() 0d p dt =,于是由上式得 0p p p p g τ?=-= 3. 有一块n 型硅样品,额外载流子寿命是1μs ,无光照时的电阻率是10Ω?cm 。今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm 3?s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例? 解:光照被均匀吸收后产生的稳定额外载流子密度 226163101010 cm p p n g τ-?=?==?=- 取21350/()n cm V s μ=?,2 500/()p cm V s μ=?,则额外载流子对电导率的贡献 1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=?+=???+= 无光照时00 1 0.1/s cm σρ= =,因而光照下的电导率 0 2.960.1 3.06/s cm σσσ=+=+= 相应的电阻率 1 1 0.333.06 cm ρσ = = =Ω?

半导体物理学 (第七版) 习题答案

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带 极大值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===η s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- ==ηηηηη所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场 时,试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η

半导体物理第七章

第七章 1、功函数:表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。W m=E0-(E F)m W s=E0-(E F)S 2、电子亲和能:使半导体导带底的电子逸出体外所需要的最小能量。?=E0-E c 3、接触电势差:一块金属和一块n型半导体,假定wm>ws接触时,半导体中的电子向金属流动,金属电势降低,半导体电势升高,最后达到平衡状态,金属和半导体的费米能级在同一个水平面上,他们之间的电势差完全补偿了原来费米能级的不同。Vms=(Vs-Vm)/q这个由于接触而产生的电势差称为接触电势差。 4、阻挡层与反阻挡层n p Wm>Ws 阻上弯反阻上弯 WmWs时,与p形成反阻挡层。反阻挡层没有整流作用,选用适当的金属材料可得到欧姆接触。 2、实际生产中,主要利用隧道效应原理。 11、隧道二极管:具有正向负阻特性。正向电流开始随正向电压增加而迅速上升到极大值Ip,随后电流随电压增加而减少,当电压继续增加时电流随之能加。随着电压增大电流反而减少的现象称为负阻。这一电流电压特性曲线的斜线为负,这一特性为负阻特性。 第八章 1、表面态:⑴、在x=0处两边,波函数都是按指数关系衰减,这表明电子的分布概率主要 集中在x=0处,即电子被局限在表面附近。 ⑵、因晶格表面处突然中止,在表面的最外层的每个硅原子将有一个未配对电子,即有一个未饱和的键,与之对应的电子能态。 2、界面态:由于半导体与介质接触而形成接触电势差,在半导体一侧经会形成表面势,将这种由于接触引起的便面能级的变化称为~。晶体界面的存在使其周期场在界面处发生变化。 3、压阻效应:对半导体施加应力时,半导体的电阻率要发生改变,这种现象称为~。 4、多子堆积:Vg<0,Vs<0,表面处能带向上弯曲。热平衡时半导体费米能级应保持定值,随着向表面接近,价带顶逐渐移近甚至高过费米能级,同时价带中空穴浓度随之增加,这样表面层内出现空穴的堆积而带正电荷。 多子耗尽:Vg>0,Vs>0,表面处能带向下弯曲。这时越接近表面,费米能级离价带顶越远,价带中空穴浓度随之降低,在靠近表面附近,价带顶位置比费米能级低得多,根据珀尔兹曼分布,表面处空穴浓度比体内低得多,表面层的负电荷基本上等于电离施主杂志浓度,表面层的这种状态~ 少子反型:Vg进一步增大时,表面处能带进一步下弯,这时,表面出的费米能级位置可能高于禁带中央能量Ei,意味着表面处电子浓度将高过空穴浓度,形成与原来半导体衬底导电类型相反的一层叫做反省层。

半导体物理学第七章知识点说课材料

半导体物理学第七章 知识点

第7章 金属-半导体接触 本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一: §7.1金属半导体接触及其能级图 一、金属和半导体的功函数 1、金属的功函数 在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁 到高于E F 的能级上去,但仍不能脱离金属而逸出体外。要使电子从金属中逸出,必须由外界给它以足够的能量。所以,金属中的电子是在一个势阱中运动,如图7-1所示。若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0 它表示从金属向真空发射一个电子所需要的最小能量。W M 越大,电子越不容易离开金属。 金属的功函数一般为几个电子伏特,其中,铯的最 低,为1.93eV ;铂的最高,为5.36 eV 。图7-2给出了表面清洁的金属的功函数。图中可见,功函数随着原子序数的递增而周期性变化。 2、半导体的功函数 图7-1 金属中的电子势阱 图7-2 一些元素的功函数及其原子序数

和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即 FS S E E W -=0 因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。 与金属不同,半导体中费米能级一般并不是电子的最高能量状态。如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。E C 与E 0之间的能量间隔 C E E -=0χ 被称为电子亲合能。它表示要使半导体导带底的电子逸出体外所需要的最小能量。 利用电子亲合能,半导体的功函数又可表示为 )(FS C S E E W -+=χ 式中,E n =E C -E FS 是费米能级与导带底的能量差。 表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 材料 χ (eV) W S (eV) N D (cm-3) N A (cm-3) 1014 1015 1016 1014 1015 1016 Si 4.05 4.37 4.31 4.25 4.87 4.93 4.99 Ge 4.13 4.43 4.37 4.31 4.51 4.57 4.63 GaAs 4.07 4.29 4.23 4.17 5.20 5.26 5.32 二、有功函数差的金属与半导体的接触 把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。所以,当有功函数差的金属和半导体相接触时,由于存在费米能级之差,二者之间就会有电子的转移。 1、金属与n 型半导体的接触 图7-4 W M >W S 的金属-n 型半导体接触 前(a)后(b)的能带图 E F m (a) W M E C E FS E 0 χ W S 图7-3 半导体功函数和电子亲合能

半导体物理学第七版课后答案分解

(完整word版)半导体物理学(刘恩科)第七版课后答案分解 亲爱的读者: 本文内容由我和我的同事精心收集整理后编辑发布到 文库,发布之前我们对文中内容进行详细的校对,但 难免会有错误的地方,如果有错误的地方请您评论区 留言,我们予以纠正,如果本文档对您有帮助,请您 下载收藏以便随时调用。下面是本文详细内容。 最后最您生活愉快 ~O(∩_∩)O ~

第一章 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大 值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0) (2320 2121022 20 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带:

04 32 2 2*8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时, 试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- = ??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子 面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

相关主题