搜档网
当前位置:搜档网 › 英飞凌高效开关电源系统解决方案

英飞凌高效开关电源系统解决方案

开关电源的分类及运用

开关电源的分类及运用 1.开关电源的分类 开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 1.1DC/DC变换 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton (通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1)Buck电路降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2)Boost电路升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3)Buck-Boost电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路降压或升压斩波器,其输出平均电压Uo大于或小于输入电压UI,极性相反,电容传输。 当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制

造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。 1.2AC/DC变换 AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为整流,功率流由负载返回电源的称为有源逆变。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。 AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单项、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源系统的故障分析与维护

南京中富达电子通信技术有限公司 逾& 多甫窘nan i i n£r zhanp-f uda ft I fttit rnn norraniin i mat ft hv I fttt ft r tftnhno I nfrv I tj,开关电源系统的故障分析与维护 直流开关电源是通信系统的心脏,电源运行质量直接关系到通信网络在线设备的工作质量;保障电源稳定、可靠、安全、优质的情况下运行,确保各项供电指标符合通信设备的供电要求,才能保证通信 设备稳定工作、通信畅通无阻。电源维护人员是保证电源稳定工作的重要技术力量,深入探讨直流开关电源系统故障分析方法与维护措施,有利于电源维护技术人员在维护检查过程中正确的操作和处理故障,及时保障电源设备正常的工作。 一、直流开关电源系统维护要点 1. 重视现场巡检 定期巡视检测通信电源设备,注意机房环境温度和设备运行状况,利用电源监控系统,实时监控电源设备的各种运行参数,发现问题及时处理。巡视检测时必须检查电源工作状态:模块配置是否合理,充电限流值是否正确,有无告警,系统交流电压、电流,直流浮充电压、负载电流、蓄电池充电电流,风扇运行状况,防雷器件状况,开关电源监控模块的各项运行参数是否正确,温度补偿是否正常启用。开关电源模块均流是否小于5%等。蓄电池保险、蓄电池连接条温升,蓄电池是否有爬酸、漏液、鼓肚等现象。机房环境温度是否合符维护要求等。 2. 应用远程监控

逾& 多曲" nan i i ntr yhnnjrf uda fi I ftdtrnn norraniin i mat ft hv I fttt ft r tftnhno I nirv I tj, 利用监控系统对电源设备能够实现远程监控,通过远程监控系统了解故障现象,通过远程能处理的故障可以通过远程监控解决,不能处理的故障,必须马上到现场处理。同时利用电源监控系统检测电源的各种信号是否正常,数据是否存在偏差。 3. 及时处理故障 处理电源设备故障时,应首先初步判断造成电源故障原因和故障部位,然后采取相应的方法和措施对电源故障进行处理。对严重故障 必须请示主管领导。 4. 寻求技术支持 对不能马上处理的电源故障,必须电话咨询相关厂家技术人员, 若电话指导仍然解决不了问题,应立即采用现有备件临时恢复电源设备供电,同时做好故障记录,并通知相关厂家技术人员带配件来维修。 5. 确保安全 在处理故障的过程中应特别注意以下方面的问题以确保安全: (1) 处理故障过程中大部份时间是带电操作的,因此一定要注意不能引起直流输出、交流输入的短路,各种维护工具必做好绝缘处理,确保人身安全和电源设备供电的安全。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源EMI模块详解

1)零线(N)、火线(L)、地线(G):通常家里的三角插头的零火地的辨别是左零右火上地。在 电源板上,我们所说的220V市电,其实就是有效值为220V,最大值为220*1.414V的交流正弦电压。这个电压都在火线上,零线一般不带电,零线只是提供一个电流回路而已,两侧的电压差除以等效电阻就是电流。它在供电端(发电厂、变电站等)接地,或在入户前重复接地,是工作接地线,是输电线路的一部分(由于是一个电流回路,加上流经处的等效电阻,所以零线也是会带电的)。而地线是在用户端接地,和用电器的金属外壳或人体可接触部位连接,使机壳与大地等电位(一般是零电位),零线不与输电线路构成回路,所以理论上没有电流。(市电一般都是零线不带电,火线带全部电,但是有些AC Source由于设置的缘故往往火线和零线都带上一半的电。) 2)保险丝Fuse:保险丝一般加在L端,因为正常情况下L端带电,而N端是不带电的。但是有 时候为了安全方面的考虑,在L端与N端都配有保险丝(为了防止人工插拔造成的反插)。在输入端加保险丝是为了防止开机瞬间可能产生的尖峰大电流对电路造成的伤害。它的工作原理是:大电流流过,造成发热,当温度达到保险丝的熔点以上时自动熔断以达到保护电路的作用。我们选择保险丝一般都是选择慢熔性(用T表示)的,也就是说熔断所需要的能量较普通的保险丝更大,所以它有较大的抵抗瞬间脉冲的能力。保险丝的熔断电流是额定电流的2倍。当通过保险丝的电流超过额定电流1.45倍时,它的熔断时间要在5分钟之内,当通过保险丝的电流超过额定电流2倍时,它的熔断时间要在1分钟之内。通过Q=PT=I2RT就可以选择熔点值。选择Fuse,我们必须测出开机浪涌电流和稳态工作电流的波形图。Fuse的额定电压要大于最大稳态工作电压;额定电流要大于最大稳态工作电流/温度折减率。举个计算I2T的例子:假设开机有3个正弦波的浪涌波,其浪涌电流最大值和持续时间对应为:20A,10us; 10A,10us;5A,10us。那么I2T=? *202*0.00001+ ?*102*0.00001+ ?*52*0.00001=0.002625。 考虑到安全折减率,所以选用的 Fuse的I2T可以适当小于这个值。由于Fuse要承受每次开机关机的浪涌电流冲击,所以我们要设定它可耐冲击的次数。 一般保险丝还会规定一个额定电压,即当保险丝保护后(断开),两端加额定电压时,仍然处于断开状态,不会造成安全隐患。 3)负温敏电阻NTCR:它的工作原理是阻值随着温度的升高而减小,主要功能也是用来保护电路, 开机瞬间一般电流比较大,此时温度低,负温敏电阻阻值大,阻止了大电流对电路的伤害。 选择这个电阻时,一般要考虑零功率电阻值和最大稳态电流。零功率电阻值即25°C时的电阻值,选择它时要考虑到电路开机瞬间的尖峰大小,同时我们也要保证最大稳态电流大于电路的最大电流。 4)Y电容:就是电路上连接L端和G端,N端和G端的两个电容,它是安规电容(所谓安规电容, 就是当电容器失效后不会导致电击,不会危及人身安全。举个例子:若X电容失效导致短路,那么电网的N端和L端直接短路,至少造成设备无法工作,而且使电网被短路;若Y电容失效导致短路,那么L端和地短路,使得某些外壳接地的电器的外壳直接带上高电压,从而对人身安全带来威胁。所以安规电容除了滤除EMI外还要保证在发生失效的时候不至于产生以上危险),由于在电路上看起来很像Y型而得名。它的作用主要是用来滤除高频成分以及共模噪声(大小相等,方向相反的信号,共模噪声又称对地噪声,指的是两根线分别对地的噪声。 实际应用中,温度的变化、各种环境噪声的影响都可以视作共模噪声)。根据电路的峰值脉冲电压的不同可以选择不同的Y电容,在Adapter电路中我们一般选择Y1电容,它的额定电压为250V,耐高压超过8KV(此外还有Y2和Y3电容)。各个地区对Y电容的漏电流都有不同规定,以漏电流不小于0.35mA,工作电压为220市电为例,那么容值一般选择小于3500PF(电容越大,漏电流相应也会越大)。备注:i=CdV/dt,则C=idt/dVt=0.35*0.001*(1/50/4)/(220*1.414-0)=3500PF。单纯用探头测Y电容两端,可能有一个电容两端是没有电压的,但是实际上,两个Y电容可能是平分电压的。 5)X电容:X电容连接在L端和N端之间,也是一个安规电容。它们的作用主要是用来滤除差模

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM ① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及

杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。 为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间, 由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2 导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大, Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体 表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输 5

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

RCC开关电源设计详细讲解39308

目录 摘要 ABSTRACT 绪论 第一章.RCC电路基础简介 1.1RCC电路工作原理 1.2RCC电路的稳压问题 1.3RCC电路占空比的计算 1.4RCC电路振荡频率的计算 1.5RCC电路变压器的设计 第二章.简易RCC基极驱动的缺点及改进设计 2.1 简易RCC电路的缺点 2.2 开关晶体管恒流驱动的设计 第三章.RCC电路的建模及仿真 3.1 RCC电路的建模及参数设计 3.1.1 主要技术指标 3.1.2 变压器的设计 3.1.3 电压控制电路的设计 3.1.4 驱动电路的设计 3.1.5 副边电容、二极管参数的设计

3.1.6 其他辅助电路的设计 3.2 RCC电路的仿真 3.2.1 RCC电路带额定负载时的仿真及设计标准的验证 3.2.2 RCC电路带轻载时的仿真 3.3 RCC电路的改进及改进后的仿真 3.3.1 RCC电路的恒流设计 3.3.2带有恒流源的RCC电路的仿真 第四章 RCC电路间歇振荡的应用实例 4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究 摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大围变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。 Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

LED模块开关电源设计原理

Power Logics Co., Ltd. High PF/AC Direct LED Driver LID-PC-R101B Features ? Wide input range : maximum AC 300V ? LED protection by constant current driving and power compensation ? Drive max. 40W @ 220V, max. 30W @ 110V in 25mm x 30mm x 1.6mm metal PCB condition ? Adjustable efficiency and power factor by LED array and group configuration ? Tap switching structure to implement high power factor ? 83% typical efficiency, minimum power factor 0.95 using 1tap ? No EMI issue ? Small package MLF 20pin, 7mm x 7mm ? Implementation of light and slim lighting fixture by minimizing necessary components Applications. ? Various kind of LED lighting ? Small size LED lighting – Down light, Bulb, etc General Description PC-R101B includes circuits which provide load with constant current and adjust LED power so as to be less sensitive to change of input voltage and protect LED from overloads. Also it helps to achieve high power factor by internal switching circuits and LED group separation scheme. Consequently, PC-R101B is a LED driver guarantees effective use of LEDs which are sensitive to the change of voltage and current. LED drivers generally used such as SMPS or AC/DC converter include switching component and inductors, capacitors of large capacity. These cause complex circuit and problems of noise and life of lighting apparatus. On the contrary, this driver is designed as AC direct concept without complicated circuit and huge inductors, capacitors. Therefore it helps to prolong the life of lighting apparatus and make it free from difficulties of design and debugging. Especially, using properly designed tap structure supported by this driver, it ensures over 0.99 power factor. Total three LED groups are able to be set up connecting with two tap point (TP1, TP2) and power factor will be improved by applying this tap structure interlocked with LED groups. In addition, it

最新中达开关电源系统调试操作书

中达开关电源系统调 试操作书

请各县市代维人员按照<<中达调试操作书>>上的步骤调试好新旧中达开关电源的参数:中达开关电源一次下电应设为44V、二次下电应设为46.8V;新型中达开关电源(带OBO防雷模块、带低压隔离侦测板)必须在侦测板上(用万用表直流电压档表笔接入第二个孔:低压隔离跳脱调节和第四孔:地线孔)把电压调至 4.68V;侦测板上不能有红灯亮,亮红灯表示侦测板处于手动状态,按一下第五个按钮红灯灭,表示处于自动状态。 《中达开关电源系统调试操作书》 中达电通电源系统操作及参数设定: 说明系统运作资料的显示和告警画面的说明, 以及系统如何进行参数设定, 已由用户针对某些特定的参数重新设定, 其余则由出厂时设定完成。 系统显示

1. 首页画面: 监控单元(CSU )的资料显示,是液晶显示器(LCD)和三个发光二极管来执行。红色为主要告警指示,黄色为次要告警指示,黄色为均充充电指示 (见上的CSU 显示屏幕图示)。 液晶显示器首页显示画面的内容为:直流输出电压、直流输出电流、交流输入电压、系统状态。在正常状况下系统异常告警资料并不显示,只有在供电系统发生异常时,才会有系统告警内容显示出来。 开机时首页画面显示: 直流电压--直流供电系统直流输出电压 负载电流--供电系统输出总负载电流 交流电压—系统交流电压(取第二相) 状 态--显示系统的状态(浮充,均充) 在首页下,按下列按键分别显示下列内容: 增 —显示资料内容. (只能查看,不能设置或更改) 减 —显示参数设定内容. (下面详细讲解) 回车 —显示历史纪录内容和时间. 直流电压 54.3 V 负载电流 0 A 交流电压 220 V 状态 浮充 主要告警指示灯 次要告警指示灯 均充指示灯

开关电源8大损耗,讲的太详细了

开关电源8大损耗,讲的太详细了 能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。绝大多数电源IC 的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。一般厂商会给出实际测量的结果,但我们只能对我们自己的数据担保。图1 给出了一个SMPS 降压转换器的电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS 损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET 和二极管),另外小部分损耗来自电感和电容。但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。选择IC 时,需要考虑控制器的架构和内部元件,以期获得高效指标。例如,图1 采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。我们将在本文展开讨论这些措施带来的好处。

图1. 降压转换器集成了低导通电阻的MOSFET,采用同步整流,效率曲线如图所示。 降压型SMPS损耗是任何SMPS 架构都面临的问题,我们在此以图2 所示降压型(或buck)转换器为例进行讨论,图中标明各点的开关波形,用于后续计算。

降压转换器的主要功能是把一个较高的直流输入电压转换成较低的直流输出电压。为了达到这个要求,MOSFET 以固定频率(f S),在脉宽调制信号(PWM)的控制下进行开、关操作。当MOSFET 导通时,输入电压给电感和电容(L 和C OUT)充电,通过它们把能量传递给负载。在此期间,电感电流线性上升,电流回路如图2 中的回路1 所示。 当MOSFET 断开时,输入电压断开与电感的连接,电感和输出电容为负载供电。电感电流线性下降,电流流过二极管,电流回路如图中的环路2 所示。MOSFET 的导通时间定义为PWM 信号的占空比(D)。D 把每个开关周期分成[D ×t S]和[(1 - D) ×t S]两部分,它们分别对应于MOSFET 的导通时间(环路1)和二极管的导通时间(环路2)。所有SMPS 拓扑(降压、反相等)都采用这种方式划分开关周期,实现电压转换。

开关电源各模块原理实图讲解

开关电源各模块原理实图 讲解 This model paper was revised by the Standardization Office on December 10, 2020

开关电源原理 一、开关电源的电路组成: RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻 上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消 耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电 压。若C5容量变小,输出的交流纹波将增大。

会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS 管是利用栅 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4应力减少,EMI 产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

R1和Q1中的结电容C GS 、C GD 一起组成RC网络,电容的充放电直接影响着开关管 的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量也就越多;当Q1截止时,变压器通过D1、D2、R5、R4、C3释放能量,同时也达到了磁场复位的目的,为变压器的下一次存储、传递能量做好了准备。IC 根据输出电压和电流时刻调整着⑥脚锯形波占空比的大小,从而稳定了整机的输出电流和电压。 C4和R6为尖峰电压吸收回路。

相关主题