搜档网
当前位置:搜档网 › 《数学方法论》数学中的化归方法

《数学方法论》数学中的化归方法

《数学方法论》数学中的化归方法
《数学方法论》数学中的化归方法

数学分析中的英文单词和短语

数学分析中的英文单词和短语 第一章实数集与函数

第二章 数列极限 Chapter 2 Limits of Sequences 第三章 函数极限 Chapter 3 Limits of Functions 第四章 函数的连续性 Chapter 4 Continuity of Functions

第六章 微分中值定理 及其应用 Chapter 6 Mean Value Theorems of Differentials and their Applications

第七章 实数的完备性 Chapter 7 Completeness of Real Numbers 第八章 不定积分 Chapter 8 Indefinite Integrals 第九章 定积分 Chapter 9 Definite Integrals

第十章定积分的应用Chapter 10 Applications of Definite Integrals 第十一章反常积分Chapter 11 Improper Integrals 第十二章数项级数Chapter 12 Series of Number Terms 第十三章函数列与函数项级数 Chapter 13 Sequences of Functions and

Series of Functions 第十四章 幂级数 Chapter 14 Power Series 第十五章 傅里叶级数 Chapter 15 Fourier Series 第十六章 多元函数的极限与连续 Chapter 16 Limits and Continuity of Functions of Several Variavles

数学的公理化

数学的公理化 十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。 经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。 对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。 十九世纪八十年代,非欧几何学得到了普遍承认之后,开始了对于几何学基础的探讨。当时已经非常清楚,欧几里得体系的毛病很多:首先,欧几里得几何学原始定义中的点、线、面等不是定义;其次,欧几里得几何学运用许多直观的概念,如“介于……之间”等没有严格的定义;另外,对于公

理系统的独立性、无矛盾性、完备性没有证明。 在十九世纪八十年代,德国数学家巴士提出一套公理系统,提出次序公理等重要概念,不过他的体系中有的公理不必要,有些必要的公理又没有,因此他公理系统不够完美。而且他也没有系统的公理化思想,他的目的是在其他方面——想通过理想元素的引进,把度量几何包括在射影几何之中。 十九世纪八十年代末期起,皮亚诺和他的学生们也进行了一系列的研究。皮亚诺的公理系统有局限性;他的学生皮埃利的“作为演绎系统的几何学”,由于基本概念太少而把必要的定义和公理弄得极为复杂,以致整个系统的逻辑关系极为混乱。 希尔伯特的《几何学基础》的出版,标志着数学公理化新时期的到来。希尔伯特的公理系统是其后一切公理化的楷模。希尔伯特的公理化思想极深刻地影响其后数学基础的发展,他这部著作重版多次,已经成为一本广为流传的经典文献了。 希尔伯特的公理系统与欧几里得及其后任何公理系统的不同之处,在于他没有原始的定义,定义通过公理反映出来。这种思想他在1891年就有所透露。他说:“我们可以用桌子、椅子、啤酒杯来代替点、线、面”。当然,他的意思不是说几何学研究桌、椅、啤酒怀,而是在几何学中,点、线、

现代公理化方法的奠基人——希尔伯特

现代公理化方法的奠基人——希尔伯特 1900年8月6日,第二届国际数学家代表大会在法国巴黎召开。一位38岁的德国数学家神采奕奕地走上了讲台,他向与会者,也向国际数学界提出了横跨数学领域的尚待解决的23个数学问题,预示了20世纪数学的发展进程,他就是20世纪世界最伟大的数学家之一——希尔伯特。 希尔伯特于1862年1月23日生于哥尼斯堡,1943年2月14日在哥廷根逝世。他于1880年入哥尼斯堡大学,1885年获博士学位。希尔伯特的数学贡献是巨大的,他典型的研究方式就是直攻数学中的重大问题,开拓新的研究领域,并从中寻找普遍性的方法。1899年希尔伯特在汲取前人工作的基础上,完成了他著名的《几何基础》一书,第一次给出了完备的欧几里德几何公理体系——希尔伯特公理体体系,从而彻底结束了两千多年来,人们对欧几里德《几何原本》的补充、整理工作。在《几何基础》中,希尔伯特仍使用欧几里德的传统语言和叙述方法,首先补充了欧氏体系中缺少的公理,建立起欧几里德几何的完备公理集,从这个公理集可以无缺陷地推出欧氏几何中的所有定理,并精确地提出了公理系统的相容性、独立性和完备性,因而希尔伯特被誉为现代公理化方法的奠基人。 希尔伯特的数学贡献也是多方面的,他所研究的领域遍及代数学,几何学、分析学、数学基础及物理学许多方面,并取得了举世公认的伟大成就。他眼光深邃,精力充沛,富于创造、献身科学事业的信念使他深深地埋头科学研究,以致几乎考察了数学领域的每一个王国,超凡的才、学、识使他能以卓越的远见和洞察力提出了新世纪数学所面临的难题,从而推动了半个多世纪以来众多数学分支的发展。据统计,从1936——1974年,被誉为数学界诺贝尔奖的菲尔兹国际数学奖的20名获奖者中,至少有12人的工作与希尔伯特的问题有关。 希尔伯特的成功固然有其特定的社会因素,但也是与他本人的勤奋努力、顽强拼搏分不开的,在他的回忆录中,他承认自己小时候并非天才,而是一个愚钝的孩子,他的亲友也没人提到过希尔伯特的能力曾受到人们的注意,但他顽强的精神,却给周围人留下极深刻的印象:不论面对多么繁重的计算,他都具有计算到底的毅力,有一股不达目的绝不罢休的劲头。

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

初中数学教学论文 浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

数学公理化方法

数学公理化方法 在一个数学理论系统中,从尽可能少的原始概念和一组不加证明的公理出发,用纯逻辑推理的法则,把该系统建立成一个演绎系统的方法,就是公理化方法。它是随着数学和逻辑学的发展而产生的。 公元前6世纪前后,希腊数学家泰勒斯(Thales)开始了几何命题的证明,开辟了几何学作为证明的演绎科学的方向。毕达哥拉斯学派的欧多克斯于公元前4世纪在处理不可通约量时,建立了一公理为依据的演绎方法。爱奥尼亚学派的芝诺(Zeno)在论辩术中运用了归谬法。伯拉图阐明了许多逻辑原则。亚里士多德在其著作《分析篇》中,对公理方法作了系统总结,指出了演绎证明的逻辑结构和要求,从而奠定了公理化方法的基础。 公元前3、4世纪之交,希腊数学家欧几里德在总结前人积累的几何知识基础上,把形式逻辑的公理演绎方法应用于几何学,运用他所抽象出的一系列基本概念和公理,完成了传世之作《几何原本》,标志着数学领域中公理化方法的诞生。由于《几何原本》在第五公设的陈述和内容上复杂而累赘,引起人们对这一公设本身必要性的怀疑。在此后的2000多年间,人们试图给出一个第五公设的证明,但所有的尝试都失败了。19世纪,俄国年轻的数学家罗巴切夫斯基吸取前人失败的教训,从反面提出问题,给出了一个新的公理体系,创立了非欧几何学。这是公理化方法的进一步发展。 1899年,德国数学家希尔伯特在前人工作的基础上,著《几何基础》一书,解决了欧氏几何的欠缺,完善了几何公理化方法,创造了全新的形式公理化方法。为了避免在数学中出现悖论,希尔伯特认为要设法绝对的证明数学的无矛盾性,致使他从事“证明论的研究”,于是希尔伯特又把公理化方法推向一个新阶段,即纯形式化发展阶段,这就产生了纯形式公理化方法。 几何学的公理化,成为其它学科及分支的楷模。相继出现了各种理论的公理化系统,如理论力学公理化,相对论公理化,数理逻辑公理化,概率论公理化等。同时,纯形式公理化方法推动了数学基础的研究,并为机算机的广泛应用开阔了前景。

公理化和形式化

公理化和形式化axiomatization and formalization 研究演绎科学理论和构造演绎系统的两种方法。它们被广泛应用于现代逻辑和数学研究中。 公理化 把一个科学理论公理化,就是用公理方法研究它,建立一个公理系统。每一科学理论都是由一系列的概念和命题组成的体系,公理化的实现就是:①从它的诸多概念中挑选出一组初始概念,即不加定义的概念,该理论中的其余概念,都由初始概念通过定义引入,即都用初始概念定义,称为导出概念;②从它的一系列命题中挑选出一组公理,即不加证明的命题,而其余的命题,都应用逻辑规则从公理推演出来,称为定理。应用逻辑规则从公理推演定理的过程称为一个证明,每一定理都是经由证明而予以肯定的。由初始概念、导出概念、公理以及定理构成的演绎体系,称为公理系统。其中,初始概念和公理是公理系统的出发点。 公理方法经历了从古代的实质公理学到现代的形式公理学的发展过程。 公理系统相应地区分为古典公理系统、现代公理系统或称形式公理系统。最有代表性的古典公理系统是古希腊数学家欧几里得在《几何原本》一书中建立的。第一个现代公理系统是D.希尔伯特于1899年提出的。他在《几何基础》一书中,不仅建立了欧几里得几何的形式公理系统,而且也解决了公理方法的一些逻辑理论问题。 古典公理系统的对象域即公理系统所研究的对象,是先于公理而给定的,概念是对象的反映,公理则反映对这些对象的认识,表达这类对象的重要性质和关系。古典公理系统的初始概念和公理都有直观的具体内容,而系统的公理和定理是关于这对象域的真命题。从认识的发展来看,现代形式公理系统虽然一般也是从某种直观理论得到的,并且通常有预先想到的解释。但是,系统自身并不给初始概念予直观的具体内容,它们的意义完全由公理规定,对初始概念和公理可以给予不同的解释,可以刻划多个不同的对象域,即有多个不同的对象域都可以使得一个公理系统的公理和定理为真,它们在不同的解释下成为不同对象域的真命题。 公理系统要满足某些一般要求,包括系统的一致性、完全性和范畴性,以及公理的独立性。其中一致性是最重要的,其他几个性质则不是每个公理系统都能满足的,或可以不必一定要求的。 形式化 公理系统的进一步形式化不仅可以有不同的解释,而且需要应用专门设计的人工符号语言,使一个理论更为精确化和严格化,也就是运用人工的表意符号语言陈述所要形式化的理论。这种人工语言称为形式语言。把一个理论形式化就是把理论中的概念转换为形式语言中的符号,命题转换为符号公式,定理的推演转换成符号公式的变形,并把一个证明转换成符号公式的有穷序列。形式语言的符号和它们所表示的概念之间的对应是确定的,符号公式的结构反映它们的意见。把一个理论形式化后,就可以暂时完全撇开原来理论中的概念、命题的意义,而只从语言符号、公式结构(符号组合的形状)方面研究。意义是抽象的,往往不容易精确理解和掌握。而符号和公式是有穷的具体的对象,能够对其作更精确、更严格的研究,从而通过对具体对象的研究把握抽象的东西。 形式系统 把一个理论形式化的结果是建立形式系统。形式系统是形式化了的公理系统,它包括以下3个部分:①形式语言。规定一个形式语言,首先要列出各种初始符号,它们是形式语言的字母,其中一部分是初始概念,包括逻辑概念;然后再列出一组形成规则,形成规则规定怎样由初始符号组合起来的符号序列是系统中的合式公式,只有合式公式才是有意义的命题,而不合式的符号序列则是无意义的。②形式系统的公理。公理是挑选出来作为出发点的一组合式公式,它们经解释后可以是真的命题。③一组变形规则,也称为推导规则。变形规则规

浅谈中学数学中的化归思想(精)

浅谈中学数学中的化归思想 作者:中原中学刘继华 不断地变换你的问题,我们必须一再地变化它,重新叙述它,变换它,直到最后成 功地找到某些有用的东西为止。 ————波利亚 化归是解决数学问题的一种重要思想方法.化归的思想贯穿于整个数学中,掌握这一思想方法,并学会用它分析问题、处理问题,有着十分重要的意义.匈牙利著名数学家路莎˙彼得以生动的比喻对这种思维方式作了如下风趣的描述:有人提出了这样一个问题:“假设在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此某人回答说:“在壶中灌上水,点燃煤气,再把壶放到煤气灶上。”提问者肯定了这一回答;但是,他又追问道:“如果其它的条件都没有变化,只是水壶中已经有了足够多的水,那你又应当怎样去做?”这时被提问者往往会很有信心地说:“点燃煤气,再把水壶放到煤气灶上。”但是,提问者指出,这一回答并不能使他满意,因为,更好的回答应当是:“只有物理学家才会这样做,而数学家们则会倒掉壶中的水,并声称我把后一问题化归为前面所说的问题了。” 路莎˙彼得在这里说的就是化归方法。在数学教育中,化归思想是“问题解决”的一种重要手段和方法。 —、化归方法的基本思想 1、化归方法的含义:把待解决和未解决的问题,通过转化,或再转化,将原问题归结为一个已经能解决的问题,或者归结为一个比较容

易解决的问题甚至为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.我们就把这种将未知转化归结为已知的解决数学问题的基本方法称之为化归方法. 2、化归方法是辨证思维在方法论上的反映 数学中充满着矛盾,有着极其丰富的辨证内容,例如,数学概念中一与多、正与负、常量与变量、有限与无限以及数学运算中的加与减、乘与除、乘方与开方、微分与积分等都表现为矛盾的对立统一的形式. 化归方法正是根据客观事物是普遍联系、永恒发展和矛盾的对立统一及其相互转化的观点,来实现问题解决的,它着眼于揭示联系实现转化.因此说化归方法是辨证思维在方法论上的反映. 3、化归方法的作用 我们知道整个中学数学内容,始终贯穿着数学知识和数学方法这两条线.中学数学问题的解决过程常常表现为不断发现问题、分析问题直到归结转化为熟悉的或已能解决的问题的过程,化归方法是中学数学中的重要数学方法之一. 例如 (1代数中解一般方程(或不等式的基本思路是多元向一元、高次向低次的化归;分式方程向整式方程的化归,无理方程向有理方程的化归.

浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 墨红镇中学李慧连内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

初中数学专题复习(一) 化归思想

初中数学专题复习(一) 化归思想 本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. 【典型例题剖析】 一、转化思想在代数中的应用。 1.已知:n m ,满足13,132 2 =-=-n n m m , 求n m m n +的值。 二、转化思想在函数问题上的应用: 1. 函数1 y x = 】 A .第一象限 B.第一、三象限 C.第二象限 D.第二、四象限 2.(2016成都)如图,在平面直角坐标系xOy 中,正比例函数的图象与反比例函数的图象都经过点A (2,2). (1)分别求这两个函数的表达式; (2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限的交点为C ,连接AB 、AC ,求点C 的坐标及△ABC 的面积. 三、转化思想在几何中的应用。 2、已知:如图6所示在中,,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。 求证:AC =AE +CD y kx =m y x =

四、代数问题与几何问题之间的化归: 1.如图,已知矩形ABCD 中,E 是AB 上一点, 沿EC 折叠,使点B 落在AD 边的B‘处,若AB=6, BC=10, 求AE 的长。 2、如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【强化训练】 一、选择题与填空题 1、用换元法解方程x x x x += ++2 22 1时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=0 2、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直径的圆交AB 于D ,若AD=8cm ,则阴影部分的 面积为( ) A 、64πcm 2 B 、64 cm 2 C 、32 cm 2 D 、48 πcm 2 E A B C D E F P

浅谈化归思想在中学数学中的应用

浅谈化归思想在中学数学中的应用 发表时间:2010-11-08T15:05:44.580Z 来源:《中小学教育》2010年第11期供稿作者:苏炳堂 [导读] 数与数之间的转化遵循着一些原则,例如具体化原则、简单化原则、和谐统一化原则等等。 苏炳堂广西柳州市第一中学545007 在中学数学中,化归思想不仅是一种重要的数学思想,也是一种最基本的思维策略。化归思想在中学数学中有着很广泛的应用,其关键就在于把原问题转化和归结。对于具体的数学问题,如何实行化归和选择有效的化归手段并没有固定的模式,中学数学常见的化归基本形式有以下三种: 一、数与数之间的转化 数与数之间的转化是中学数学中最常用的一种化归形式,通过转化可以使得原问题简单化、具体化、熟悉化,从而使问题迎刃而解。在中学数学中很多化归都是数与数之间的转化,例如变形所给出的方程求解,数学解法在于不断将高层次的解法化归为较低层次的解法,这就是我们常说的把问题“初等化”。 例1、关于x的方程cos2x+sinx+a=0在(0,π)内有解,求a的取值范围。 分析:假设由题意把x看作未知数,那么那就是一个复合的方程,很难下手,但若考虑以sinx为未知数,再由1-cos2x=sin2x,则问题转化为常见的一元二次方程了,原问题即可解决。所以由1-cos2x=sin2x,原式可化为:a=sin2x-sinx-1即a=(sinx- )2- 。因为x∈(0,π),所以0

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

“化归”策略

“化归”思想在中学数学教学中的 渗透与化归的策略 河源市龙川县老隆镇第二中学邹秋雄 【摘要】化归思想是中学数学思想中最常见、最基本、较浅显的一种思想,而化归方法是中学数学学习过程中经常运用的一种有效手段。在数学教学中渗透化归思想是非常必要的。而在实际操作过程中,我们应如何渗透化归思想呢?如何把握化归的三要素“化归的对象、化归的目标、化归的方法”呢?又将如何准确地把握化归的策略呢?本文将对上述问题进行粗浅的阐述,以达到在解决数学问题的过程中能准确地运用化归方法。准确地把握化归策略,灵活地运用化归方法,有效地防止化归的错误的目的。

【关键词】化归思想化归方法化归策略 一、化归思想概述 数学思想方法教学比数学知识教学困难,尽管如此,数学思想还是有规律可循的。本文就来谈一下“化归”思想在中学数学教学中的渗透与化归策略。 化归思想是中学数学思想中最常见、最基本、较浅显的一种数学思想,而化归方法是中学数学学习过程中经常运用的一种有效手段。所谓“化归”就是将所要解决的问题转化归结为另一个较易问题或已经解决的问题。具体地说就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”问题转化为“简单”问题等。善于化归的学生不仅经常会“逢凶化吉”、“柳暗花明又一村”,而且学习起点和总体认识

水平比其他同学往往略高一筹。因此,化归方法是人们从事数学活动时的程序、途径,是实施化归数学思想的技术手段。我们可以作一个比喻,化归数学思想相当于建筑的一张蓝图,化归方法则相当于建筑施工的手段,化归思想比化归方法更深刻,更抽象地反映数学对象间的内在关系,是化归方法的进一步的概括和升华。比如:“化归”去解方程372=-x 就是化归方法,而当评价它在数学体系中的自身价值和意义时,又称之为化归思想。化归思想方法包含三个基本要素:化归的对象、化归的目标和化归的方法。 二、化归思想方法在教学中的渗透 那么,如何在中学数学教学中渗透“化归”思想呢?数学思想方法必须以基础知识和基本技能作为载体体现出来,中学数学中有许多体现“化归”思想知识和技能,无论在代数中还是几

转换与化归思想

浅谈转换与化归思想 转化思想是数学中的一种基本却很重要的思想。深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。 一、 转换思想 (1)转换思想的内涵 转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。 (2)转换思想在同一学科中的应用 转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。 比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。 看这样一个问题: 已知:11122=-+-a b b a ,求证:12 2=+b a 。 [分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点 令人望而生畏。 再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。 [解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα 化简得1cos cos sin sin =+αααα 所以0sin ≥=αa ,0cos ≥=αb 则 1cos sin 2 222=+=+ααb a [小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现 三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。 转换思想对思维要求确实很高,但这一点还是能够做到的。因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下

九年级数学公理与定理

2.3公理和定理 一、教学目标: 1、了解公理、定理的含义,初步体会公理化思想,并了解本教科书所使用的定理。 2、通过介绍欧几里得的原本,使学生感受公理化方法对数学发展和促进人类文明进步的价值。 二、教学重点、难点: 公理和定理的区别和联系 三、教法:引导发现法 四、教具准备:投影仪 五、教学过程: 一.创设情景 想一想 如何通过推理的方法证实一个命题是真命题呢? 在数学发展史上,数学家们也遇到过类似的问题。 公元前3世纪,古希腊数学家欧几里得将前人积累下来的几何学成果整理在系统的逻辑体系之中。他挑选了一部分不定义的数学名词(称为原名)和一部分公认的真命题(称为公理)作为证实其他命题的起始依据,定义出其他有关的概念,并运用推理的方法,证实了数百个有关的命题,使几何学成为一门具有公理化体系的科学。 二.回顾总结 通过长期实践总结出来,并且被人们公认的真命题叫做公理。例如,欧几里得将“两点确定一条直线”,“直角都相等”等五条基本几何事实作为公理。通过推理得到证实的真命题叫做定理。 本教科书选用如下命题作为公理:

此外,等式的有关性质和不等式的有关性质都可以看作公理。例如“在等式或不等式中,一个量可以用它的等量来代替”,简称为“等量代换”。 三.应用举例 由上面给出的公理,可以证明如下命题的正确性:等角的补角相等。 已知:∠1=∠2,∠1+∠3=180,∠2+∠4=180。 求证:∠3=∠4 证明:∵∠1+∠3=180,∠2+∠4=180(已知), ∴∠3=180-∠1,∠4=180-∠2 (等式的性质) ∵∠1=∠2 (已知), ∴∠3=∠4 (等式的性质)。 这样,我们便可以把上面这个经过证实的命题称作定理了。已经证明的定理可以作为以后推理的依据。 证明一个命题的正确性,要按照“已知”、“求证”、“证明”的顺序和格式写出。其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程。四、巩固练习: 课本随堂练习2、习题1、2

化归思想在初中数学解题中的应用

【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。 一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想, 是一种把待解决或未解决

的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定解决方案的问题,从而使问题获解。中学数学受多年应试教育的影响,有些问题被复杂化了,而学生对于这类问题却又相当头疼,所以通过

数学分析中的典型问题与方法

数学分析中的典型问题与方法 《勘误表》 (1) 原书 第4页的例1.1.5有错, 2011年6月21日, 作者将此题更改写为: 例1.1.5 试证: 设 y = f(x) 是R 上的有界实函数. 且有 2 f (x) 2h)f (x h)f (x ++= + (?x R ∈). (1) (其中h 为某一正数). 则h 必是函数f 的周期. 证 根据式 (1), 有 f (x + 2h ) – f (x + h ) = f (x + h ) – f (x ) (?x R ∈). 令 F (x) = f (x + h ) – f (x ) . 上式即为 F (x + h ) = F (x ) (?x R ∈). 于是 f (x + n h ) = [ f (x + n h ) – f (x + (n - 1)h )] + [ f (x + (n – 1)h ) – f (x + (n - 2)h ) +…+ [f (x + h ) - f (x )] + f (x ) =∑=+1 -n k ))(F 0kh x + f (x ) = n F (x ) + f (x ). 若 F (x )≠0 , 当n +∞→时, nF (x ) 趋向无穷大, 与函数f 有界矛盾. 所以F (x )= 0. 即 f (x + h ) = f (x ). (?x R ∈). 故h 是函数f 的周期. 注意1. 对于任意给定的实数h , 若h 是函数f 的周期, 则条件 (1) 显然成立. 因此本例说明: 存在实数h 满足条件 (1), 是有界函数f 为周期函数的充分必要条件. 2. “有界”条件不可忽略, 例如f (x ) = x , 不是周期函数, 但是式 (1) 总成立. 特别要道歉的是, 更正中又出现了重大遗漏 将2 f (x)2h)f (x h)f (x ++= +写成了 2f (x ) 2h )f (x f (x ) ++=, 虽然从证明里可以看出, 但是题目写错, 是有罪的。 原文 2f(x) 2h)f(x f(x)++= (?x R ∈). (1) 应改正为 2 f(x) 2h)f(x h)f(x ++= + (?x R ∈). (1) (2) 第29页 第8行 前面去掉 “方法” 二字, 后面 加入 “(|q|<1)” 原文是: 1.2.2. 用:N -方法证明ε 1) 1;n lim n n =∞ → 2)0q n lim n 3n =∞ →; 3)0q n lim n 3n =∞ →. 改写为: 1.2.2. 用:N -证明ε 1) 1;n lim n n =∞ → 2)0q n lim n 3n =∞ → (|q|<1); 3)0q n lim n 3n =∞ →.

相关主题